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A B S T R A C T

Optimizing machining parameters is crucial, enhancing machinability while maintaining high 
product quality standards. This study bridges a critical research gap by evaluating and comparing 
five Taguchi-based Multi-Criteria Decision Making (MCDM) techniques—Combined Compro
mised Solution (CoCoSo), Grey Relational Analysis (GRA), Multi-Objective Optimization Ratio 
Analysis (MOORA), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and 
Complex Proportional Assessment (COPRAS)—coupled with the Entropy method to optimize 
machining parameters for enhancing machinability in turning medium carbon steel. The focus is 
on feed rate and cutting speed under dry and Minimum Quantity Lubrication (MQL) environ
ments considering six critical machining responses: material removal rate, surface roughness, 
main cutting force, cutting temperature, cutting ratio, and tool life.

The results reveal that MQL consistently improves machining performance, with COPRAS, 
TOPSIS, MOORA, and GRA converging on an optimal setting favoring an MQL environment, a 
0.14 mm/rev feed rate, and a cutting speed of 137 m/min, whereas CoCoSo suggests a different 
optimal parameter setting. CoCoSo and GRA demonstrate the highest reliability, evidenced by 
minimal discrepancies between predicted and experimental results, with absolute percentage 
errors of 0.647 % and 0.659 %, respectively. The COPRAS method also shows strong predictive 
accuracy with a 5.573 % error, outperforming MOORA and TOPSIS. Spearman’s rank correlation 
analysis reveals a high agreement between COPRAS, MOORA, and TOPSIS, with COPRAS 
emerging as a potential replacement for the latter in similar decision-making scenarios. SEM and 
EDX analyses confirm that MQL conditions reduce tool wear, enhance surface quality, and extend 
tool life compared to dry machining. This research provides insights into effective parameter 
optimization strategies for improving machinability and underscores the benefits of adopting 
MQL for sustainable manufacturing processes.

1. Introduction

Turning is a widely utilized machining process that involves the use of single-point cutting tools to shape workpieces. This process 
is particularly valued for its ability to produce complex geometric forms with high precision, making it essential in various industrial 
applications [1]. Despite its benefits, turning faces significant challenges, primarily due to the cutting zone’s friction and heat gen
eration, which can adversely affect the quality of the machined parts and tool life. Different cooling techniques have been developed to 
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mitigate these effects. Cutting fluid is mainly directed at the chip-tool interface to diminish friction and cutting forces, extending tool 
longevity by effectively cooling the cutting area [2,3]. Typically, the type of coolant or cooling strategy influences the energy required 
to cut a specific volume of material. The formation of built-up edges and tool life are primarily determined by cooling conditions rather 
than other factors [4].

While cutting fluids are effective in cooling and lubrication, they often contain hazardous chemical constituents that pose sig
nificant environmental and health risks [5,6]. Alternative cooling methods, such as dry and MQL [7], have been explored to address 
these concerns. MQL, in particular, has gained attention for its ability to lessen the application of cutting fluids, promoting a greener 
process. MQL helps lower the temperature at the tooltip, reduces cutting forces, and enhances the machined components’ surface 
quality and tool longevity [8,9]. MQL significantly improves the machinability index with minimal investment costs [10]. MQL en
hances machinability by effectively delaying the adhesion of chips to the edge of the cutting tool [11]. The use of MQL in machining 
processes shows considerably greater effectiveness in reducing flank wear compared to dry conditions [12]. Ross et al. [13] assessed 
the heat-carrying capacity of the Minimum Quantity Lubrication (MQL) system and the impact of nano-additives on its cooling effi
ciency. The results confirmed that using nano MQL in machining led to an average temperature reduction of approximately 65 % 
compared to conditions without coolant. Gupta et al. [14] utilized a fundamental conceptual framework for sustainability assessment 
to improve the machining performance of Bohler K490 steel using minimum quantity lubrication (MQL). They asserted that MQL 
enhances both sustainability and machining effectiveness. Maruda et al. [15] examined the surface integrity of AISI 1045 steel during 
turning with minimum quantity lubrication and found that using MQL led to a uniform distribution of valleys and peaks on the turned 
surface.

Additionally, optimization of the turning process is crucial to achieve increased machinability [16]. The Taguchi method is widely 
used for process optimization due to its efficient design of experiments (DoE) and computational simplicity [17]. However, the 
standalone Taguchi method cannot address multiple objectives simultaneously. Hybrid optimization techniques have been developed 
to overcome this limitation, integrating the Taguchi method with other multi-response optimization methods [18]. These hybrid 
methods allow for accommodating multiple conflicting criteria in the decision-making process. It is crucial in industrial applications 
where various performance aspects like surface quality, tool longevity, and machining effectiveness need simultaneous optimization to 
enhance machinability.

TOPSIS can do multi-optimization, but assigning equal importance to all criteria is not feasible [19]. Therefore, determining the 
appropriate weights for the criteria is crucial. Methods for determining these weights fall into two categories: subjective and objective. 
Objective methods calculate weights using experimental data rather than relying on expert opinions [20]. Well-known objective 
methods incorporate the CRITIC method (CRiteria Importance Through Intercriteria Correlation), Entropy method, FANMA method 
(named after its authors), and Data Envelopment Analysis (DEA). Arun Prasad et al. [21] employed the Entropy technique to find the 
importance of output responses and applied these weights to the multi-optimization process. The Entropy method evaluates the un
certainty of data in the decision matrix and generates weight coefficients based on the mutual contrast of individual criterion values for 
each alternative and then for all criteria. The Entropy method is widely employed due to its straightforward, impartial, and uncom
plicated calculation of the relative importance of responses [22].

Nguyen et al. [23] investigated the influence of the MQL condition during milling of the Ti-6Al-4V alloy, optimizing production rate 
and surface roughness using the TOPSIS method. Balasubramaniyan et al. [24] employed turning parameter optimization of EN25 steel 
using TOPSIS. Thirumalai et al. [25] utilized the TOPSIS approach to perform turning parameters optimization of Inconel 718. Gupta 
et al. [26] determined optimal turning parameters for Ti–6Al–7Nb by TOPSIS under an MQL environment, considering different input 
process variables such as the type of oil, the oil flow rate, and the cutting speed. Do et al. [27] applied CoCoSo for the first time in 
machining processes to prioritize the solutions for AISI 1045 steel in hole turning. Abbed et al. [28] employed different MCDM 
methods for optimizing the turning parameters of Ti-6Al-4V under dry conditions and found that the CoCoSo method effectively 
minimized force, tool wear, and power consumption. Yurtkuran et al. [29] used various machine-learning models to predict power 
consumption during the milling of Ph13-8Mo steel. Their findings indicated that power consumption rose by an average of 3.14 % 
across all cutting environments as feed speed increased.

Patil et al. [30] used the COPRAS MCDM optimization technique to find optimum machining parameters for OHNS steel with 55 
HRC, considering factors such as nose radius, insert type, depth of cut, speed, and feed. Krishna et al. [31] utilized MOORA and 
COPRAS methods, combined with the entropy technique, to optimize the turning parameters for Nimonic C263 in dry conditions. Das 
et al. [32] employed GRA, VIKOR, and MOORA techniques to analyze the effect of depth of cut, feed, and speed on the material 
removal rate and surface finish while turning a Cu–Ni alloy with a carbide cutting tool. Their findings indicate that all MCDM tech
niques consistently show that the optimal compromise is achieved at the highest levels of parameters. Solanki et al. [33] found that 
TOPSIS and GRA methodologies effectively identify optimal process parameter combinations for turning Al-6082 under wet condi
tions. These methodologies consider depth of cut, feed rate, and cutting speed to achieve the best combination of surface roughness and 
material removal rate. Sarıkaya et al. [34] conducted experiments on turning the cobalt-based superalloy Haynes 25 to identify 
optimal MQL parameters using Taguchi-coupled GRA approach. Singaravel et al. [35] applied the MOORA method combined with the 
entropy method to optimize turning parameters for EN25 steel. Jeet et al. [36] attempted to determine optimal cutting conditions 
during machining EN-24 steel under three different cutting conditions by MOORA, TOPSIS, and GRA methods considering equal 
weightage of each response. Abhang et al. [37] discovered that the optimal outcomes identified through GRA coincided precisely with 
those achieved using the MOORA method, emphasizing that MOORA relies solely on straightforward ratio analysis rather than the 
more complex GRA. Bag et al. [38] analyzed the turning of EN8 steel with an HSS S200 tool to achieve maximum material removal rate 
(MRR) and minimal tool wear using Taguchi-based optimization techniques, including TOPSIS, GRA, and ARAS methods. The results 
showed that the optimal parameter settings for both TOPSIS and GRA were the same: a spindle speed of 210 rpm, a feed rate of 0.142 
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mm/rev, a depth of cut of 1.5 mm, and soybean oil as the cutting fluid. Hadjela et al. [39] conducted a turning experiment on AISI 4140 
alloy steel to determine the cutting conditions that would minimize surface roughness and flank wear while maximizing the material 
removal rate. They used various optimization methods, including Taguchi-based GRA, TOPSIS, and MOORA. All three multi-objective 
optimization techniques identified the same optimal cutting conditions.

