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Abstract: The objective of this study was to design an active packaging material based
on a polyethylene terephthalate (PET)/polypropylene (PP) film modified with a pullulan
coating enriched with 1, 5, and 10% of clove essential oil (CEO). The physical properties
of modified PET/PP films, including opacity, UV, and light visible barrier properties,
were evaluated, and calorimetric measurement of color (L*a*b*) was performed, followed
by determination of their potential of antioxidant activity and antimicrobial properties
against foodborne pathogenic bacteria (E. coli, S. Enteritidis, S. aureus and L. monocytogenes)
were characterized. Additionally, the effectiveness of the active packaging in reducing
pathogenic bacteria on spinach leaves was evaluated. The PET/PP film with a pullulan
coating enriched with CEO did not affect their transparency. The incorporation of CEO
improved the film’s UV and visible light barrier properties without causing noticeable color
changes while also exhibiting good antioxidant and antimicrobial activity. Furthermore,
the application of active packaging effectively inhibited the growth of pathogenic bacteria
on spinach leaves, demonstrating its potential for food preservation.

Keywords: pullulan; clove essential oil; physical properties; antimicrobial and antioxidant
activity; active packaging; spinach leaves

1. Introduction
Packaging plays a crucial role in food preservation, acting as a barrier against phys-

ical, chemical, and microbiological factors. While conventional packaging is effective, it
primarily serves as a passive protective barrier, limiting exposure to external influences. In
recent years, significant advancements in packaging technology have introduced active
packaging systems, which not only protect food but also interact with it to extend shelf life
and enhance microbial safety [1,2]. Active packaging incorporates functional substances
that interact with the food or its surrounding environment to maintain quality and fresh-
ness. This approach involves the controlled release or absorption of specific compounds.
Based on their function, active packaging systems can be classified into active scavenging
systems (absorbers) and active-releasing systems (emitters). Absorbers remove undesirable
substances such as moisture, carbon dioxide, oxygen, and ethylene, while emitters intro-
duce beneficial substances such as antimicrobial agents, carbon dioxide, antioxidants, and
flavors [3,4].

Antimicrobial packaging is a type of active packaging that reduces, inhibits, or retards
the growth of microorganisms that may be present in packed food [5,6]. Packaging with
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antimicrobial properties can be obtained by adding sachets or pads containing antimi-
crobial substances to the packaging [7–9], directly incorporating the antimicrobial agent
into a polymer matrix [10,11] and applying an antimicrobial compound onto the polymer
surface [12,13]. So far, various antimicrobial agents, including synthetic/chemical preser-
vatives as well as natural agents, have been incorporated into packaging systems [14–17].
Nevertheless, consumer pressure to use natural agents for food preservation increased
the interest in the use of naturally derived additives such as essential oils (EOs) [18]. EOs
are complex mixtures of bioactive compounds derived from plant secondary metabolism.
These volatile hydrophobic substances are primarily composed of terpenes, terpenoids,
and phenylpropene compounds, which contribute to their diverse biological activities [19].
Clove (Syzygium aromaticum) is one of the most popular spices widely used as a natural
food flavoring agent. Also, clove essential oil (CEO) obtained from the bud or leaves of
the clove tree is considered a natural flavoring agent in various products, such as candies,
baked foods, and beverages [20,21]. Furthermore, due to its excellent antimicrobial and
antioxidant properties, it can also be used as a natural preservative [22,23]. Generally,
CEO is composed of fractions consisting of bioactive compounds, mainly from the phenyl-
propanoid and sesquiterpene classes. A major compound found in both the bud and leaf
clove oil is eugenol (a phenylpropanoid), followed by eugenol acetate, β-caryophyllene,
and humulene [24].

Polyethylene terephthalate (PET)/polypropylene (PP) is widely used in the food pack-
aging industry due to its affordability, transparency, and excellent thermal stability. The
multilayer PET/PP film, compared to its monolayer counterpart, combines the mechanical
strength and barrier properties of PET with the flexibility and heat-sealing ability of PP.
As a result, this enhanced structure of multilayer PET/PP film exhibits better mechanical
and barrier properties, and a heat-sealing ability which improves the stability and func-
tionality of the final food packaging. This makes PET/PP film more effective for extending
shelf life and maintaining food quality. Moreover, these two polymers are among the
most commonly used ones for the development of active packaging [25,26]. Furthermore,
bioactive compounds can be incorporated into the polymer to enhance its functionality to
provide antimicrobial and antioxidant effects. However, the direct incorporation of active
substances (e.g., essential oils) into polymeric matrices through the most commonly used
techniques, such as extrusion, often results in the volatilization or thermal degradation
of bioactive compounds due to high temperatures used during the process. Therefore,
scientific studies already focus on using biopolymers with incorporated active substances
as an additional layer to cover synthetic polymers [26–29].

Pullulan is an extracellular polysaccharide produced by Aureobasidium pullulan [30,31].
This biopolymer has good film-forming properties, as well as adhesive properties, which
favor its application in films and coatings. Pullulan films are tasteless, odorless, and
edible, while also exhibiting good optical properties, including high transparency and
colorlessness [32,33]. Several studies have demonstrated the potential of pullulan, either
alone or enriched with bioactive compounds, as a promising packaging material for coating
food products [33–38]. In general, adding essential oils enhances the functional properties
of pullulan coatings, such as their antimicrobial and antioxidant activity [34,38]. Moreover,
studies have shown that incorporating clove essential oil into pullulan–gelatin and chitosan–
pullulan films improves their mechanical strength, water resistance, barrier properties,
and UV-blocking capabilities. These enhancements make pullulan-based films a highly
functional and efficient solution for active food packaging [39,40].

