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Abstract:  

Cell shape has long been used to discern cell phenotypes and states, but the underlying 

premise has not been quantitatively tested. Here, we show that a single cell image can be used to 

discriminate its migration behavior by analyzing a large number of cell migration data in vitro.   

We analyzed a large number of two-dimensional cell migration images over time and found that 

the cell shape variation space has only six dimensions, and migration behavior can be determined 

by the coordinates of a single cell image in this 6-dimensional shape-space. We further show that 

this is possible because persistent cell migration is characterized by spatial-temporally 

coordinated protrusion and contraction, and a distribution signature in the shape-space. Our 

findings provide a quantitative underpinning for using cell morphology to differentiate cell 

dynamical behavior. 
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Significance Statement	

Cell biology and pathology have traditionally relied on cell shape to discern cell 

phenotypes and states.  Can we deduce the dynamical behavior of a cell from its shape?  We 

found, based on analyzing 10! cell images of 2D migration, that a static cell shape can 

discriminate migration patterns: not through simple shape features, but through its coordinates in 

the low-dimensional shape space. Further analysis explains that the dynamical signatures of 

intracellular mechanochemical coupling for migration is reflected in the spatiotemporal 

coordination of cell shape.  

Introduction	

Cell shape has traditionally been an important feature that biologists and pathologists rely 

on to discern cell type, behavior, and state. The underlying assumption of this practice, however, 
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has not been systematically and quantitatively tested. Many factors, e.g., the cytoskeleton, the 

membrane, and adhesion, interact to give rise to cell shape. The detailed molecular scale 

understanding of these factors is available, but a cellular scale understanding of shape formation 

is still lacking. In this study, we used cell migration as an example of a dynamical process to 

address the fundamental question: can a single, static image of cell shape discriminate the 

dynamical behavior? The shape of a cell changes during migration: the front adheres to the 

substrate, protrudes outward, and the rear contracts; the number and size of protrusions change as 

a function of cell state and environment. Most of the molecular details for each individual step 

and the interaction between protrusion and adhesion have been established (1-3). For motile 

keratocytes, shape can be used to predict migration speed (4). Cell migration essentially is the 

sum of all the coordinated changes in cell shape. Genetically identical cells in the same 

environment exhibit rapid, slow, or negligible locomotion. We analyzed this intrinsic phenotypic 

migration heterogeneity in mouse fibroblast (NIH3T3) and human glioblastoma (LN229) cells, 

both are highly motile cell lines. Mouse fibroblast cells have been extensively used as a model 

system for cell migration (5, 6), making it a good choice for further shape analysis and an ideal 

comparison with human glioblastoma cells, whose migration is the hallmark of aggressive brain 

tumor and whose shape and migration behavior has not been quantitatively studied. 

Results	
Heterogeneous cellular persistence and migration behavior 

Using confocal and epifluorescence live cell imaging, we observed the spontaneous 

movement of low-density, single NIH3T3 (𝑛 = 517) and LN229 (𝑛 = 510) cells plated on 

fibronectin-coated polyacrylamide gels in the absence of any symmetry-breaking gradients. Cell 

movements were recorded at a rate of 1 frame per minute for up to 10 hours, resulting in 373,796 

single cell images in total. The outline of each cell was segmented (Fig. 1A and Supplementary 
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Information). Cell shape (Fig. 1B) was represented using a circular map 𝛺(𝜃, 𝑡), which is the 

distance from the centroid to the cell periphery in the direction θ and at the time t. θ=0 was fixed 

in the positive direction of the horizontal axis. The dynamics captured include both cell shape 

deformation (Fig. 1B) and the centroid movement. The efficiency of cell migration depends on 

two essential parameters: cell centroid speed variability and directional persistence (7). 

We first need to define migrator and non-migrator. During migration, cells show large 

variability in simple shape measurements including cell area, aspect ratio, major and minor axes, 

across the populations of both LN229 and NIH3T3 cells (Fig. S1): none of them can distinguish 

migrator vs non-migrators. To separate cells into migrators and non-migrators, we use the 

directionality ratio (DR), which is the ratio between the straight-line distance (𝑑!"#) and path 

length (𝐷"#$) of the trajectory between the starting position and the current position. 