Furthermore, tool wear is closely linked to efficient operation, quality, dimensional accuracy of the workpiece, and tool lifespan. 
The practical evaluation of friction forces and cooling conditions enables the timely replacement of materials before catastrophic 
failure occurs [40]. Predicting wear using friction forces under various cooling conditions through intelligent techniques is crucial. 
Korkmaz et al. [41] investigated tool wear when turning AA7075 aluminum alloy at various speed-feed settings. Their findings 
revealed a 44.40 % increase in tool wear when the cutting speed was doubled while feed rates remained constant. Additionally, higher 
feed rates result in a longer cutting-edge travel distance within a given time, leading to a larger cutting surface area and, consequently, 
increased cutting force. The impact of the cooling environment on tool wear is a crucial factor that requires further analysis in the 
future.

After reviewing the literature, it is evident that significant research has been conducted on optimizing machining parameters 
concerning only two or three machining responses across various cooling environments. However, to ensure effective machinability 
improvement, it is vital to consider several machining responses instead of two or three to get accurate and reliable decisions regarding 
optimal machining parameter selection. Additionally, the efficiency, reliability, and effectiveness of different MCDM methods should 
be analyzed and compared in terms of machining performance concerning material and other resource wastage, and the proper se
lection of the MCDM method for process optimization can ensure this. However, there is a noticeable gap in the literature concerning 
the evaluation and comparison of various Taguchi-based MCDM methods—specifically CoCoSo, GRA, MOORA, TOPSIS, and 
COPRAS—in enhancing machinability. Despite the superior performance of these methods, their comparative effectiveness has been 
underexplored. Moreover, the impact of the cooling environment on tool wear and life is a critical factor that requires further 
comprehensive analysis to ensure sustainability.

The current article concentrates on the critical question: How can optimizing process parameters effectively balance essential 
machining responses to achieve desired machinability while promoting sustainable manufacturing processes?

This study focuses on employing various Taguchi-based Multi-Criteria Decision Making (MCDM) methods—CoCoSo, GRA, 
MOORA, TOPSIS, and COPRAS—to optimize feed rate and cutting speed to enhance machinability regarding six machining respon
ses—material removal rate, surface roughness, main cutting force, cutting temperature, cutting ratio, and tool life for turning medium 
carbon steel using an uncoated carbide insert. The investigation encompasses two distinct cooling environments: Minimum Quantity 
Lubrication (MQL) and dry. The entropy method, renowned for its objective approach, will be utilized to assign weights to the different 
responses observed during the turning process. By evaluating and comparing the outcomes derived from these five MCDM methods, 
this study aims to identify the optimal turning parameters to enhance machinability through extensive exploration. A confirmation test 
will be performed to verify the reliability of the MCDM methods. Moreover, these optimal parameters could provide a valuable 
reference for future turning operations, potentially eliminating the necessity for extensive trial experiments. Additionally, SEM 
(Scanning electron microscopy) and EDX (Energy-dispersive X-ray) analysis of the carbide insert will be conducted under both cooling 
environments to comprehensively understand their effects on tool wear and lifespan, contributing to sustainable manufacturing 
processes.

2. Experimental overview

2.1. Process specifics and materials

A 10-horsepower Center lathe (China) was used to conduct the turning experiments. Medium carbon steel was utilized as the work 
material; its properties are detailed in Table 1. An uncoated tungsten carbide insert, SNMM 120408 (ISO P30 grade), served as the 
cutting tool insert, featuring the following geometry: 6◦, − 6◦, 6◦, 15◦, 75◦, 0.8 mm. A WIDIA tool holder with the ISO specification 
PSBNR 2525 M12 was utilized for turning experiments, following recommended speed-feed combinations suggested by the manu
facturer for standard industrial applications. Uncoated carbide inserts were selected for their low cost, availability, and time efficiency 
[42]. Because the depth of cut has a minimal impact on cutting temperature, preserves work material, and avoids significant influence 
from the nose radius on cutting temperature, a constant depth of cut of 1.5 mm was maintained throughout the experiments [43], 
which was suitable for the study’s objectives.

Fig. 1(a) illustrates the experimental setup, including the Minimum Quantity Lubrication (MQL) system used in this study. The MQL 
delivery system comprises a compressor, fluid chamber, and mixing chamber with a nozzle. A pressure regulator and flow meter are 
positioned to control pressure and flow rate—the compressor, which can generate a maximum pressure of 25 bars, supplies 

Table 1 
Characteristics of the workpiece used.

Workpiece Hardness (BHN) UTS (Kgf/mm2) Thermal conductivity (W/mm K) Chemical composition (wt %)

Medium carbon steel 180 63 0.036 Mn: 0.60
C: 0.38
S: 0.01
P: 0.01
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compressed air. A cutting fluid (1:20 soluble oil) is applied at a 200 ml/h flow rate through an external nozzle. Compressed air is 
divided between the mixing chamber and the fluid chamber; some air flows directly into the mixing chamber, while the rest moves 
through the fluid chamber to push the fluid toward the mixing chamber. The fluid chamber has a capacity of 1 L. Air and oil are 
combined in the mixing chamber to create an air-oil mist. Oil enters the mixing chamber through a central tube and exits through small 
radial holes at the tube’s end. Air enters through an inlet tube and passes through holes in the partition plate, mixing with the oil 
perpendicularly to form the mist. The tapered design of the mixing chamber helps direct the mist to the nozzle connected to its outlet 
port. Details of the mixing chamber and its sectional view are shown in Fig. 1(b).

2.2. Machining response measurements

During each experimental trial, cutting temperature (T) was monitored using a thermocouple tailored for the specific tool-work 
material combination, with the tool and workpiece acting as two dissimilar metals. Two copper wires connected the tool to a 
distant workpiece section, routing through a multimeter to close the thermoelectric circuit. A copper rod attached to a wire touched the 
workpiece, serving as the cold junction (room temperature), and the hot junction formed at the chip-tool interface during machining. 

Fig. 1. (a) Diagram of the experimental setup with (b) Details of the MQL applicator and nozzle specifications.
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Insulating the tool and workpiece from the lathe machine was essential, achieved using leather for the workpiece and a mica sheet for 
the tool holder. Although this technique measures the average cutting temperature over the entire contact area and not high local 
temperatures, it is a simple and reliable method for a wide temperature range [44]. Fig. 2(a) illustrates the measurement setup for 
cutting temperature using this tool-work thermocouple system. To use the tool-work thermocouple technique for temperature mea
surement, proper calibration is necessary to correlate the generated voltage with the actual temperature for the specific tool-work 
material combination. For this calibration, a long tubular chip and a tungsten carbide rod were brazed together at one end, 
substituting for the work material and tool insert. A half-spherical graphite block, seated on porcelain and electrically heated, acted as 
the heat source. The brazed junction of the tool-work thermocouple and a standard chromel-alumel thermocouple were placed side by 
side in the graphite block. The free ends of the chip and tungsten carbide rod were connected to a digital multimeter (Rish Multi 15S, 
India). Fig. 2 (b) shows a photographic view of the study’s setup used for tool-work thermocouple calibration. As the graphite block 
was heated, the tool-work thermocouple generated a thermoelectric voltage recorded by the multimeter. Simultaneously, a digital 

Fig. 2. (a) Setup for measuring cutting temperature through the tool-work thermocouple system, (b) Calibration setup for the tool-work thermo
couple, and (c) Calibration curve for the tool-work thermocouple with the regression equation.
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thermometer (Eurotherm, UK) measured the block’s temperature. The corresponding voltage and temperature were recorded and 
plotted, revealing a linear relationship with the regression equation, as shown in Fig. 2(c), used to determine the chip-tool interface 
temperature from the thermocouple voltage.