Minimally processed vegetables are obtained using mild and non-thermal treatments,
allowing them to retain their natural appearance, texture, and nutritional value. As a result,
these products are highly perishable and vulnerable to post-harvest physiological changes
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and microbial contamination during transportation, handling, processing, storage, and
distribution. Furthermore, the absence of thermal processing raises significant food safety
concerns due to the potential presence of pathogenic microorganisms [41]. Among the
various pathogens implicated in the contamination of minimally processed vegetables,
Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes have been the most
frequently identified in previous studies [42,43]. Therefore, ensuring the microbiological
safety of minimally processed produce while maintaining its sensory and nutritional quality
over extended periods remains a major challenge in the food industry. To enhance the
microbial safety and shelf life of minimally processed vegetables, active packaging systems
with antimicrobial properties have been proposed as an innovative solution. Kwon et al. [43]
investigated the use of polyvinyl alcohol (PVA) films incorporated with oregano essential
oil and found that films containing 2–3% oregano oil effectively inhibited Salmonella enterica,
molds, yeasts, and mesophilic aerobic bacteria on cherry tomatoes during storage. In other
studies, Salmieri et al. [44] developed poly(lactic acid)–cellulose nanocrystal (PLA–CNC)
films infused with oregano essential oil, which exhibited strong antibacterial activity against
Listeria monocytogenes in mixed vegetables. PET/PP loaded with methyl gallate showed
antioxidant activity and potential application in the preservation of perishable food such as
lettuce and tangerine [29].

In this context, the present study aims to develop an innovative active packaging
system based on a PET/PP film coated with pullulan enriched with clove essential oil.
The main objective is to evaluate its physicochemical and antimicrobial properties, as well
as its application in preserving minimally processed vegetables such as spinach. This
study contributes to the search for sustainable and effective alternatives for preserving
perishable foods.

2. Result and Discussion
2.1. Physical Characteristics of Films

The physical properties of unmodified and modified PET/PP films, including thick-
ness, opacity, and color, are presented in Table 1. The results demonstrate that PET/PP
films coated with pullulan exhibited greater thickness compared to uncoated/unmodified
PET/PP films. Furthermore, the incorporation of essential oils into the pullulan coating
increased the solids content of the coating, which, in turn, contributed to a further increase
in thickness. A similar phenomenon was reported by Chu et al. [45], who also noted that the
thickness of pullulan coatings was amplified with increasing concentrations of cinnamon
essential oil in the biopolymer matrix.

The optical properties of packaging materials, including transparency and color, are
critical factors for consumers since they allow visual inspection of the product’s freshness,
quality, and overall appearance, reducing uncertainty before purchasing. Opacity is one of
the parameters used to determine the optical transparency of food packaging materials.
The results presented in Table 1 show that the PET/PP film exhibits an opacity value of 1.21,
which indicates that it is a highly transparent material. Covering the PET/PP film with a
layer of pullulan coating and pullulan coating with the addition of essential oil contributed
to a gradual increase in the opacity (from 2.20 to 3.29). Luis et al. [46] also noted that
incorporating rockrose essential oil into pullulan films reduced their transparency, which
could be attributed to light scattering caused by the distribution of EO droplets within the
biopolymer matrix. Nevertheless, Lei et al. [47] noted that transparent materials for food
packaging are those with an opacity value below 5. The visual appearance of the coated
PET/PP film shown in Figure 1 also confirms that the coating of the PET/PP film does not
adversely affect the visibility of the text underneath the film, which confirms their good
transparency properties.



Molecules 2025, 30, 2118 4 of 17

Table 1. Optical and color properties of unmodified and modified PET/PP films.

Film
Sample

Thickness
[mm]

Opacity
[a.u./mm]

Transmittance (%) Color
280 nm 600 nm L* a* b* ∆E

PET/PP 0.052 ± 0.00 a ** 1.21 ± 0.04 a 0.121 ± 0.003 c 86.14 ± 0.46 c 91.61 ± 0.65 c −0.46 ± 0.03 a 0.53 ± 0.05 a -
PET/PP/P 0.064 ± 0.005 b 2.20 ± 0.08 b 0.093 ± 0.005 b 72.25 ± 1.42 b 91.18 ± 068 b −0.66 ± 0.15 bc 0.63 ± 0.05 b 0.49
PET/PP/P
+ 1%CEO 0.065 ± 0.004 b 2.30 ± 0.13 c 0.095 ± 0.005 b 70.93 ± 1.63 b 90.62 ± 0.35 a −0.64 ± 0.18 b 0.64 ± 0.08 b 1.02

PET/PP/P
+ 5%CEO 0.069 ± 0.006 c 2.61 ± 0.28 d 0.091 ± 0.009 b 68.2 ± 05.76 b 90.56 ± 0.20 a −0.74 ± 0.08 cd 0.93 ± 0.19 c 1.16

PET/PP/P
+ 10%CEO 0.073 ± 0.007 d 3.29 ± 0.38 e 0.080 ± 0.007 a 58.57 ± 5.41 a 90.75 ± 0.51 a −0.78 ± 0.11 d 1.12 ± 0.15 d 1.10