𝐷𝑅(𝑛𝛥𝑡) = %!"#
&!"#

= '()!"#*)$"#)%,(-!"#*-$"#)%.
&
%
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&
%!

'+&

,				(1) 

where (𝑥4#$ , 𝑦4#$)	is the cell centroid of the 𝑖$5 frame (𝜃, 𝑖𝛥𝑡) (Fig. 1D); 𝛥𝑡 is 1 minute in all our 

data and analysis. DR is an intuitive and effective metric for quantifying directional bias of cell 

trajectories (Fig. 1E). The choice of threshold of DR is optimized based on the analysis of all our 

cell data (Fig. S2B). We found that the mean square displacement (MSD) of the cell trajectories 

follows a power law 𝑀𝑆𝐷(𝑡)~𝐷𝑡67 , where D is the diffusion coefficient and the exponent α 

characterizes the nature of diffusive motion. However, for both NIH3T3 and LN229 cells, 

neither D nor 𝛼	8  value can serve as a quantitative concise descriptor of cell motility pattern (Fig. 

1E and Fig. S2), suggesting that diffusivity cannot easily discriminate migrators and non-

migrators. It has been shown previously to describe the migration characteristics of fibrosarcoma 

HT1080 cells (8). For both LN229 and NIH3T3 cells, we found that migrators have greater 
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persistent time P and smaller cell speed variation S, compared with non-migrators (Fig. 1F), 

which can be explained using the stochastic differential equation that non-migrators have greater 

magnitude of random fluctuations in speed or less coordination in membrane displacements (Fig. 

1F-G and Supplementary Information). 

Low-dimensional variability of cell shape and cell migration behavior  

To determine how a cell changes its shape during migration, we analyzed the 2D cell 

shapes 𝛺(𝜃, 𝑡)	and the membrane displacement 𝜇(𝜃, 𝑡) = %8(9,$)
%$

. The latter captures membrane 

deformation that varies in size, quantity, and location. The membrane displacements are fewer 

but larger in size and are more biased in direction for migrators (Fig. 2A) than for non-migrators 

(Fig. 2B). The quantity, width and magnitude of directional membrane displacement reflects the 

intrinsic variability in the underlying molecular mechanisms that result in cell shape differences. 

To characterize the cell shape variability quantitatively, we applied principal components 

analysis (4, 9) to the shapes of NIH3T3 and LN229 cells separately. We found that six 

orthogonal modes of shape variation (Fig. 2C and Fig. 2D) account for ~99% of the total shape 

variability in both cell lines. These shape modes provide a low-dimensional (6-dimensional) 

space, where each mode is an axis of the coordinate system. The first mode describes the change 

of cell area through isotropic expansion and contraction - it accounts for the majority of the 

shape variations for both cell lines. The second mode shows four regions of variation that 

alternate between contraction and protrusion; the contraction and protrusions are diametrically 

opposed along the cell periphery, indicating directional cell migration.  Modes 3-6 describe 

shape variations with increasingly larger number of protrusion/contraction regions that are 

smaller in size. The cell shape 𝛺(𝜃, 𝑡)	can be approximated using linear combination of these 

major modes,  
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𝛺(𝜃, 𝑡) ≈ ∑ 𝛼4(𝑡)𝜙;===⃗ (𝑡)!
4<= 		(2) 

where 𝛼4(𝑡)	is the amplitude along the axis 𝜙;===⃗ 	. We can then write a stochastic equation of 

motion for each cell shape that based on the time-lapse images of the whole migration trajectory, 

in which the parameters connect the cytoskeleton dynamics to the shape determination 

(Supporting Information). 

To determine if this shape-space can help to distinguish migrators and non-migrators, we 

projected every single cell shape in this space, in particular the 2D plane formed by the first and 

the second modes. The joint probability density, ρ (α1, α2), shows the distribution of the 

coordinates in the plane. For both cell lines, all non-migrators’ coordinates (α1, α2) are confined 

in a small area close to origin (Fig. 2E and Fig. 2G), because non-migrators have low amplitudes 

in shape variation modes 1 and 2. In contrast, the coordinates of migrators (α1, α2) spread much 

wider, corresponding to higher amplitudes in shape variation modes 1 and 2.  The migrators 

occupy space completely separated from non-migrators in NIH3T3 cells (Fig. 2F). In LN229, 

coordinates of migrators and non-migrators overlaps; however, for migrators, the majority of its 

frames during their migration process reside outside the non-migration region (Fig. 2H and Fig. 