Additionally, the thickness of the chips generated for each experimental run during turning was measured repeatedly using a digital 
vernier caliper (Mitutoyo Absolute Digimatic, 150 mm) with 0.01 mm of resolution to calculate the cutting ratio (rc), which represents 
the chip thickness ratio before and after cutting. To ensure accuracy, multiple measurements were taken from different sections of the 
chip, and the process was repeated twice to confirm consistency. The material removal rate (MRR) was determined based on the depth 
of cut, feed rate, and cutting speed used in each experimental trial.

Surface roughness (Ra) was measured after each experimental run using a Talysurf roughness tester (Surtronic 3+, Rank Taylor 
Hobson Limited), with a commonly used cut-off length of 0.8 mm and a total evaluation length of 4 mm. Measurements were taken 
three times at different, evenly spaced locations on the cylindrical machined surface. The average of these measurements was then 
calculated for each run.

The main cutting force component (F) was recorded using a sensitive yet robust 3-D dynamometer (KISTLER) connected to a data 
acquisition system for storage on a PC, depicted in Fig. 1(a). The dynamometer was calibrated before each experiment, and force 
measurements were repeated twice to ensure consistency.

Tool life (TL) was evaluated based on ISO Standard 3685 for tool life [44]. The average value of the principal flank wear (VB) is the 
criterion that contributes to increased temperatures and cutting forces and can lead to machining vibrations over time. The cutting 
insert was periodically withdrawn at regular intervals during machining, and the principal feature VB was measured with an optical 
microscope (Carl Zeiss, Germany) equipped with a precision micrometer of least count 1 μm. The study continued until the value of VB 
exceeded 300 μm. At the end of machining and after significant wear, each tool’s wear patterns and extent were examined with an SEM 
(Philips XL 30, Japan).

To improve measurement reliability in experiments, maintain stable environmental conditions (e.g., temperature and humidity) to 
avoid fluctuations affecting measurements. Regularly check and adjust MQL system parameters (pressure, flow rate) to ensure 
consistent cutting fluid application. Additionally, utilizing digital measuring instruments with high resolution and accuracy can further 
enhance reliability.

2.3. Machining parameters and responses

The Taguchi method utilizes an orthogonal array design to optimize processes where multiple control factors directly impact the 
desired output. To optimize parameters, a Taguchi L18 (2^1, 3^2) mixed-level orthogonal array design was generated using Minitab19 
software, considering the quantity and levels of input parameters involved. Table 2 displays the different levels of variable input 
parameters employed in the experiments. Based on previous studies on turning medium carbon steel [44–47], considering the lathe 
machine’s power and capability and the tool manufacturer’s recommendations, the feasible range of cutting parameters for the given 
cutting tool-workpiece system was selected. The orthogonal array ensures a balanced set of experiments incorporating multiple control 
parameters concurrently. The signal-to-noise (S/N) ratio represents a logarithmic function of the desired output, is used as the 
objective function for optimization. For beneficial criteria responses, the larger-the-better S/N ratio is used to maximize the respective 
responses. For non-beneficial criteria responses, the smaller-the-better S/N ratio is used to minimize the respective responses, ensuring 
optimal machinability.

The experimentation phase is complete with all 18 runs conducted, and data on multiple responses have been gathered for each 
trial. Table 3 details the experimental setting and the corresponding machining outcomes analyzed in this study.

3. Methodology

The study focuses on finding optimal machining parameters using diverse optimization techniques that address multiple conflicting 
responses concurrently. While the Taguchi method excels in optimizing process parameters with a single objective, it is complemented 
by methods like COPRAS, TOPSIS, MOORA, GRA, and CoCoSo for multi-response optimization. This research employs the Entropy 
method to determine the relative importance of each response variable. The detailed optimization steps are briefly discussed below.

3.1. Entropy method for weight determination

The entropy method determines how important each response is when optimizing with multiple objectives. This approach to 
weight determination is grounded in the principle that features exhibiting the greatest diversity in output parameters significantly 
impact those parameters. The Entropy method involves the following steps [48]:

Table 2 
Levels of machining parameters.

Machining parameters Level 1 Level 2 Level 3

Cooling Environment Dry MQL ​
Cutting speed (m/min) 137 160 178
Feed rate (mm/rev) 0.14 0.18 0.22
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Step 1: Establish the decision matrix, incorporating the responses (n) from the experimental design for m alternatives. Here, xij 
represents the element of the decision matrix corresponding to the ith alternative and the jth response. 

X=

⎡

⎢
⎢
⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋯ ⋯ ⋯ ⋯
xm1 xm2 ⋯ xmn

⎤

⎥
⎥
⎦ Where, i=1, 2,3,……,m; j=1, 2,3,……,n (1) 

Step 2: Normalize the decision matrix using Equation (2). 

pij =
xij

∑m

i=1
xij

(2) 

Step 3: Compute Entropy measure of the outcomes by Equation (3). 

Ej = − k
∑m

i=1
pij ln

(
pij

)
(3) 

where, k = − 1/ln(m).
Step 4: Determine the objective weights of the responses according to Equation (4). 

Wj=
1 − Ej

∑n

j=1

(
1 − Ej

) (4) 

3.2. Complex Proportional Assessment (COPRAS) method

The COPRAS method operates similarly to the Simple Additive Weighting (SAW) method. SAW is one of the simplest and most 
widely accepted MCDM methods. It evaluates both maximizing and minimizing index values, considering the effects of these indexes 
on the assessment of results separately. The COPRAS method incorporates maximizing (benefit) and minimizing (non-benefit) criteria 
in the decision matrix, standardizing the data to facilitate comparisons across various measurement units. Below are the essential steps 
of the COPRAS method [49]:

Step 1: Normalize the decision matrix according to Equation (5). 

rij =
xij

∑m

i=1
xij

(i= 1,2, 3,….,m; j=1, 2,3,…..,n) (5) 

Step 2: Compute the weight-normalized matrix as follows. 

y+ij = rij × wj (6) 

Step 3: Compute the sums of weight-normalized scores for both benefit (maximizing) and non-benefit (minimizing) criteria as 

Table 3 
The Orthogonal Array L18 (2^1, 3^2) based on the Taguchi method with respective machining responses.

Run order Cooling Environment Cutting speed Feed rate Beneficial criteria Non-beneficial criteria

MRR rc TL T F Ra

1 Dry 137 0.14 28770 0.38 17 768 757 1.79
2 Dry 137 0.18 36990 0.4 13 781 808 1.99
3 Dry 137 0.22 45210 0.42 10 798 834 2.36
4 Dry 160 0.14 33600 0.4 12 789 743 1.7
5 Dry 160 0.18 43200 0.42 9 803 792 1.84
6 Dry 160 0.22 52800 0.45 8 819 817 2.28
7 Dry 178 0.14 37380 0.41 8 810 731 1.62
8 Dry 178 0.18 48060 0.43 7 825 778 1.72
9 Dry 178 0.22 58740 0.47 6 844 805 2.22
10 MQL 137 0.14 28770 0.43 34 694 679 1.46
11 MQL 137 0.18 36990 0.45 27 714 709 1.78
12 MQL 137 0.22 45210 0.49 22 732 743 2.29
13 MQL 160 0.14 33600 0.44 21 709 655 1.4
14 MQL 160 0.18 43200 0.47 19 730 680 1.72
15 MQL 160 0.22 52800 0.51 18 743 713 2.24
16 MQL 178 0.14 37380 0.46 19 725 635 1.36
17 MQL 178 0.18 48060 0.5 16 745 650 1.67
18 MQL 178 0.22 58740 0.52 14 755 678 2.18
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follows. 