** a–e—different letters in the column indicate statistical differences at p < 0.05. PET/PP—unmodified
film, PET/PP—polyethylene terephthalate/polypropylene film, PET/PP/P—polyethylene tereph-
thalate/polypropylene film with a layer of pullulan coating, PET/PP/P + 1%CEO—polyethylene
terephthalate/polypropylene film with a layer of pullulan coating and 1% clove essential oil,
PET/PP/P + 5%CEO—polyethylene terephthalate/polypropylene film with a layer of pullulan coating
and 5% clove essential oil, PET/PP/P + 10%CEO—polyethylene terephthalate/polypropylene film with a layer of
pullulan coating and 10% clove essential oil.
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Figure 1. Visualization of film opacity: (A) PET/PP, (B) PET/PP/P, (C) PET/PP/P + 1%CEO,
(D) PET/PP/P + 5%CEO, (E) PET/PP/P + 10%CEO. PET/PP—polyethylene terephtha-
late/polypropylene film, PET/PP/P—polyethylene terephthalate/polypropylene film with a layer
of pullulan coating, PET/PP/P + 1%CEO—polyethylene terephthalate/polypropylene film with
a layer of pullulan coating and 1% clove essential oil, PET/PP/P + 5%CEO—polyethylene
terephthalate/polypropylene film with a layer of pullulan coating and 5% clove essential oil,
PET/PP/P + 10%CEO—polyethylene terephthalate/polypropylene film with a layer of pullulan
coating and 10% clove essential oil.

The UV light transmittance at 280 nm and visible light transmittance at 600 nm for
all films are presented in Table 1. The pullulan-coated PET/PP film was characterized by
significantly lower UV light transmittance (measured at 280 nm) compared to an unmodi-
fied PET/PP film. After reinforcing the pullulan coating with clove essential oil at 1 and
5% concentration, no significant change in UV transmittance was observed compared to
the PET/PP/P film. However, noticeable changes in the decreased UV light transmittance
were recorded for the PET/PP film with a pullulan coating reinforced with 10% CEO. The
UV light transmittance of the PET/PP/P + 10%CEO film was measured at 0.08%, indicating
a reduction in UV transmission by 34% and 14% compared to the uncoated PET/PP film
and the PET/PP film with a pullulan layer, respectively. Reducing UV light exposure
helps preserve food quality by preventing photochemical reactions that cause color fad-
ing, off-flavor formation, and degradation of nutritional quality [48]. At the same time,
visible light transmittance at 600 nm was also significantly lower through the PET/PP/P
film (72.24%) compared to the PET/PP film (86.13%). In the films with lower clove oil
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concentration, i.e., PET/PP/P + 1%CEO and PET/PP/P + 5%CEO, no significant change
in visible light transmittance was observed compared to the PET/PP/P film, whereas film
with 10% clove oil (PET/PP/P + 10%CEO) significantly reduced light transmittance to
58.57%. Overall, the incorporation of clove essential oil into the pullulan coating, especially
at higher concentrations, significantly improved the barrier properties of PET/PP films
against UV and visible light. Moreover, the results highlight that PET/PP/P + 10%CEO
film can be used as a packaging material for light-sensitive food products. Sharma et al. [49]
also reported that the incorporation of clove oil into a composite film made of poly(lactide)
and poly(butylene adipate-co-terephthalate) (PLA/PBAT–clove oil film) allowed obtaining
packaging material with good UV protection and reduced visible light transmission. The
enhanced UV-blocking properties were primarily attributed to the presence of phenolic
compounds in clove essential oil that effectively absorb UV radiation [49], while the re-
duction in visible light transmission may be related to the light scattering caused by the
presence of oil droplets dispersed in a polymer matrix [50].

In addition, the surface color of the tested films was analyzed by determining the
parameters L*, a*, b* (Table 1). Covering the PET/PP film with a pullulan coating layer
had no significant effect on color parameters (L*, a*, b*) compared to uncoated (pure)
PET/PP films. However, slight color changes were observed for PET/PP films coated with
pullulan-containing CEO. With the increasing concentration of CEO, the brightness of the
films decreased slightly but significantly, as indicated by the values of the L* parameter.
Also, the a* value decreased significantly while the b* value increased significantly with
increasing CEO concentration in the pullulan coating. These results indicate that the
incorporation of clove essential oil increased the shade intensity of the pullulan coating
towards a yellow-green color, which is related to the yellow color of the clove essential oil
used in the study. Similar results were observed by Sharma et al. [49], who found that the
composite film made of a blend of poly(lactide)/poly(butylene adipate-co-terephthalate)
with clove oil (PLA/PBAT–clove oil film) was characterized by a pale yellow color, which,
as the authors suggest, was due to the presence of phenolic compounds that contributed to
the yellowish hue of the composite film. However, visual inspection of the PET/PP films
coated with pullulan and CEO did not reveal any noticeable greenish-yellow discoloration.
This suggests that the differences observed in the a* and b* values between the PET/PP film
and films with an active pullulan coating layer did not induce a perceptible color change,
allowing the film to be classified as colorless. Additionally, based on the results of the total
color difference, the ∆E for each tested PET/PP film with a pullulan coating did not exceed
2, which indicates a very small color difference compared to the unmodified PET/PP film.
This suggests that experienced observers can detect the difference in color, whereas for
most inexperienced observers (typically for most consumers) the difference in color will be
unnoticeable [51].