S3). The latter is consistent with the observation that some LN229 cells can switch between 

migratory and non-migratory states. We compared all the 2D planes in the 6-dimensional shape-

space and found that the plane of the modes 1 and 2 offers the best segregation of migrators and 

non-migrators (Combinations of other shape modes are in Fig. S4.). These results suggest that 

the complex shape variations for mammalian cells can be reduced to 6-dimensions. The 

coordinates of cell shape in this low-dimensional space, especially in the plane of the first and 

second shape modes, can discriminate migrator vs. non-migrator. We acquired an additional set 

of cell migration data with exactly the same experimental settings as a validation dataset. We 
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showed that the prediction accuracy for NIH3T3 (5394 frames from 87 cells) is 97% for 

migrators and 95% for non-migrator; the prediction accuracy for LN229 (2790 frames from 45 

cells) is 98% for migrators and 90% for non-migrators. 

Spatiotemporal persistence determines cell migration dynamics 

To explain why a single shape can describe migration dynamics, we explored how cell 

shape is related to the spatiotemporal persistence of migration dynamics. With the assumption of 

an equilibrium cell shape (10), the coordinates in the shape-space can indicate the potential 

persistence in shape deformation. As a cell changes its shape, the displacement of a membrane 

point is coupled to its neighboring points both spatially and temporally. To investigate how cells 

spatiotemporally coordinate the shape deformation in terms of contraction and protrusion, and 

the deformation dynamics leads to migration dynamics, we analyzed the spatiotemporal 

correlation using both short-term (30 minutes) and long-term (10 hours) cell membrane 

displacement data. The spatiotemporal correlation, 𝐶>(𝑟𝛥𝜃, 𝑠𝛥𝑡), measures the lack of 

independence between two membrane points 𝜇(𝜃4 , 𝑡4)	and 𝜇(𝜃4 + 𝑟𝛥𝜃, 𝑡4 + 𝑠𝛥𝑡). A detailed 

description can be found in Supporting Information.  

Two membrane points have a positive correlation when they both show positive (or 

negative) displacements, and vice versa. We first use 30-minute migration data to clearly identify 

migrator and non-migrator and their characteristics, then use 10-hour long migration data to 

address if the cell migration pattern can change over time. 

Taking a typical migrator and a typical non-migrator (NIH3T3) and using only 30 

minutes of their migration data, we showed that their spatiotemporal correlation functions are 

drastically different. The migrator has much larger negative and positive correlation 

spatiotemporally (Figs. 3A-C), as compared with the non-migrator (Figs. 3D-F). For the 
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migrator (Fig. 3A), the spatial correlation shows about half of the cell is positively correlated, 

while the other half is negatively correlated – this observation is more clearly indicated in the 

zeroth line contour plot (Fig. 3C) – indicating that half of the cell is protruding while the other 

half is contracting, the most efficient form of migration with one single protrusion.  The spatial 

correlation for the non-migrator, on the other hand, shows no large-scale correlation (Fig. 3D) 

and numerous transitions between positive and negative correlation. Since the cell membrane 

deformation is bi-directional, inward and outward, positive correlation in time corresponds to 

persistent protrusion or contraction, and negative correlation in space means a large area of the 

membrane deform in the opposite direction, corresponding to coordinated protrusion and 

contraction. Negative correlation therefore is important for directional migration (11). The 

frequent transition between negative and positive correlation for non-migrators signifies the lack 

of both spatial and temporal persistence. On the contrary, two clearly distinct regions of positive 

correlation of the correlation map (Fig. 3B and Fig. 3C) and a negative correlation region 

characterize a migrator. The width of the negative correction in space is roughly π, which is the 

distance between the “front” and “back” of cell along the circular map. 