S+i =
∑n

j=1
y+ij

S− i =
∑n

j=1
y− ij

(7) 

In the above equation, y+ij pertains to maximizing criteria, while y− ij pertains to minimizing criteria. The alternatives are charac
terized by benefit (maximizing) criteria S+i and non-benefit (minimizing) criteria S− i. Essentially, S+i and S− i indicate the extent to 
which the objectives are achieved by alternative i.

Step 4: The relative importance Qi of each alternative i is determined as follows. 

Qi = S+i +

S− min
∑m

i=1
S− i

S− i
∑m

i=1
(S− min/S− i)

(8) 

The alternative with the highest Qi value (Qmax) is considered the best.
Step 5: Calculate the level of performance (Ui) for each alternative i as follows. 

Ui =
Qi

Qmax
× 100% (9) 

The utility degree is calculated by comparing each evaluated alternative to the most effective one, Qmax (the highest relative 
importance score). The optimal alternative is represented by the highest degree of utility, Ui, which equals 100 %.

3.3. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method

The TOPSIS is a modern method used to determine the optimal process conditions from the proposed experimental design. It 
efficiently identifies both the most favorable (maximum) and least favorable (minimum) process conditions. This method calculates 
the closeness coefficient, which measures how close each feasible solution is to the ideal solution, ensuring that the selected parameter 
is nearest to the best solution and furthest from the worst solution. Here are the outlined steps of the TOPSIS method [50]:

Step 1: Normalize the decision matrix using Equation (10). 

rij =
xij
̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
x2

ij

√ (i=1,2, 3,…m; j= 1, 2,3,….n) (10) 

Step 2: Compute the weighted normalized matrix according to Equation (11). 

Vij = rij × wj (11) 

where, wj indicates the weight of each response j.
Step 3: Compute the ideal solution from the weighted decision matrix using Equation (12). The ideal solutions consist of both the 

positive (best) ideal solution (V+) and negative (worst) solution (V− ) for each attribute. 

V+ =
{(

Max
(
Vij

)
| j ∈ J

)
,
(
Min

(
Vij

)
| j ∈ Jʹ)}

V− =
{(

Min
(
Vij

)
| j ∈ J

)
,
(
Max

(
Vij

)
| j ∈ Jʹ)|i = 1, 2 m

} (12) 

Where J represents beneficial criteria and J́  denotes non-beneficial criteria.
Step 4: Measure the separation for each solution, represented as the positive (best) ideal solution (D+

i ) and negative (worst) solution 
(D−

i ) as follows. 

D+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
Vij − V+

j

)2
√
√
√
√

D−
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
Vij − V−

j

)2
√
√
√
√

(13) 

Step 5: Calculate the closeness coefficient of each alternative (Ci) using Equation (14). 

Ci =
D−

i

D−
i + D+

i
(14) 

Sort the values in ascending order according to the closeness coefficient to find the best solution.
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3.4. Multi-Objective Optimization Ratio Analysis (MOORA) method

The MOORA method is regarded as an objective (non-subjective) approach. It simultaneously evaluates desirable and undesirable 
criteria to choose the best alternative from various options. The MOORA method comprises the subsequent steps [51]:

Step 1: Create a ratio system by standardizing the data from the decision matrix. The normalized value can be computed using the 
following equation. 

nij =
xij
̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
x2

ij

√ (i=1, 2, 3,….,m; j=1, 2,3,…..,n) (15) 

Step 2: Compute the weighted normalized decision matrix according to Equation (16). 

Nij =nij × wj (16) 

Step 3: Calculate the performance value (an overall assessment value of the performance measures) of each alternative as follows. 

Yi =
∑g

j=1
Nij −

∑n

j=g+1
Nij (17) 

where, g represents the number of responses categorized under the Larger-is-better criterion, (n-g) signifies the number of responses 
categorized under the Lower-is-better criterion, and Yi denotes the overall assessment value of the ith alternative relative to all al
ternatives. The Yi values are arranged in descending order, where the highest value signifies the optimal alternative and the lowest 
value signifies the least favorable one.

3.5. Grey Relational Analysis (GRA) method

The Grey Relational Analysis method is a specialized and widely adopted tool for investigating uncertainties in available data and 
assessing the effectiveness of unknown methods. Below are the three computational stages of GRA [52]:

Step 1: In normalization or data pre-processing, responses are converted into dimensionless values starting from 0 to 1, depending 
on whether the situation deems “smaller the better” or “larger the better.” The responses are normalized according to the “smaller the 
better” and “larger the better” objectives, utilizing the following equations.

For, smaller the better: 

yi(k)=
max xi(k) − xi(k)

max xi(k) − min xi(k)
(18) 

For, larger the better: 

yi(k)=
xi(k) − min xi(k)

max xi(k) − min xi(k)
(19) 

Where yi(k) is the value after the grey relational generation, and min xi(k) and max xi(k) are the smallest value and largest values of 
xi(k) for the kth performance respectively.

Step 2: Calculating the Grey Relational Coefficient (GRC) for each experimental run using the equation provided below. 

GRC=wi(k) =
Δmin + p.Δmax

ΔOi(k) + p.Δmax
(20) 

where wi (k) denotes the GRC value of each response for each experimental run i, p is the distinguishing coefficient, typically assumed 
to be 0.5 [52].

ΔOi (k) =
⃦
⃦yo(k) − yi(k)

⃦
⃦ is the difference of the absolute value between yo(k) and yi(k).

Δmax = ∀ j max ∈ i∀k max
⃦
⃦
⃦yo(k) − yj(k)

⃦
⃦
⃦ = the largest value of ΔOi (k)

Δmin = ∀ j min ∈ i∀k min
⃦
⃦
⃦yo(k) − yj(k)

⃦
⃦
⃦ = the smallest value of ΔOi (k)

Step 3: Calculate the Grey Relational Grade (GRG) by multiplying the relative weight value (wk) by the computed GRC, as described 
below. 

GRG=
∑n

k=1
wk × wi(k) (21) 

Arrange the GRG in ascending order to identify the optimal parameters. A higher GRG indicates the best-designed process, 
identifying the corresponding conditions as optimal.
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3.6. Combined Compromised Solution (CoCoSo) method

The Combined Compromised Solution method is a recent addition to the field of Multiple Criteria Decision Making (MCDM). It 
efficiently categorizes or redirects alternatives by leveraging simple additive weighting and an exponentially weighted product model. 
The CoCoSo method follows the procedural steps [53]:

Step 1: Develop the initial decision matrix by formulating the corresponding matrix considering m alternatives (representing the 
number of experimental trials) and n criteria (representing the number of responses). 

X=

⎡

⎢
⎢
⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋯ ⋯ ⋯ ⋯
xm1 xm2 ⋯ xmn

⎤

⎥
⎥
⎦ Where, i=1, 2,3,……,m; j=1, 2,3,……,n (22) 

Step 2: Normalize the decision matrix based on the type of criterion under consideration using the following equations:
For benefit (Maximizing) criterion, 

nij =
xij − min xij

max xij − min xij
(23) 

For non-benefit (Minimizing) criterion, 

nij =
max xij − xij

max xij − min xij
(24) 

Step 3: Calculate the power of weighted (Pi) and sum of weighted (Si) comparability sequence scores for each alternative as follows: 

Pi =
∑n

j=1

(
nij

)wj (25) 

Si =
∑n

j=1

(
wj × nij

)
(26) 

Here, wj denotes the weight assigned to the jth criterion.
Step 4: Compute the appraisal scores for each alternative using three aggregation strategies as follows: 

kia =
Pi + Si

∑m
i=1(Pi + Si)

(27) 

kib =
Pi

min
i

Pi
+

Si

min
i

Si
(28) 

kic =
λ(Si) + (1 − λ)(Pi)

(

λmax
i

Si + (1 − λ)max
i

Pi

),0≤ λ ≤ 1 (29) 

Typically, the value of λ is set to 0.5 [53].
Step 5: Determine the value of the final appraisal score ki. The ranking of alternatives is determined by the ki value, calculated using 

Table 4 
Decision matrix normalization.