2.2. Antibacterial and Antioxidant Activity of Films

The antibacterial efficacy of each PET/PP film composition was evaluated against
four bacterial strains, including two Gram-negative (E. coli and S. Enteritidis) and two
Gram-positive (S. aureus and L. monocytogenes) strains. Table 2 presents the number of
bacteria recovered after 24 h of incubation on each film sample, the antimicrobial activity (R)
quantified as a log reduction, and the percentage reduction in bacterial count determined
for the PET/PP films with an active layer of pullulan coating. The results show that the
PET/PP film with an active layer of pullulan coating containing CEO at a concentration of 1
to 10% showed antibacterial activity against all tested bacteria. However, some differences
in the antibacterial effectiveness of films were observed, which were dependent on the
concentration of CEO and bacterial strains. It was found that each PET/PP film with an
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active layer of pullulan coating showed more than 99.9% reduction in bacterial growth
against both Gram-negative bacteria, which, according to the criteria, can be interpreted as
a material with bactericidal activity (>3 log reduction). In turn, inhibition of the growth of
Gram-positive bacteria was more dependent on the concentration of CEO in the pullulan
coating. PET/PP/P +1%CEO showed moderate antimicrobial activity against S. aureus
and L. monocytogenes. However, increasing the CEO content in the coating to 5% and 10%
allowed us to obtain a material with strong antimicrobial activity. The observed difference
in antimicrobial efficacy between Gram-negative (E. coli, S. Enteritidis) and Gram-positive
bacteria (S. aureus, L. monocytogenes) can be attributed to the structural composition of their
cell walls. Gram-negative bacteria have an outer membrane rich in lipopolysaccharides,
which makes them more susceptible to the disruptive action of essential oils. In contrast,
Gram-positive bacteria have a thicker peptidoglycan layer, which may provide increased
resistance to antimicrobial agents.

Table 2. Antimicrobial activity of unmodified and modified PET/PP films.

Bacteria Strains Film Sample Number of Bacteria
(log CFU/cm2) R (Log Reduction) % Reduction

E. coli

PET/PP 4.03 -
PET/PP/P 3.83 0.14

PET/PP/P + 1% CEO n/d * 4.03 >99.9%
PET/PP/P + 5% CEO n/d 4.03 >99.9%
PET/PP/P + 10% CEO n/d 4.03 >99.9%

Salmonella Enteritidis

PET/PP 3.72 - -
PET/PP/P 3.91 0

PET/PP/P + 1% CEO n/d 3.72 >99.9%
PET/PP/P + 5% CEO n/d 3.72 >99.9%
PET/PP/P + 10% CEO n/d 3.72 >99.9%

S. aureus

PET/PP 5.55 -
PET/PP/P 5.80 0

PET/PP/P + 1% CEO 3.77 1.78 98.95%
PET/PP/P + 5% CEO n/d 5.55 >99.9%
PET/PP/P + 10% CEO n/d 5.55 >99.9%

L. monocytogenes

PET/PP 3.34 -
PET/PP/P 3.26 0.08

PET/PP/P + 1% CEO 2.17 1.17 93.2%
PET/PP/P + 5% CEO n/d 3.34 >99.9%
PET/PP/P + 10% CEO n/d 3.34 >99.9%

* n/d—not detected. PET/PP—polyethylene terephthalate/polypropylene film, PET/PP/P—polyethylene
terephthalate/polypropylene film with a layer of pullulan coating, PET/PP/P + 1%CEO—polyethylene tereph-
thalate/polypropylene film with a layer of pullulan coating and 1% clove essential oil, PET/PP/P + 5%CEO—
polyethylene terephthalate/polypropylene film with a layer of pullulan coating and 5% clove essential oil,
PET/PP/P + 10%CEO—polyethylene terephthalate/polypropylene film with a layer of pullulan coating and 10%
clove essential oil.

To evaluate the antioxidant properties of the developed films, the ABTS radical scav-
enging activity assay was conducted, the results of which are presented in Figure 2. The
uncoated PET/PP film and the PET/PP film with a pullulan coating did not show any
antioxidant activity. In contrast, incorporating CEO into the pullulan coating significantly
increased the antioxidant capacity. The PET/PP/P + 1%CEO, PET/PP/P + 5%CEO, and
PET/PP/P + 10%CEO films exhibited an ABTS scavenging capacity of 78.9%, 98.2%, and
98.9%, respectively.
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Figure 2. Antioxidant activity of unmodified and modified PET/PP films. PET/PP—polyethylene
terephthalate/polypropylene film, PET/PP/P—polyethylene terephthalate/polypropylene film with
a layer of pullulan coating, PET/PP/P + 1%CEO—polyethylene terephthalate/polypropylene film
with a layer of pullulan coating and 1% clove essential oil, PET/PP/P + 5%CEO—polyethylene
terephthalate/polypropylene film with a layer of pullulan coating and 5% clove essential oil,
PET/PP/P + 10%CEO—polyethylene terephthalate/polypropylene film with a layer of pullulan
coating and 10% clove essential oil.