Discussion 

We next analyzed the spatiotemporal correlation of long-term (10 hours) migration. From 

the cell trajectories, it is clear that in addition to migrator and non-migrator, many cells transition 

between migration and resting, confirming that cell migration is a plastic, dynamical process. We 

chose cells with distinct migration behaviors to show spatiotemporal signatures of cell migration 

in terms of shape deformation. We showed that the correlation magnitude is not a feature for 

distinguishing migrator vs. non-migrator due to time averaging.  The more persistent the 

migration, the less frequent transitions between positive and negative correlation (Figs. 4G-I).  
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The temporal persistence length corresponds to the duration of cell migration (Fig. 4G). For both 

the persistent migrator and the intermittent migrator, the width of negative correlation is smaller 

than π/2. We also observed that migrator has spatial correlation width greater than π/2. To further 

test the width threshold of the negative correlation region, we analyzed data of a cell that went 

through the process of polarization and initiation of directional migration. The correlation 

contour (Figs. 4G-I) shows that the width of negative correlation region increased from 0 to π. 

We also verified that the duration for the cell directional migrating equals to the temporal length 

of negative correlation region that is wider than π/2. Further detailed analysis of the 

spatiotemporal contour plots revealed more subtle migration dynamics, for example turning (Fig. 

S5). 

Discussion  

In summary, we analyzed quantitatively over a million images of cell morphology to 

determine if cell shape can discriminate cell migration behavior. The answer is a clear yes – 

when projected into the low-dimensional shape-space, the migrators and the non-migrators can 

be segregated. The discovery that a low-dimensional (6-dimensions) space accounts for 99% of 

all cell shape variation, for both mouse fibroblast and human glioblastoma cells, is a surprise. 

Even the simple stereotypical, highly persistent ‘fan’ shape of keratocytes requires 4 dimensions 

for 93% of the cell shape variation (4). Furthermore, the remarkable resemblance of the shape-

spaces between the mouse fibroblast and human glioblastoma suggests the possibility of a 

combined common shape-space for the two cell lines. The implication is that, despite the vast 

genetic and phenotypic differences between the two cell lines, their morphologies during 

migration share enough similarities such that the differences are only reflected in the 

distributions in the space. This idea is tantalizing: can we use the differences in the shape-space 

to further distinguish different cells? Only a large number of morphology data with different cell 
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lines can answer this question. Complex cell shapes and rich behaviors can emerge from 

interactions across different scales. Our study highlights that the spatial-temporal coordination of 

these interactions is essential for understanding the mechanism of cell behavior and shape 

determination. 

Methods 
Mouse embryo fibroblast NIH 3T3 cells and human glioma LN229 CDC42-GFP cells 

(gift from Dr. Erwin G. Van Meir, Emory University, Atlanta, GA) migrating on 2D fibronectin 

coated polyacrylamide gels with shear elastic modulus of 8.6 𝑘𝑃𝑎 were imaged every 1 min for 

up to 10 hours using epifluorescence and confocal microscopy. Single cell migration data is 

obtained through manual cropping then thresholded using ImageJ (1.51n; National Institutes of 

Health). Analysis of cell outline, trajectories, MSD, directionality ratio and two-dimensional 

correlation were conducted using MATLAB (The MathWorks Inc., Natick, Massachusetts, 9.1 

(R2016b) Linux (64-bit)). Experimental for cell culture, live cell imaging and computational 

procedures of cell membrane displacement, cell trajectories, cell major shape modes and joint 