Run order MRR rc TL T F Ra

1 0.037388 0.047205 0.060714 0.055717 0.057318 0.053242
2 0.04807 0.049689 0.046429 0.05666 0.06118 0.059191
3 0.058752 0.052174 0.035714 0.057893 0.063148 0.070196
4 0.043665 0.049689 0.042857 0.05724 0.056258 0.050565
5 0.05614 0.052174 0.032143 0.058256 0.059968 0.054729
6 0.068616 0.055901 0.028571 0.059417 0.061861 0.067817
7 0.048577 0.050932 0.028571 0.058764 0.055349 0.048186
8 0.062456 0.053416 0.025 0.059852 0.058908 0.05116
9 0.076335 0.058385 0.021429 0.06123 0.060953 0.066032
10 0.037388 0.053416 0.121429 0.050348 0.051412 0.043427
11 0.04807 0.055901 0.096429 0.051799 0.053684 0.052945
12 0.058752 0.06087 0.078571 0.053105 0.056258 0.068114
13 0.043665 0.054658 0.075 0.051436 0.049595 0.041642
14 0.05614 0.058385 0.067857 0.05296 0.051488 0.05116
15 0.068616 0.063354 0.064286 0.053903 0.053987 0.066627
16 0.048577 0.057143 0.067857 0.052597 0.048081 0.040452
17 0.062456 0.062112 0.057143 0.054048 0.049216 0.049673
18 0.076335 0.064596 0.05 0.054774 0.051336 0.064842
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the following equation. 

ki =(kia×kib×kic)
1 /3

+
1
3
(kia + kib+kic) (30) 

The alternative with the highest ki is considered desirable and identified as the optimal solution.

4. Results, analysis and discussion

Five different MCDM approaches, encompassing COPRAS, TOPSIS, MOORA, GRA, and CoCoSo, are integrated with the Taguchi 
method in this study to optimize multiple responses for enhancing machinability. The weights for each response are determined using 
the Entropy method to support all MCDM techniques. The statistical software Minitab 19 is employed to analyze and assess the effects 
of process parameters, including feed rate, cutting speed, and cooling environment, on each specific MCDM method. SEM (Scanning 
electron microscopy) coupled with EDX (Energy-dispersive X-ray) analysis is conducted on the carbide insert under both cooling 
environments to gain a comprehensive understanding of how these environments impact tool wear and lifespan.

4.1. Weight calculation using the entropy method

The weight of each machining response was determined using the standard Entropy method, illustrated in Tables 4–6. The resulting 
weights for all machining responses, derived via the Entropy method, are displayed in Table 6. It is observed that the importance of all 
machining responses is comparable. These response weights have been subsequently applied in various MCDM techniques.

4.2. MCDM using COPRAS method

Multi-criteria decision-making with the COPRAS method was performed according to Equations (5)–(9), as outlined in the standard 
COPRAS method. Table 7 presents the relative importance (Qi) and performance level (Ui) of alternatives. It can be found that the 
optimal alternative is run order 10, which has a feed rate of 0.14 mm/rev, a cutting speed of 137 m/min, and a cooling environment of 
MQL.

Fig. 3 displays the main effect plot representing the mean performance levels (Ui). It indicates a significant increase in performance 
level from Level 1 (Dry) to Level 2 (MQL), underscoring the substantial impact of the cooling environment. Performance peaks at the 
lowest cutting speed (Level 1) and slightly decreases at higher speeds. Similarly, performance is highest at the lowest feed rate (Level 1) 
and decreases with higher rates. Therefore, the cooling environment emerges as the most critical factor, suggesting that maintaining 
lower cutting speeds and feed rates can enhance performance in the COPRAS method. Table 8 ranks the impact of process parameters 
on the COPRAS index according to their delta values. The delta value, which measures the effect size by calculating the difference 
between the highest and lowest characteristic average for each parameter, indicates the degree of influence. The highest delta value for 
the cooling environment signifies its highest impact on the COPRAS index, subsequently by feed rate and cutting speed. The rankings in 
the response table quickly identify the most significant factors.

4.3. MCDM using TOPSIS method

The TOPSIS method was conducted following Equations (10)–(14), as outlined in the standard TOPSIS methodology. The sepa
ration and closeness coefficient values for each alternative are shown in Table 9. The analysis indicates that the optimal alternative is 
run order 10, which features a feed rate of 0.14 mm/rev, a cutting speed of 137 m/min, and a cooling environment of MQL.

Fig. 4 depicts the main effect plot illustrating the means of the closeness coefficient value (Ci). It is found that the best levels for 
achieving the highest performance are the cooling environment at Level 2 (MQL), the cutting speed at the lowest level (137 m/min), 
and the feed rate at the first level (0.14 mm/rev). Table 10 indicates that the cooling environment significantly affects the TOPSIS 
index, followed by cutting speed and feed rate.

4.4. MCDM using MOORA method

The MOORA method was carried out according to Equations (15)–(17), as described in the standard MOORA methodology. The 
performance value for each alternative (an overall assessment of the performance measures) is presented in Table 11. The result reveals 
that the optimal alternative is run order 10, characterized by a feed rate of 0.14 mm/rev, a cutting speed of 137 m/min, and a cooling 
environment of MQL.

Fig. 5 shows the main effect plot for means of the performance value (Yi). It reveals that the best levels for achieving the highest 
performance are the cooling environment at Level 2 (MQL), the cutting speed at the lowest level (137 m/min), and the feed rate at the 

Table 5 
Compute Entropy measure (Ej) of the responses.

MRR rc TL T F Ra

Ej − 0.9923 − 0.99868 − 0.9637 − 0.99945 − 0.99881 − 0.99504
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Table 6 
Determine the objective weights of the responses.

Machining response Objective weight, Wj =
1 − Ej

∑n
j=1

(
1 − Ej

)

MRR 0.166747841
rc 0.167282093
TL 0.164354012
T 0.167346085
F 0.167292719
Ra 0.166977251

Table 7 
The relative importance (Qi) and performance level (Ui) of each alternative.

Run order Qi Ui

1 0.051813463 77.50234806
2 0.049980371 74.76041751
3 0.048484705 72.5232061
4 0.050713839 75.85753455
5 0.050006124 74.79893782
6 0.049851451 74.56757908
7 0.04969739 74.33713472
8 0.050567652 75.63886935
9 0.050493683 75.52822656
10 0.066854056 100
11 0.062292584 93.1769707
12 0.058851744 88.03017706
13 0.06103617 91.29763256
14 0.059884515 89.57499189
15 0.05900438 88.25848922
16 0.061449545 91.91595608
17 0.060316711 90.22146836
18 0.058701617 87.80561826

Fig. 3. Main effect plot for means of level of performance (Ui).
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Table 8 
Response table for means of COPRAS index.

Level Cooling Environment Cutting Speed Feed Rate

1 75.06 84.33a 85.15a

2 91.14a 82.39 83.03
3 ​ 82.57 81.12
Delta 16.09 1.94 4.03
Rank 1 3 2

a Indicates optimal levels of process parameters for the COPRAS index.

Table 9 
Determine the separation as the positive (best) ideal solution (D+

i ) and negative (worst) solution (D−
i ) using the Euclidean distance 

and the closeness coefficient value of each alternative (Ci).

Run order D+
i D−

i Ci

1 0.049868118 0.028084879 0.360279651
2 0.054927265 0.019463823 0.261641871
3 0.061094936 0.017836181 0.225971481
4 0.056521276 0.02061776 0.267280493
5 0.060474273 0.018785687 0.237013583
6 0.063330756 0.023036506 0.266727294
7 0.063217674 0.018898965 0.230147814
8 0.063461968 0.02263286 0.26288292
9 0.066885772 0.028287491 0.297220989
10 0.028269755 0.067008301 0.703292063
11 0.027623547 0.050726004 0.647431964
12 0.036042547 0.040924859 0.531716753
13 0.037734839 0.04159878 0.524352485
14 0.03775926 0.037025261 0.495092576
15 0.041123785 0.037499127 0.476949099
16 0.039311465 0.039404953 0.500593831
17 0.042361086 0.035355578 0.454929179
18 0.048399585 0.036175918 0.427735178

Fig. 4. Main effect plot for means of closeness coefficient value (Ci).
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lowest level (0.14 mm/rev). Table 12 indicates that the cooling environment is the dominant factor affecting the MOORA index, with 
feed rate being the second most crucial factor and cutting speed having a lesser effect.