The antibacterial and antioxidant effect of PET/PP films with an active layer of pullu-
lan coating is attributed to CEO, which is rich in bioactive compounds. The main constituent
identified in CEO, obtained from buds or leaves, is eugenol, which mainly determines
its biological activity, such as antioxidant, antimicrobial, antiviral, anti-inflammatory, and
many other effects. Moreover, clove essential oil is approved by the U.S. Food and Drug
Administration (FDA) and has GRAS (Generally Recognized as Safe) status [52]. In general,
essential oils are recognized as a promising additive to the polymer material, imparting
antimicrobial and antioxidant activity, thus enabling the development of active food pack-
aging. However, their application also poses certain challenges, including high volatility
and potential sensory impacts on food products. Consequently, these factors may restrict
their use in food packaging [53]. Al-Hashimi et al. [54] reported that starch millet films
fortified with clove essential oil exhibited excellent antioxidant potency adjusted to 85,96%
when the film contained 3% oil. Additionally, the film displays an antibacterial effect
against Gram-negative bacteria (E. coli, P. aeruginosa, Enterobacter sp.) and Gram-positive
(B. cereus and S. aureus), with a slightly stronger effect against Gram-negative bacteria.
Pullulan films containing caraway and oregano essential oils have been shown to have
antibacterial and antifungal properties [34,55]. In other studies, rosemary, caraway, and
fennel essential oil as active substances were introduced to ethylcellulose, which was used
as a coating to cover the surface of a PLA film. The authors reported that the modified PLA
film effectively inhibited the growth of E. coli and S. aureus [56].

2.3. Antimicrobial Activity of Model Active Package Bags

In this study, the effectiveness of the obtained active packaging was evaluated using
spinach leaves artificially inoculated with foodborne pathogenic bacteria (Figure 3). Al-
though all CEO-modified PET/PP films demonstrated antibacterial activity against the
tested pathogens, PET/PP/P+10%CEO was selected as the model active packaging due
to its significantly better optical properties. Its enhanced barrier to UV and visible light
makes it suitable for preserving the quality of light-sensitive food products.
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Figure 3. Inhibition of bacterial growth on spinach leaves packed in active packaging. A–D—different
letters indicate statistical differences at p < 0.05, as determined by a two-way ANOVA followed by
Tukey’s test; PET/PP bags—bags made of polyethylene terephthalate/polypropylene film, PET/PP/P
bags—bags made of polyethylene terephthalate/polypropylene film with a layer of pullulan coating,
PET/PP/P + 10%CEO—bags made of polyethylene terephthalate/polypropylene film with a layer of
pullulan coating and 10% clove essential oil.

The initial bacterial counts on spinach were 7.4, 7.4, 7.5, and 7.6 log CFU/g for E. coli,
S. Enteritidis, S. aureus, and L. monocytogenes, respectively. During storage, bacterial counts
on spinach leaves stored in PET/PP and PET/PP bags with a pullulan coating (PET/PP/P
bags) decreased slightly but significantly within the range of 0.63–1.1 log CFU/g, likely due
to the effect of low temperature of storage. Moreover, the change in the number of bacteria
on spinach stored in PET/PP bags, which did not show antimicrobial activity, was found
to be similar to that in PET/PP/P bags, indicating that these packages do not demonstrate
antimicrobial properties. In contrast, the number of bacteria was effectively reduced on
spinach stored in PET/PP bags with an active layer of pullulan coating containing 10%
clove oil (PET/PP/P + 10%CEO bags). Initially, it was noted that active packaging exhibited
greater inhibitory activity against Gram-negative bacteria than Gram-positive bacteria. Af-
ter the first day of storing spinach in the active packaging, the bacterial counts of E. coli and
Salmonella Enteritidis decreased by 5.0 and 4.21 log cycles, respectively. Thereafter, the pop-
ulation of both bacteria remained stable over the subsequent days of storage. Meanwhile,
the bacterial count of S. aureus and L. monocytogenes after the first day of storage decreased
by 2.1 and 2.9 log cycles, respectively. During further storage, bacterial count slightly
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decreased by approximately 0.5–0.6 log cycles. Overall, during the whole period of storage,
PET/PP/P + 10%CEO demonstrated 3.7–5.0 and 2.0–2.8 log reduction in regard to PET/PP
film for Gram-negative and Gram-positive bacteria, respectively. These results indicate that
PET/PP/P + 10%CEO bags exhibited bactericidal activity against Gram-negative bacteria
and a bacteriostatic effect against Gram-positive bacteria. Given that minimally processed
vegetables are highly perishable, the application of this active packaging could provide a
natural alternative to chemical preservatives, aligning with consumer demand for clean-
label and eco-friendly solutions in the food industry. Devecioglu et al. [57] demonstrated
that sachets made from poly(vinyl alcohol) (PVA) nanofiber film, enriched with clove oil
encapsulated in cyclodextrin, effectively inhibited fungal growth when used for packaging
bread slices.