probability density analysis, are given in Supporting Information.  
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Fig. 1. Cellular migration persistence and speed variation on a 2D surface. (A) Fluorescence image 
of a LN229 cell expressing CDC42-GFP (shown in red) on a fibronectin-coated polyacrylamide gel with 
the cell outline (green). (B) Cell shape deformation 𝜇(𝜃, 𝑡) is the difference of cell shape between two 
consecutive time frames 𝑡 + 𝛥𝑡 and 𝑡, measured as a radial displacement from centroid to the cell outline: 
protrusion is positive (magenta) and contraction is negative (blue). (C) From a frame of a LN229 cells, we 
illustrate a migrator and a non-migrator cell as outlines (at 𝑡 = 0) with trajectories (over 3	ℎ𝑟𝑠); (D) The 
directionality ratio (𝐷𝑅) and (E) Mean square displacement (MSD) over 3 hours of the migrator (red) and 
the non-migrator (magenta). (F-G) Population average of MSD and cell speed variation for migrators (𝑛 =
130) and non-migrators (𝑛 = 897). 
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Fig. 2. Cell shape variation, shape-space and coordinates. (A-B) The membrane displacement 𝜇(𝜃, 𝑡) 
for a migrator (A) shows larger amplitudes and a more biased angular distribution than that for a non-
migrator. (B) The concentric circles mark −100%, −50%, 0%, 50%, and 100%	displacement. (C-D) Cell 
shape variation modes 𝜂, 	of NIH3T3 (C) and LN229 (D) and the respective percentages of cell shape 
variation captured by each mode. Scale bar is 200	𝜇𝑚. The first 6 modes account for 99% of shape 
variance, forming a 6-dimensional cell shape-space, for both NIH3T3 and LN229. The coordinates of a 
cell shape in this shape-space projected in the first two shape-modes are (𝛼-, 𝛼.). (E-H) The joint 
probability density 𝜌(𝛼-, 𝛼.)	for all non-migrators is confined in a small region near the origin for both 
NIH3T3 (E) and for LN229 (G), while the joint probability density for all migrators resides in much wider 
regions for NIH3T3 (F) and LN229 (H). Each data point corresponds to one cell image. 
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Fig. 3. Spatiotemporal correlation analysis of short-term (30 minutes) cell membrane displacement 
for a migrating and a non-migrating NIH3T3 cells. (A-C) The spatiotemporal correlation of a migrator 
as a surface plot, a heat-map, and a contour plot. (D-F) The spatiotemporal correlation of a non-migrator 
as a surface plot, a heat-map, and a contour plot. The zeroth value contour lines (C and F) mark the 
transition between positive and negative correlation.   
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Fig. 4. Distinct features of migration behavior. Cell trajectories (A), directionality ratio (B) and mean 
square displacement (C) of migrator (magenta, Cell 19), non-migrator (red, Cell 59) and intermittent (blue, 
Cell 07) on 2D substrates in absence of asymmetric signal. Cells 59, 19 and 07 are chosen from NIH3T3 
to represent three types of migration behavior (Fig. S2). Spatiotemporal correlation and contour plots of 
migrator (D and G), intermittent (E and H) and non-migrator (F and I). Contour plots (G, H and I) were 
obtained from (D-F) to show the transition between positive (+) and negative (−) correlation. Red arrow 
indicates spatial scale of negative persistence, which is greater than 𝜋/2 for migrator (G) and less than 𝜋/2 
for intermittent (H). Blue arrows indicate the length of negative correlation in time. 
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Supplementary Materials and Methods  

Substrate Preparation 

Published protocols were followed with certain modifications to prepare the extracellular 

matrix (ECM) coated polyacrylamide (PAA) gel on coverslips for cell culture and imaging of cell 

migration(1).  Briefly, cleaned 22 × 22 mm glass coverslips were first activated with 2% (v/v) 3-

aminopropyltrimethoxysilane (281778-100ML, Sigma Aldrich). Working solution containing the 

final concentrations of 7.5% acrylamide (161-0140, Bio-Rad) and 0.3% bis-acrylamide (BP1404, 

Fisher Scientific) in Milli-Q water (296.75 µL) for making 8.6 kPa PAA gels were added between 

Rain-X wiped hydrophobic glass slide surface and amine activated coverslips. Coverslips with 

PAA gels attached were removed from the microscope slide surface upon the completion of the 

PAA polymerization (~10 min at room temperature) initiated by TEMED (BP150-20, Fisher 

Scientific) and 10% (w/v) Ammonium Persulfate (BP179-100, Fisher Scientific) and kept hydrated 

in water. The surface of the PAA gel on the coverslips were activated by incubation with hydrazine 

hydrate (225819-250G, Sigma Aldrich) to cross-link with sodium meta-periodate (20504, Thermo 

Fisher) oxidized Fibronectin (FN, 33016015, Thermo Fisher). These FN coated PAA gel attached 

coverslips were then maintained hydrated in 1× phosphate buffer saline (pH 7.4, 10010023, 

Thermo Fisher) before being used for cell plating. 