Table 10 
Response table for means of TOPSIS index.

Level Cooling Environment Cutting Speed Feed Rate

1 0.2677 0.4551a 0.4310a

2 0.5291a 0.3779 0.3932
3 ​ 0.3623 0.3711
Delta 0.2614 0.0928 0.0599
Rank 1 2 3

a Indicates optimal levels of process parameters for the TOPSIS index.

Table 11 
Calculate the performance value, an overall 
assessment value of the performance measures 
(Yi) of each alternative.

Run order Yi

1 − 0.01961
2 − 0.02704
3 − 0.03461
4 − 0.02325
5 − 0.02588
6 − 0.02817
7 − 0.02677
8 − 0.02303
9 − 0.02498
10 0.037986
11 0.022056
12 0.008337
13 0.015632
14 0.013322
15 0.009974
16 0.017355
17 0.015433
18 0.009673

Fig. 5. Main effect plot for means of performance value (Yi).
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4.5. MCDM using GRA method

The GRA method was performed according to Equations (18)–(21), as outlined in the standard GRA methodology. The grey 
relational coefficient (GRC) and grey relational grade (GRG) for each alternative are shown in Table 13. The results indicate that the 
optimal alternative is run order 10, which features a feed rate of 0.14 mm/rev, a cutting speed of 137 m/min, and a cooling envi
ronment of MQL.

Table 12 
Response table for means of MOORA index.

Level Cooling Environment Cutting Speed Feed Rate

1 − 0.025929 ¡0.002147a 0.000223a

2 0.016641a − 0.006396 − 0.004191
3 ​ − 0.005388 − 0.009964
Delta 0.042570 0.004249 0.010187
Rank 1 3 2

a Indicates optimal levels of process parameters for the MOORA index.

Table 13 
Determine Grey Relational Coefficient (GRC) and Grey Relational Grade (GRG) of each experimental run.

Run order MRR rc TL T F Ra GRG

1 0.333333 0.333333 0.451613 0.503356 0.44921 0.537634 0.434725
2 0.407922 0.368421 0.4 0.462963 0.365138 0.442478 0.407836
3 0.525513 0.411765 0.368421 0.418994 0.333333 0.333333 0.398601
4 0.373458 0.368421 0.388889 0.441176 0.479518 0.595238 0.441259
5 0.490909 0.411765 0.358974 0.407609 0.387914 0.510204 0.428037
6 0.716129 0.5 0.35 0.375 0.353464 0.352113 0.441259
7 0.412299 0.388889 0.35 0.39267 0.508951 0.657895 0.452037
8 0.583869 0.4375 0.341463 0.364078 0.410309 0.581395 0.453314
9 1 0.583333 0.333333 0.333333 0.369202 0.367647 0.498049
10 0.333333 0.4375 1 1 0.69338 0.833333 0.715614
11 0.407922 0.5 0.666667 0.789474 0.573487 0.543478 0.580034
12 0.525513 0.7 0.538462 0.663717 0.479518 0.34965 0.542898
13 0.373458 0.466667 0.518519 0.833333 0.832636 0.925926 0.658916
14 0.490909 0.583333 0.482759 0.675676 0.688581 0.581395 0.584129
15 0.716129 0.875 0.466667 0.604839 0.560563 0.362319 0.597978
16 0.412299 0.538462 0.482759 0.707547 1 1 0.690843
17 0.583869 0.777778 0.4375 0.595238 0.868996 0.617284 0.647432
18 1 1 0.411765 0.551471 0.698246 0.378788 0.674052

Fig. 6. Main effect plot for means of Grey Relational Grade (GRG).
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Fig. 6 illustrates the main effect plot for the means of Grey Relational Grade (GRG). It indicates that the optimal conditions for 
achieving the highest performance are a Level 2 (MQL) cooling environment, the highest cutting speed (178 m/min), and the lowest 
feed rate (0.14 mm/rev). Table 14 shows that the cooling environment exerts the greatest influence on the GRA index, followed by 
cutting speed and feed rate.

Table 14 
Response table for means of GRA index.

Level Cooling Environment Cutting Speed Feed Rate

1 0.4395 0.5133 0.5656a

2 0.6324a 0.5253 0.5168
3 ​ 0.5693a 0.5255
Delta 0.1930 0.0560 0.0488
Rank 1 2 3

a Indicates optimal levels of process parameters for the GRA index.

Table 15 
Compute the appraisal scores for each alternative using three aggregation strategies and the value of the final appraisal score (Ki).

Run order Kia Kib Kic Ki

1 0.039912 2.521727 0.607051 1.45009
2 0.05233 2.691545 0.795927 1.662113
3 0.036296 2 0.552049 1.204988
4 0.054559 3.05996 0.829827 1.832217
5 0.054026 2.954889 0.821724 1.784988
6 0.050599 2.727903 0.769593 1.656295
7 0.054325 3.094634 0.826266 1.84297
8 0.053684 3.095494 0.816523 1.835764
9 0.038582 2.538448 0.586819 1.440525
10 0.056956 4.605579 0.866284 2.45317
11 0.063314 4.476137 0.962995 2.482797
12 0.060327 4.084438 0.917555 2.296637
13 0.063832 4.702605 0.970877 2.57544
14 0.064359 4.629188 0.97888 2.553962
15 0.062363 4.423346 0.94853 2.451015
16 0.065285 4.914743 0.992967 2.67399
17 0.065747 4.941071 1 2.689709
18 0.063506 4.66456 0.965915 2.556948

Fig. 7. Main effect plot for means of final appraisal score (Ki).
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4.6. MCDM using CoCoSo method

The CoCoSo method was conducted following Equations (22)–(30), as detailed in the standard CoCoSo methodology. The appraisal 
scores for each alternative, calculated using three aggregation strategies, and the final appraisal score (Ki) are presented in Table 15. 
The results show that the optimal alternative is run order 17, characterized by a feed rate of 0.18 mm/rev, a cutting speed of 178 m/ 
min, and a cooling environment of MQL.

Fig. 7 presents the main effect plot for means of the final appraisal score (Ki). It reveals that the best levels for achieving the highest 
performance are the cooling environment at Level 2 (MQL), the cutting speed at the highest level (178 m/min), and the feed rate at the 
second level (0.18 mm/rev). Table 16 indicates that the largest Delta (0.892) signifies the most significant impact of the cooling 
environment on the CoCoSo index, with cutting speed being the second most influential factor at a Delta of 0.248, while feed rate has 
the least impact.

4.7. Confirmation test

After identifying the optimal machining parameters through various MCDM techniques—such as CoCoSo, GRA, MOORA, TOPSIS, 
and COPRAS—a confirmation run was performed for each method to validate their predictions. These tests aimed to ensure that the 
chosen optimal parameters would result in the best possible machining performance, as predicted by each MCDM approach. The 
optimal parameter settings were swiftly determined using the response table and main effect plot for the means of the MCDM methods’ 
indices. Subsequently, the predicted value of the method’s index at the optimal parameter levels was calculated using the following 
equation [47,54]. 

γ = γm +
∑p

j=1

(
γj − γm

)
(31) 

Where, γ = Predicted outcome, γm = Total mean of the outcome across all experimental runs, γj = Mean of the outcome at the optimal 
level for each process parameter, and p = Number of process parameters.

The experimental values of the MCDM methods’ indices from the confirmation run, along with the predicted results, are presented 
in Table 17. The predicted values for CoCoSo and GRA closely match the experimental results, while the discrepancies are significantly 
higher for MOORA, followed by TOPSIS. The absolute percentage errors between the predicted and experimental results have been 
calculated and are also listed in Table 17. Specifically, the errors were found to be 5.573 % for the COPRAS Index (Ui), 12.076 % for the 
TOPSIS Index (Ci), 36.809 % for the MOORA Index (Yi), 0.659 % for the GRA Index (GRG), and 0.647 % for the CoCoSo Index (Ki). The 
degree of agreement between the predicted and experimental results was analyzed to assess the reliability of each MCDM technique in 
optimizing the turning parameters for medium carbon steel. The analysis indicates that CoCoSo and GRA are more reliable than the 
other MCDM methods.