2.4. Visual Appearance

The visual attributes of perishable food products such as fruits and vegetables, in-
cluding appearance, color, taste, smell, and texture, are key factors influencing consumer
purchasing decisions [58]. Therefore, when evaluating active packaging, it is essential to
assess not only its effectiveness in inhibiting microbial growth and preserving microbio-
logical quality but also its impact on the visual characteristics of the product [59]. Figure 4
presents the visual appearance of spinach leaves stored in the active packaging bag model.
Visual investigation indicated that the active packaging did not negatively affect the overall
appearance of the spinach. Throughout the storage period, the spinach leaves retained
their characteristic green color and the visually attractive qualities typical of fresh spinach.
The lack of visible signs of deterioration, discoloration, damage, or decay indicates their
good quality.
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Figure 4. The visual appearance of spinach packed and stored in PET/PP bags, PET/PP/P bags, and
PET/PP/P + 10%CEO bags. PET/PP bags—bags made of polyethylene terephthalate/polypropylene
film, PET/PP/P bags—bags made of polyethylene terephthalate/polypropylene film with a layer of
pullulan coating, PET/PP/P + 10%CEO—bags made of polyethylene terephthalate/polypropylene
film with a layer of pullulan coating and 10% clove essential oil.
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3. Materials and Methods
3.1. Materials

Laminated polyethylene terephthalate (PET)/polypropylene (PP) film (laminated
PET/PP; 52 µm; water vapor permeability: 6 g/m2/24 h; oxygen vapor permeability:
95 cm3/m2/24 h) was used as the main packaging material, and pullulan (Hayashibara
Co., Okayama, Japan) was used as a coating layer and carrier for clove essential oil (Vera-
Nord, Legionowo, Poland), which serves as an antimicrobial substance. Tryptic soy broth
(TSB) and Mueller-Hinton Agar (MHA) were purchased from BTL (Łódź, Poland). NaCl,
glycerol, Tween 80, and potassium persulfate (K2S2O8) were from Chempur (Piekary
Śląskie, Poland), PBS was obtained from VWR® International (Solon, OH, USA) and ABTS
was from Sigma Aldrich (Steinheim, Germany).

Bacterial strains: Escherichia coli ATCC 13067, Salmonella enterica subsp. enterica var.
Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Listeria monocytogenes ATCC
7644 were purchased from American Type Culture Collection and were stored in the a
cryoprotective medium at −80 ◦C.

3.2. Preparation of Pullulan Film-Forming Solution

Prior to the final experiment, preliminary tests were conducted to optimize the formu-
lation of the pullulan coating, ensuring uniform adhesion to PET/PP films. Based on this,
the following pullulan coating solutions were prepared:

Control pullulan coating (P) was prepared by dissolving pullulan 10% (w/v) and
glycerol 1% (w/v) in distilled water; the solution was mixed for 1 h using a magnetic stirrer
(IKA, Warsaw, Poland).

Pullulan coating with 1% clove essential oil (P + 1%CEO) was prepared by dissolving
pullulan (10% w/v), glycerol (1% w/v), and Tween 80 (1% w/v) in distilled water. The
solution was mixed for 1 h using a magnetic stirrer (IKA, Poland). Subsequently, clove
essential oil (1% w/v) was added, and the mixtures were homogenized by ultrasonication
at 20 kHz and 60% amplitude for 5 min. To maintain the temperature below 30 ◦C, the
samples were placed in an ice bath during ultrasonication.

Pullulan coating with 5% clove essential oil (P + 5%CEO) was prepared by dissolving
pullulan (10% w/v), glycerol (1% w/v), and Tween 80 (3% w/v) in distilled water. The
solution was mixed for 1 h using a magnetic stirrer (IKA, Poland). Subsequently, clove
essential oil (5% w/v) was added, and the mixtures were homogenized by ultrasonication
at 20 kHz and 60% amplitude for 5 min. To maintain the temperature below 30 ◦C, the
samples were placed in an ice bath during ultrasonication.

Pullulan coatings with 10% clove essential oil (P + 10%CEO) were prepared by dis-
solving pullulan (10% w/v), glycerol (1% w/v), and Tween 80 (6% w/v) in distilled water.
The solution was mixed for 1 h using a magnetic stirrer (IKA, Poland). Subsequently, clove
essential oil (10% w/v) was added, and the mixtures were homogenized by ultrasonication
at 20 kHz and 60% amplitude for 5 min. To maintain the temperature below 30 ◦C, the
samples were placed in an ice bath during ultrasonication.

3.3. Application of Pullulan Film-Forming Solution onto PET/PP Films

Pullulan film-forming solution (with and without clove essential oil) was then applied
to sheets of a PET/PP film using the automatic film applicator Byko-Drive V (BYK-Gardner,
Geretsried, Germany) and a frame applicator with a gap depth of 150 um. The application
rate of the film-forming solution was 20 mm/s. The PET/PP film with a pullulan coating
was left to dry in the laminar chamber (previously sterilized by UV radiation) at room
temperature for 24 h.
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Finally, the following modifications of the PET/PP film were prepared for this study:
the PET/PP film with an active layer of pullulan coating with 1% clove essential oil
(PET/PP/P + 1%CEO), the PET/PP film with an active layer of pullulan coating with
5% clove essential oil (PET/PP/P + 5%CEO), and the PET/PP film with an active layer
of pullulan coating with 10% clove essential oil (PET/PP/P + 10%CEO). Additionally, a
non-modified/uncoated PET/PP film and a PET/PP film with a layer of pullulan coating
(without clove essential oil; PET/PP/P) were prepared and served as a control.

The scheme of the preparation and application of pullulan film-forming solution with
clove essential oil (CEO) onto PET/PP are presented in Figure 5.
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3.4. Physical Characteristics of Film
3.4.1. Thickness

The thickness of the unmodified and modified PET/PP film was measured using a
thickness gauge (BYKO-Test 4500, BYK-Gardner, Geretsried, Germany). Measurements
were performed in ten repetitions at randomly selected locations across different areas of
each film sample, specifically at the center and near the edges.