 

Cell Culture 

Complete cell culture medium was made of high glucose Dulbecco’s Modified Eagle’s Media 

(DMEM, 10-013-CV, Corning) with 10% fetal bovine serum (FBS, 26-140-079, Fisher Scientific) 

and 1% penicillin/streptomycin solution (30-001-CI, Corning). Both NIH3T3 mouse fibroblast cell 

line and doxycycline inducible GFP-LN229 cell line (gift from Dr. Van Meir, Emory University, 
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Atlanta, GA) were cultured with complete cell culture medium in T25 flasks under standard 

humidified culture condition in a 37 °C incubator with 5% CO2 prior to plating the cells onto FN 

coated PAA gel attached coverslips. A final concentration of 5 µM DiI (D282, Thermo Fisher) 

was used to label NIH3T3 cells according to manufacturer’s instructions. Cells were plated and 

incubated for 6 h and then washed with fresh medium before imaging. Cells were observed to 

divide normally during and after the 10 h imaging.  

 

Microscopy and Live Cell Imaging 

Time-lapse epifluorescence imaging of the cell migrations of DiI labeled NIH3T3 cells and 

doxycycline induced GFP-LN229 cells on FN coated PAA gel surface was carried out on a Nikon 

Eclipse 80i upright microscope equipped with a mercury lamp, heating stage, Nikon (Melville, 

NY) Plan Fluor 20× 0.5 NA objective, Hamamatsu ORCA-Flash 4.0 V2 COMS camera. The 

heating stage was set to 37 °C. A homemade program was used to control a shutter of the mercury 

lamp to reduce photobleaching and Micro-Manager was used to control hardware and to take time-

lapse image with 1 min interval. Live cell fluorescence images were also obtained on a 

Leica (Wetzlar, Germany) SP8 inverted microscope with a confocal galvonometric scanner, 

motorized stage, mercury lamp, heating state, Argon laser with 458 nm, 488 nm, and 514 nm 

wavelengths. Leica application Suite-Advanced Fluorescent software was used to control 

acquisition. Images were acquired every minute for up to 10 h using HC PL APO 20x/0.75 CS2 

air WD 0.62 mm objective.  

 

Cell Shape Extraction 
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Single cell image stacks were extracted from the NIH3T3 and LN229 live cell imaging data sets 

by manual cropping the non-overlapping cells for the migration durations. Homemade macros with 

ImageJ (1.51n; National Institutes of Health) were used to threshold every single cell image, 

creating static frames of cell boundaries as text files. Cell shape sequences were then computed 

using Matlab (R2016b) Linux (64-bit). We have analyzed 517 NIH3T3 cells and 510 LN229 cells, 

373,796 frames in total; for validation, we used additional 87 NIH3T3 cells (5394 frames) and 45 

LN229 cells (2790 frames). 

 

Analysis of Cell Shape and Motion 

Montage image of each cell was processed using Matlab (The MathWorks Inc., Natick, 

Massachusetts, 9.1 (R2016b) Linux (64-bit)) to obtain cell shape dynamics data. Shape data 

Ω(𝑋!"# , 𝑌"#) were obtained using the text image of each cell in the Cartesian system set by the first 

frame, where (𝑋!"# , 𝑌"#) represents the coordinates of cell contour, and the centroid 𝑐(𝑖Δ𝑡) =

(𝑥!"# , 𝑦!"#) was calculated for each time point. Further we defined the instantaneous cell speed as 

the displacement of the centroid, �⃗�(𝑡) = $(#&"#)($(#)
"#

	at time interval of Δ𝑡 equals to 1 minute.  

The mean square displacement (MSD) of a cell is defined as: 

𝑀𝑆𝐷(𝑛𝛥𝑡) = )
*
∑ 78𝑥!+# − 𝑥(!())+#:

, + 8𝑦!+# − 𝑦(!())+#:
,<*

!-) ,		(S.1) 

where 𝑛 is the total number of frames for the cell of interest. We fit the MSD data with a persistent 

random walk model:  

𝑀𝑆𝐷(𝛥𝑡) = 2𝑃,𝑆, 7+#
.
− 1 + 𝑒(

!"
# < + 4𝜎,,	(S.2) 
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where 𝑃 is the persistent time, and 𝑆 is the instantaneous cell speed. We understand the differences 

in 𝑃  and 𝑆  for migrators and non-migrators using the stochastic differential equation for cell 

velocity, v, without external bias(2): 

𝑑𝑣(𝑡) = −𝛽𝑣(𝑡) + √𝛼𝑑𝑊(𝑡),	(S.3) 

where 𝛽 is the decay rate of the velocity, W(t) is the Weiner process with a magnitude 𝛼. The 

persistent time and the cell speed can be derived as 𝑆 = H𝛼/𝛽 and 𝑃 = 1/𝛽. We showed that 

migrators have longer persistent time and the non-migrators have greater magnitude of the random 

fluctuation in speed (Fig. 1I).  