4.8. Comparison of different MCDM methods

The ranking outcomes of the MCDM methods used in this study are depicted in Fig. 8 to evaluate the outcomes of the MCDM 
method, indicating generally consistent results. However, the CoCoSo method exhibits divergence from the others. Consequently, 
Spearman’s rank correlation coefficient [55] is employed to measure the degree of correlation between these methods. Spearman’s 
rank correlation coefficient evaluates the strength of a monotonic association between two variables that have been ranked, similar to 

Table 16 
Response table for means of CoCoSo index.

Level Cooling Environment Cutting Speed Feed Rate

1 1.634 1.925 2.138
2 2.526a 2.142 2.168a

3 ​ 2.173a 1.934
Delta 0.892 0.248 0.234
Rank 1 2 3

a Indicates optimal levels of process parameters for the CoCoSo index.

Table 17 
Results of the confirmation tests for each MCDM method at their optimal machining parameters.

Outcomes Experimental Result Predicted Result Absolute % Error

COPRAS Index (Ui) 100 94.42681493 5.573
TOPSIS Index (Ci) 0.703292063 0.618361565 12.076
MOORA Index (Yi) 0.037986 0.024003667 36.809
GRA Index (GRG) 0.690843 0.695396056 0.659
CoCoSo Index (Ki) 2.689709 2.707100944 0.647
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how Pearson’s correlation coefficient assesses linear relationships between variables. The correlation coefficients are calculated as per 
the following equation [56].

Spearman’s Rank Correlation Coefficient: 

rs =1 −
6⅀d2

i

N
(
N2 − 1

) (32) 

where, di = Difference between ranks of two methods and N = Number of trials or experimental runs.
The correlation results are shown in Table 18. Notably, the highest correlation coefficient, 0.98968, is between MOORA and 

COPRAS. The second highest, 0.93808, is between TOPSIS and COPRAS. The subsequent strongest correlation, with a coefficient of 
0.909185, is between MOORA and TOPSIS. Furthermore, Spearman’s rank correlation coefficients among these three methods should 
be thoroughly compared with previous studies. After reviewing several studies, it was found that Bandyopadhyay [57] reported a 
correlation coefficient of 0.9121 between MOORA and COPRAS in the selection of sewing robots, while Mousavi-Nasab et al. [58] 
found a coefficient of 0.964 in material selection problems. Bandyopadhyay [57] also identified a correlation coefficient of 0.8667 
between TOPSIS and COPRAS for sewing robot selection. Sałabun et al. [59] observed a coefficient of 0.83 in numerical experiments, 
Więckowski et al. [60] reported 0.799 in laptop assessments, and Mousavi-Nasab et al. [58] reported 0.892 for material selection 
issues. Additionally, Moradian et al. [55] found a correlation coefficient of 0.9941 between MOORA and TOPSIS for material selection 
of a brake booster valve body, while Bandyopadhyay [57] reported 0.9636 in the context of sewing robot selection. Overall, Spear
man’s rank correlation coefficients among these three methods align reasonably well with previous studies. The discrepancies between 
our current findings and prior research might stem from application differences. Future research should focus on comparing the 
correlations of MCDM methods within similar contexts to ensure more accurate comparisons.

The observations presented in Table 19, gathered during this study’s application of the MCDM methods, highlight their data 
normalization techniques and unique characteristics, providing a clear comparison.

4.9. Analysis of the impact of different cooling environments on tool wear and tool life

The SEM was used to observe the wear patterns and extents on various surfaces of the carbide inserts after machining medium 
carbon steels over an extended period. This was done to assess how different cooling conditions influenced the wear of the inserts. SEM 
views depicting the principal and auxiliary flanks of worn SNMM carbide inserts used in machining medium carbon steel under both 
dry and MQL conditions are illustrated in Figs. 9 and 10, respectively.

Fig. 8. Comparison of the five different MCDM methods.

Table 18 
Spearman’s rank correlation coefficient for five MCDM methods.

Method COPRAS TOPSIS MOORA GRA CoCoSo

COPRAS 1 ​ ​ ​ ​
TOPSIS 0.93808 1 ​ ​ ​
MOORA 0.98968 0.909185 1 ​ ​
GRA 0.832817 0.79773 0.863777 1 ​
CoCoSo 0.789474 0.671827 0.820433 0.849329 1
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The SEM view in Fig. 9(a) shows significant wear, with clear signs of abrasion and potential adhesive wear mechanisms. The tool 
surface appears rough and uneven, indicating high wear rates. In contrast, the wear on the principal flank under MQL conditions in 
Fig. 9(b) is visibly reduced. The surface is smoother with fewer signs of severe abrasion, suggesting that MQL significantly mitigates 
wear compared to dry conditions. The auxiliary flank under dry conditions in Fig. 10(a) shows extensive wear, similar to the principal 
flank. The tool surface exhibits pronounced wear marks and potential thermal damage. Meanwhile, the auxiliary flank under MQL 
conditions in Fig. 10(b) shows reduced wear. The wear patterns are less pronounced, indicating that MQL helps to reduce both abrasive 
and thermal wear mechanisms.

Table 19 
Comparison of different MCDM methods considering data normalization techniques and characteristics observed during their utilization in this study.

MCDM 
Methods

Data Normalization 
Technique

Characteristic

COPRAS Sum based linear 
normalization

This approach assesses the impact of maximizing and minimizing criteria independently. Its mathematical 
formulation resolves the issue of rank reversal and involves straightforward calculations.

TOPSIS Vector normalization The method’s rationale and concept are easily understandable, with a straightforward mathematical form.
MOORA Vector normalization The method relies on a robust mathematical technique and involves simple calculations.
GRA Max - Min linear 

normalization
Based on a robust mathematical framework, the method guarantees accuracy and dependability. It consistently 
delivers reliable outcomes while boasting a simple and comprehensible computational process. It efficiently 
employs available information, even if it is not necessarily independent.

CoCoSo Max - Min linear 
normalization

The approach is exceptionally dependable in determining the optimal consensus score through its integrated 
framework. It aims to achieve a compromise that effectively balances conflicting objectives or criteria. Its 
transparency in decision-making empowers stakeholders to grasp the decision-making process. Its design enables 
the construction of a robust model, leading to more precise decision-making.

Fig. 9. SEM images showing the principal flank of worn SNMM carbide insert tip after machining medium carbon steel under (a) dry and (b) 
MQL conditions.
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Bar charts in Fig. 11 depict the comparative effectiveness of MQL versus dry conditions when machining medium carbon steel with 
SNMM carbide inserts across various speed and feed rate combinations. Fig. 11(a) shows that the tool life under dry conditions ranges 
from approximately 10 to 17 min at lower cutting velocities and feed rates. As cutting velocity increases, the tool life decreases, 
indicating that higher speeds exacerbate wear under dry conditions. Tool life under MQL conditions, as shown in Fig. 11(b), is 
significantly higher across all cutting velocities and feed rates compared to dry conditions. At similar cutting velocities and feed rates, 
the tool life ranges from approximately 14 to 34 min. The increased tool life under MQL conditions demonstrates the effectiveness of 
lubrication in reducing wear and extending tool life.