3.4.2. Optical Properties (Opacity and Light Transmittance)

The opacity and light transmittance of unmodified and modified PET/PP films were
measured using a Metertech UV–VIS SP-8001 spectrophotometer (Metertech Inc., Taipei,
Taiwan). Film samples were cut into 1 × 5 cm pieces and inserted directly into the spec-
trophotometer’s test chamber. The absorbance of the films was measured at a wavelength
of 600 nm. The experiment was conducted with three replications. The opacity of the films
was calculated using Equation (1) [60]:

Opacity =
Abs600

t
(1)

where Abs600 is the absorbance value at 600 nm and t is the film thickness (mm).
Additionally, the UV barrier and visible light transmission properties of the films were

evaluated by measuring transmittance at 280 nm and 600 nm, respectively. The results
were present as a percentage of light transmittance.

3.4.3. Color Analysis

The color parameters (L*, a*, b*) of unmodified and modified PET/PP films were deter-
mined using a CR-400 colorimeter (Minolta, Tokyo, Japan). Measurements were performed
in ten repetitions at randomly selected locations on each film sample. Additionally, the
total color difference (∆E) was calculated using Equation (2):

∆E =

√
(Lm − Lc)

2 + (am − ac)
2 + (bm − bc)

2 (2)
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where Lc, ac, and bc are values for uncoated/unmodified PET/PP films, and Lm, am, and bm

are values for modified PET/PP films.

3.5. Antibacterial Activity of Films

The frozen stock culture of each tested strain of bacteria was activated on a TSB
medium at 37 ◦C for 24 h. Then, bacteria were transferred and spread onto Petri dishes
with TSB medium and cultured at 37 ◦C for 24 h. Afterward, bacterial cells were harvested
and transferred to PBS to obtain an optical density of 0.5◦ on the McFarland scale measured
using a Densimat instrument (bioMérieux, Marcy-l’Étoile, France), corresponding to the
cell concentration in the suspension of 1–2 × 108 CFU/mL. The prepared bacterial solution
served as the final bacterial inoculum.

Measurement of antibacterial activity of unmodified and modified PET/PP films was
determined according to the protocol based on ISO 22196:2011 [61] with slight modifications.
Briefly, films were cut into 3 × 3 cm pieces and placed in sterile 90 mm Petri dishes.
Hundred µL of the final bacteria inoculum (approx. 1– 2 × 108 CFU/mL) were pipetted
onto films as 10-µL droplets, evenly distributed over the entire surface of the film. Samples
were incubated at 37 ◦C for 24 h. To determine the recovery of bacteria from the film
surface, 10 mL of PBS was poured into each Petri dish containing a test piece of film, and
then the plates were mixed thoroughly to wash away the bacteria. Next, appropriate
decimal dilutions were prepared, spread onto MHA plates, and incubated at 37 ◦C for 24 h.
After incubation, the colonies on each plate were counted and the number of bacteria was
calculated using Equation (3):

N =
100 × C × V × D

A
(3)

where C is the average of CFU count on plates; D is the dilution factor; V is the volume of
PBS (mL); A is the surface of the film (mm2).

The antibacterial activity (R) was determined using Equation (4):

R = Ut − At (4)

where R is the antibacterial activity; Ut is the average of the log CFU/cm2, recovered from
unmodified/uncoated PET/PP film after 24 h.

At is the average of the log CFU/cm2, recovered from PET/PP film with an active
pullulan layer after 24 h.

The percentage of bacterial reduction was calculated using Equation (5):

% of growth reduction =
NB_control − NB_sample

NB_control
× 100% (5)

NB_control is the number of bacteria colonies (CFU/cm2) recovered from the unmodi-
fied/uncoated PET/PP film after 24 h.

NB_sample is the number of bacteria colonies (CFU/cm2) recovered from the PET/PP
film with an active pullulan layer after 24 h.

The antimicrobial activity (R) of the PET/PP film with an active pullulan coat-
ing layer was evaluated based on the following classification: no antimicrobial activity
(≤0.5 log microbial growth reduction, <68.4% reduction); slight antimicrobial activity
(0.5–1 log reduction, from 68.4% to < 90% reduction); moderate antimicrobial activity (>1 to
≤2 log reduction, 90% to <99% reduction); good antimicrobial activity (2 to <3 log reduction,
from 99% to <99.9% reduction); and very good antimicrobial activity (>3 log reduction,
>99.9% reduction) [61]. Additionally, percentage bacterial reduction was used to determine
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whether the composite film exhibited bactericidal activity (>99.9% reduction in bacterial
counts) or bacteriostatic activity (from 90% to 99.9% reduction in bacterial counts) [62].

3.6. ABTS Radical Scavenging Activity of Films

The antioxidant activity of each PET/PP film was evaluated by the ABTS radi-
cal scavenging method according to the procedure reported by Ma et al. [63], with
slight modification. A mixture of ABTS and potassium persulfate at concentrations of
7.00 mmol/L and 2.45 mmol/L, respectively, was prepared and left at room temperature in
the dark for 16 h before being used to generate ABTS radical cations (ABTS•+). Then, the
obtained ABTS•+ solution was diluted in PBS to an absorbance of 0.70 ± 0.05 at λ = 734 nm
(Metertech UV–VIS SP-8001). Each PET/PP film (5 mg) was immersed in 4 mL of ABTS
solution and kept for 3 min in the dark at room temperature, and after that, the absorbance
at 734 nm was measured. The experiment was conducted with three replications. The
antioxidant activity for each PET/PP film was calculated using Equation (6):

ABTS scavenging activity (%) =
Abs_control − Abs_sample

Abs_control
× 100% (6)

where Abs_control is the absorbance value of blank ABTS solution and Abs sample is the
absorbance value of ABTS solution containing test film.