To analyze the cell shape dynamics at the subcellular level, we used the circular mapping, the 

centroid was defined as the origin 𝑂, the radial distance from 𝑂 to the cell contour were calculated 

for each frame of image. We further represented the cell shape as 𝛺(𝜃, 𝑡), the radial distance from 

𝑂 to the cell contour at the direction 𝜃, with 𝜃 = 0° being fixed in the right-hand direction on the 

horizontal axis as in the Cartesian system. Based on which we computed cell shape deformation 

𝜇(𝜃, 𝑡) as change of the radial distance in direction 𝜃. We finely discretized the cell contour using 

𝜃  for spatial resolution and there was no rotational cell membrane segment motion being 

considered. This setting is sufficient for the live cell imaging data that we obtained, noticed that 

other approached might be necessary for more complicated cell shape deformation.  

 

Shape Modes Analysis 

Cell contour was extracted as intensity isoline from each static frame of cell image using 

Celltool (3). The contours were then aligned along their long axes to eliminate pose and relative 

position. To decompose this space into a basis set of orthogonal "shape modes", principal 

components analysis was then performed on a large population of single cell images, for each cell 
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line respectively. The obtained major modes 𝜙/QQQ⃗ (𝜃) were ranked by the percentage of variation that 

they captured.   

 

Prediction Accuracy 

The images are acquired for 61 minutes at the rate of one minute per frame. We collected 45 

LN229 cells (2790 frames) and 10 (620 frames) of which are migrators. For NIH3T3, we collected 

87 cells (5394 frames) in total, and 22 cells (1364 frames) are migrators. Each frame is treated as 

an identical data point. We first extracted cell contours (10939 for NIH3T3, 5760 for LN229) from 

outlies that we obtained using ImageJ (1.51n; National Institutes of Health). And then 𝛼) and 𝛼, 

were calculated for each contour using the cell shape variation modes (Fig. 2C and Fig. 2D). The 

prediction accuracy is calculated, for migrator and non-migrators separately, as the number of cell 

frame correctly identified divided by the total number of single cell frames.  

 

Joint Probability Density 

Cell shape coordinates in the shape-space from each cell static frame of cell image was 

approximated using major cell shape variation modes. The magnitudes 𝛼!(𝑡) were used as data for 

discrete random variables 𝛼! assuming that 

𝑓0$,0% S𝛼!(𝑡), 𝛼2(𝑡)T = 𝑓0$|0%𝑃 S𝛼2 = 𝛼2(𝑡)T = 𝑃 S𝛼! = 𝛼!(𝑡)|	𝛼2 = 𝛼2(𝑡)T 𝑓0$8𝛼!(𝑡):.	(S.4) 

Joint probability density 𝜌8𝛼! , 𝛼2: was computed for all combinations of  (𝑖, 𝑗) with 𝑖 ≠ 𝑗.  

 

Spatiotemporal Correlation 

Cell shape deformation 𝜇(𝜃, 𝑡) was discretized in space and time. 𝛥𝜃 = 2𝜋/𝑁, Δ𝑡 is one 

minute and total time 𝑇 = (𝑀 + 1)Δ𝑡.  The spatiotemporal correlation was computed as: 
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𝐶4(𝑠𝛥𝜃, 𝑟𝛥𝑡) = `
)

5(6(7)
∑ ∑ 𝜇*,8 ∙ 𝜇*&9,8&76(7

8-)* , 𝑠 ≥ 0
)

5(6&7)
∑ ∑ 𝜇*,8 ∙ 𝜇*&9,8&76&7

8-)* , 𝑠 < 0
  (S.5) 

We chose not to remove the mean from cell shape deformation 𝜇(𝜃, 𝑡) for the following 

reasons. First, mean value is not biologically meaningful. E[𝜇(𝜃, 𝑡)] over 𝜃 is the instantaneous 

speed at 𝑡, which varies in time. Second, 𝜇(𝜃, 𝑡) is also displacement of membrane segment in the 

angle 𝜃, so mean displacement is not useful. Removing the mean E[𝜇(𝜃, 𝑡)](:,#) only scales down 

correlation magnitude. 