During the machinability study of hard-turning AISI 4140 steel using CC6050 tools under different cooling environments (dry and 
MQL) [61], long-term wear tests were conducted via straight turning at a feed rate of 0.12 mm/rev, a depth of cut of 0.15 mm, and a 
cutting speed of 120 m/min to assess tool life in different cooling conditions, revealing tool life of 32 min for dry cutting and 37 min for 
MQL. This improvement is attributed to the reduced friction between the chip and tool and between the workpiece and tool, which 
lowers local high temperatures and pressure at the tool’s edge, thereby minimizing thermal impact. Swain et al. [62] performed 
turning of Ti-6Al-4V alloy using a CNMG 1020408 uncoated carbide tool at a depth of cut of 0.4 mm, a feed rate of 0.1 mm, and a 
cutting speed of 75 m/min to assess tool life under dry and MQL conditions. The tool life was 25 min in the dry environment and 95 min 
under MQL, indicating that MQL extended tool life by 280 % compared to dry cutting under the same parameters. Barari et al. [63] 
observed that the tool life of tungsten carbide significantly improved when turning 316L stainless steel under MQL compared to dry 
cutting, with nearly double the tool life recorded for MQL. This enhancement is due to the thermal gradient rapidly dissipating the heat 
generated in the cutting zone.

However, the current research findings on the tool life of SNMM carbide inserts are promising for turning medium carbon steel 
across the different speed and feed rate combinations examined.

Energy Dispersive X-ray (EDX) analysis was conducted on the carbide insert used under dry conditions, highlighting two specific 
points (Point-1 and Point-2) at an accelerating voltage of 20 kV and a magnification of 10,000. The analysis results are presented in 
Fig. 12. It is evident from the analysis that the white phase is tungsten carbide (WC), and the dark phase consists of tungsten, titanium, 

Fig. 10. SEM images showing the auxiliary flank of worn SNMM carbide insert tip after machining medium carbon steel under (a) dry and (b) 
MQL conditions.

N.A. Sristi et al.                                                                                                                                                                                                        Heliyon 10 (2024) e38299 

20 



and tantalum carbide (WC-TiC-TaC) with cobalt as a binder. Additionally, EDX analysis was performed on the carbide inserts used in 
MQL conditions with two points (Point-1 and Point-2) at an accelerating voltage of 20 kV and a magnification of 25,000. The analysis 
result is shown in Fig. 13. The results indicate that the white phase is WC, and the dark phase is WC-TiC-TaC, with cobalt as a binder in 
both phases. The dimensions of the carbide particles within the inserts were estimated under both dry and MQL conditions.

Both cooling conditions feature similar phases, primarily tungsten carbide (WC) and tungsten titanium tantalum carbide (WC-TiC- 
TaC), with cobalt as a binder. Under dry conditions, the EDX analysis shows a higher concentration of tungsten in the primary WC 
phase. Under MQL conditions, cobalt is noticeable in both the primary and secondary phases, suggesting better distribution and 
potentially enhanced wear resistance due to the lubricating effect of cobalt. The presence of titanium and tantalum carbides in both 
conditions highlights these elements’ role in enhancing the inserts’ hardness and wear resistance. However, the higher cobalt content 
under MQL conditions may contribute to reduced wear, as evidenced by the smoother surfaces and fewer wear marks observed in the 
SEM images.

5. Conclusion

An uncoated carbide insert is used to evaluate the machinability of medium carbon steel in both dry and MQL cooling environ
ments. Five different Taguchi-based Multi-Criteria Decision Making (MCDM) methods, namely CoCoSo, GRA, MOORA, TOPSIS, and 
COPRAS, are combined with the Entropy method to optimize multiple machining responses. This optimization aims to enhance 
machinability regarding material removal rate, surface roughness, main cutting force, cutting temperature, cutting ratio, and tool life 
to determine the optimal cutting parameters. The study leads to the following specific conclusions:

1. Across all MCDM methods (COPRAS, TOPSIS, MOORA, GRA, and CoCoSo), the main effect plots consistently demonstrate that the 
cooling environment is the most significant parameter. There is a clear trend that enhancing the cooling environment from Level 1 
(Dry) to Level 2 (MQL) significantly improves performance. Cutting speed and feed rate show a negative trend with increasing 
levels for COPRAS, TOPSIS, and MOORA methods, indicating that lower cutting speeds and feed rates favor incremental benefits. 
While for GRA and CoCoSo methods, this trend is different for cutting speed.

Fig. 11. Effect of (a) Dry and (b) MQL on tool life of SNMM carbide insert based on limiting average principal flank wear criteria VB = 300 μm.
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2. The cooling environment consistently emerges as the most influential process parameter across all MCDM methods (COPRAS, 
TOPSIS, MOORA, GRA, and CoCoSo) in response table analysis. This suggests that optimizing the cooling environment is critical for 
improving machinability. Although essential, cutting speed and feed rate have lesser impacts on all MCDM methods than the 
cooling environment, with cutting speed generally having a more significant influence than feed rate.

3. It can be concluded that the four MCDM methods—COPRAS, TOPSIS, MOORA, and GRA—yield the same optimal machining 
parameter setting: a feed rate of 0.14 mm/rev, a cutting speed of 137 m/min, and a cooling environment of MQL. In contrast, the 
CoCoSo method identifies a different optimal setting, with a feed rate of 0.18 mm/rev, a cutting speed of 178 m/min, and a cooling 
environment of MQL. When comparing the machining responses of the two optimal parameter settings, the setting for the four 
MCDM methods (run order 10) proves superior to that of the CoCoSo method (run order 17). Specifically, run order 10 yields a tool 
life of 34 min—more than double that of run order 17, which is 16 min, covering lower MRR. Additionally, run order 10 results in 
lower cutting temperatures, with other responses being comparable. Therefore, this study recommends the optimal machining 
parameter setting of a 0.14 mm/rev feed rate, a 137 m/min cutting speed, and using MQL as the cooling environment.

4. Based on the confirmation run, the CoCoSo and GRA methods demonstrate the highest reliability in predicting machining per
formance, as evidenced by their minimal discrepancies between predicted and experimental results. The absolute percentage errors 
are 5.573 % for the COPRAS Index (Ui), 12.076 % for the TOPSIS Index (Ci), 36.809 % for the MOORA Index (Yi), 0.659 % for the 

Fig. 12. (a) SEM image of the SNMM carbide insert used in dry environment, highlighting different points (1 and 2) for phase identification 
[magnification ×10000], (b) EDX analysis at point-1, and (c) EDX analysis at point-2.
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GRA Index (GRG), and 0.647 % for the CoCoSo Index (Ki). The lower errors for CoCoSo, GRA, and COPRAS suggest that these 
methods are more effective in optimizing turning parameters for medium carbon steel than MOORA and TOPSIS.

5. The highest Spearman’s rank correlation coefficient observed is between MOORA and COPRAS (0.98968), followed by TOPSIS and 
COPRAS (0.93808), and MOORA and TOPSIS (0.909185). Among these methods, COPRAS exhibits the lowest error (5.573 %) in 
predicting machining performance. Consequently, COPRAS could effectively replace MOORA and TOPSIS in similar decision- 
making scenarios. However, each MCDM method offers distinct advantages based on its normalization technique and inherent 
characteristics.

6. SEM images indicate that auxiliary flank and principal flank wear of the SNMM carbide inserts is significantly reduced under MQL 
conditions compared to dry machining. The smoother surfaces and fewer wear marks under MQL conditions suggest that lubri
cation effectively mitigates abrasive and adhesive wear mechanisms. Additionally, MQL conditions result in a significantly longer 
tool life across all tested parameters.

Fig. 13. (a) SEM image of the SNMM carbide insert used in the MQL environment, highlighting different points (1 and 2) for phase identification 
[magnification ×25000], (b) EDX analysis at point-1, and (c) EDX analysis at point-2.
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7. The EDX analysis corroborates the SEM findings, indicating that MQL conditions provide a more favorable environment for 
machining by reducing wear and extending tool life. The consistent presence of hard phases like WC and WC-TiC-TaC and the 
effective distribution of cobalt underscore the benefits of using MQL to improve the machinability and durability of carbide inserts.

Although the cooling environment significantly impacts all MCDM methods and is critical for improving machinability, this study 
limits its scope to just two cooling environments. Future research should explore other advanced cooling conditions, such as eco- 
friendly nanofluids with innovative application systems, to further improve machinability and promote sustainability. Additionally, 
incorporating more process parameters would allow for a more comprehensive optimization of machining responses. It is also essential 
to validate the reliability of proposed MCDM methods in other machining operations. Moreover, future studies should focus on 
comparing the correlations of MCDM methods within similar contexts to achieve more precise comparisons.
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