3.7. Preparation of a Model Packaging Bags

In the first step, polypropylene (PET/PP) films with an active layer of pullulan coat-
ing containing 10% clove oil (PET/PP/P + 10%CEO) and a layer of pullulan coating
without clove essential oil (PET/PP/P) were prepared as described above. Additionally,
uncoated/unmodified PET/PP films were also prepared. Then, the coated and uncoated
PET/PP film sheets were cut into 7 × 10 cm rectangles. These rectangles were subsequently
sealed along their edges using an impulse welder (PFS/FS 300 C, ITAX, Bydgoszcz, Poland)
to obtain model packaging bags.

3.7.1. Preparation and Inoculation of Spinach Leaves

Fresh spinach leaves purchased from the local market in Warsaw, Poland, were trans-
ported to the laboratory in original producer bags and stored in the refrigerator at 4 ◦C
until the laboratory research process began. For the study, whole and undamaged leaves
were selected, which were then washed twice in sterile water and placed inside the laminar
chamber for 1 h to dry. In the meantime, while keeping them in the chamber, spinach leaf
surfaces (each side) were exposed to UV radiation for 10 min to eliminate native microflora.
After that, spinach was artificially infected with testing pathogenic bacteria, including E.
coli, S. Enteritidis, S. aureus, and L. monocytogenes. Spinach samples were spot-inoculated
with 200 µL of final bacterial inoculum (approximately 1–2 × 108 CFU/mL; prepared
as above) and left to dry for 30 min to allow bacterial cells to adhere to the spinach leaf
surfaces. The experiments were performed separately for each bacterial strain tested. The
initial bacterial concentration on spinach leaves after inoculation was 7.4, 7.4, 7.5, and
7.6 log CFU/g for E. coli, S. Enteritidis, S. aureus, and L. monocytogenes, respectively.

3.7.2. Packaging and Microbial Enumeration

Inoculated spinach leaves (5 g) were packed into model packaging bags: PET/PP bags,
PET/PP/P bags and PET/PP/P + 10%CEO bags. The packed spinach leaves were stored
at 4 ◦C for 7 days. On days 1, 2, and 7, samples of spinach leaves (1 g) were removed from
uncoated and coated model bags and transferred to a stomacher bag with 9 mL of 0.85%
sodium chloride solution. After manual mixing, a series of decimal dilutions were made,
and 1 mL of the appropriate dilutions was poured onto MHA plates, which were incubated
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at 37 ◦C for 24 h, and bacterial colonies were counted using an automatic colony counter
(ProtoCol3, Synbiosis, Cambridge, UK). The results were expressed as log CFU/g. The
experiments were performed with three replications per condition.

3.8. Statistical Analysis

Statistical analysis was performed using Statistica 13.3 PL (TIBCO, Palo Alto, CA,
USA). A one-way ANOVA, followed by Tukey’s test for multiple comparisons (p < 0.05),
was conducted to evaluate the physical characteristics of the films. A two-way ANOVA,
followed by Tukey’s test (p < 0.05), was applied to assess the antimicrobial activity of the
model active packaging bags.

4. Conclusions
In this study, an active packaging material based on a polypropylene (PET/PP) film

modified with a pullulan coating enriched with clove essential oil was successfully devel-
oped. Covering the PET/PP film with a layer of pullulan coating and pullulan coating with
the addition of clove essential oil contributed to a gradual increase in thickness and opacity.
Nevertheless, all modified PET/PP films were still considered a transparent material. More-
over, the incorporation of clove essential oil into the pullulan coating, particularly at higher
concentrations, enhanced the UV and visible light barrier properties of the PET/PP films
while not causing a noticeable color change, allowing the films to be classified as colorless.
Additionally, the PET/PP film with an active layer of pullulan-containing CEO exhibits
good antioxidant and antibacterial activity against Gram-negative (E. coli, S. Enteritidis) and
Gram-positive bacteria (S. aureus, L. monocytogenes). The application of active packaging
effectively reduces the number of pathogenic bacteria on spinach leaves. It was noted that
active packaging exhibited greater inhibitory activity against Gram-negative bacteria than
Gram-positive bacteria. In addition, no adverse effect on the visual qualities of spinach
samples packed and stored in active material was observed. These findings underscore
the practical viability of this active packaging for the fresh produce industry, providing a
natural and effective alternative to chemical preservatives. Nevertheless, to comprehen-
sively evaluate the potential of the PET/PP films modified with pullulan-containing CEO,
it is crucial to analyze their mechanical and barrier properties, as these factors play an
important role in evaluating their suitability as packaging materials.

For future research, it is recommended to conduct a sensory analysis of such active
packaging to assess its impact on the odor or taste of fresh food products. Additionally, the
mechanical and barrier properties of the modified PET/PP film, which may influence its
practical application in packaging, should be evaluated in subsequent studies.
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