 

Equation of motion and deformation 

Cell motility is traditionally characterized by cellular level parameters, such as velocity and 

directional persistence of the centroid of the cell. The centroid of a cell performing a persistent 

random walk can be described as a Langevin equation. We assume that each bit of the membrane, 

called a membrane element, also follows a generalized Langevin equation (2):  

𝑑𝑣!(𝑡) = −𝛽/QQQ⃗
;
�⃗�(𝑡)𝑑𝑡 + 𝛼!;𝑑𝑊!(𝑡), (S.6) 

where the velocity of each cell membrane element 𝑣! is affected by the deterministic resistance to 

the element’s motion and the random fluctuations W!(t) with amplitude 𝛼!. Given a time series of 

a cell, we can fit the motion of every element in this form. The matrix, 𝐵 = i𝛽!,2j,	 characterizes 

the temporal relations of the displacements between membrane elements: 𝐵(𝑖, 𝑖) < 0 corresponds 

to contraction of the 𝑖 th membrane element, while 𝐵(𝑖, 𝑖) > 0  corresponds to an extension; 

𝐵	(𝑖, 𝑗) 	> 	0 implies that the 𝑖	th and 𝑗	th membrane elements move in the same direction, and 

vice versa. This matrix is the effective interaction network amongst all membrane elements, the 

interactions include contributions from the cytoskeleton, membrane tension, myosin contraction, 

and all other possible interactions including fluid pressure or flow.  
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Each cell shape has the coordinate (𝑥), 𝑥,, …	𝑥<) in the 𝐾-dimensional orthogonal shape 

space Φ : 𝛺(𝜃!) = ∑ 𝑥2(𝑡)φ2(𝜃!)<
2-) . Replacing  𝑣!(𝑡) with dΩ(𝜃!)/𝑑𝑡, we have 

−𝛽/QQQ⃗
;
∑ 𝑑𝑥2(𝑡)𝜑2<
2-) + 𝛼!;𝑑𝑊!(𝑡) = ∑ 𝑑,𝑥2(𝑡)𝜑2(𝜃!)<

2-) . (S.7) 

This equation of motion describes the shape and migration dynamics in terms of the effective 

interaction network amongst membrane elements. It connects cell shape dynamics and cell 

movement behavior. 
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Supplemental Figure 1. Simple shape measurements do not show significant differences 
between migrator and non-migrator. Top (A-D): LN229; Bottom (E-H): NIH3T3. (A and E) 
Cell area. (B and F) Major axis. (C and G) Minor axis. (D and H) Eccentricity.  
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Supplemental Figure 2. Distinct features of migration behavior. (A) Cell trajectories (LN229) 
show distinct migration behaviors. (B) Directionality ratio discriminates migrator, non-migrator 
and intermittent. (C) MSD was fit to 𝑀𝑆𝐷(𝑡) = 𝐷𝑡0 , where 𝐷  is diffusion coefficient. The 
parameters 𝐷 and 𝛼 did not show a consistent trend to discriminate migration behaviors.  
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Supplemental Figure 3. Coordinates (𝜶𝟏, 𝜶𝟐) of migrators (LN229) that overlap with the 
non-migrator region. (A, D, J, L, N, P, and Q) only show migrator cells. (B, C, E, F, G, H, I, K, 
M, O, and R) Migrators are highlighted using blue + markers.  
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Supplemental Figure 4. Combinations of amplitudes corresponding to major shape modes 

that capture lower percentage of variation, {𝒊, 𝒋}. 𝑎!,2 , The joint probability density 𝜌8𝛼! , 𝛼2: 

for coordinate pairs i and j for migrators. 𝒃𝒊,𝒋, The joint probability density for non-migrators.  
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Supplemental Figure 5. Turning during migration. (A) Cell trajectories for two migrators. (B) 
Contour plot of spatial-temporal correlation. (C) Cell with a persistent front protrusion (red with 
+) and rear contraction (blue with −), which resulted in negative correlation between 7AB

,
, B
,
<, 

consistent with B. (D) As the cell turns, the distance between protrusion and contraction increase 
by angle 𝜃 (brown), which is reflected as the negative correlation region shifted to 
7B
,
+ 𝜃, AB

,
+ 𝜃<. 
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