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Abstract
The most common type of lung cancer tissue is lung adenocarcinoma. The TCGA‐
LUAD cohort retrieved from the TCGA dataset was considered the internal training
cohort, while GSE68465 and GSE13213 datasets from the GEO database were used as
the external test cohort. The TCGA‐LUAD cohort was classified into two immune
subtypes using single‐sample gene set enrichment analysis of the immune gene set and
unsupervised clustering analysis. The ESTIMATE algorithm, the CIBERSORT algo-
rithm, and HLA family expression levels again validated the reliability of this typing. We
performed Venn analysis using immune‐related genes from the immport dataset and
differentially expressed genes from the subtypes to retrieve differentially expressed im-
mune genes (DEIGs). In addition, DEIGs were used to construct a prognostic model
with the least absolute shrinkage and selection operator regression analysis. A reliable risk
model consisting of 11 DEIGs, including S100P, INHA, SEMA7A, INSL4, CD40LG,
AGER, SERPIND1, CD1D, CX3CR1, SFTPD, and CD79A, was then built, and its
reliability was further confirmed by ROC curve and calibration plot analysis. The high‐
risk score subgroup had a poor prognosis and a lower tumour immune dysfunction
and exclusion score, indicating a greater likelihood of anti‐PD‐1/cytotoxic T lymphocyte
antigen 4 benefit.
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1 | INTRODUCTION

According to GLOBOCAN 2020 cancer report [1], lung
cancer is reported to be among the most burdensome malig-
nancies globally. Predominant cancer detected in 40%–50% of
all incidents of lung malignancies is lung adenocarcinoma
(LUAD) [2]. It is widely accepted that a healthy immune sys-
tem's regular function may guard and inhibit the formation of
malignant tumours and those persons having a genetically
impaired immunological system might be more susceptible to
tumours [3, 4]. Immune checkpoint inhibitor (ICI) therapy has
proven to be an auspicious treatment for LUAD [5, 6], has
facilitated significant progress in anticancer practice, and is
now the new first‐line oncological treatment choice [7]. Unlike
conventional therapies, immunotherapy patients achieve

therapeutic advantages by generating a long‐lasting antitumour
immune response, which is dependent on immunomodulation
between the cancer cells and tumour microenvironment
(TME) [8]. The most prevalent targets of ICI are cytotoxic T
lymphocyte antigen 4 (CTLA4) and programmed cell death 1
(PD1), which limit the stimulation and proliferation of T
lymphocytes, rendering the anti‐tumour responses ineffectual
[9]. Despite the fact that ICI was predicted to show significant
promises in the immunotherapy of LUAD patients, the clinical
results and prognosis were disappointing. For instance, only
44.8% of PD‐L1‐positive NSCLCs respond to pembrolizumab
in the first‐line context [10]. Meanwhile, the heterogeneity of
elevated levels of tumour‐infiltrating lymphocytes and tumour
mutational load in LUAD provides an extra reason for it [11].
As a result, in order to accomplish accurately individualised
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decision‐making for ICI therapy, a prognostic biomarker will
be required to evaluate prognosis and forecast immunotherapy
sensitivity in LUAD patients.

The modelling of immunological clinical prognoses is a hot
area of research today. There are various methods available for
identifying immune genes associated with prognosis, such as
the ESTIMATE algorithm [12], the CIBERSORT algorithm
[13], independent and paired sample designs [14], or direct
univariate Cox regression analysis of genes from various im-
mune databases, including the InnateDB database [14], the
ImmPort database [15], and the MSigDB database combined
with the ImmPort database [16]. The single‐sample gene set
enrichment analysis (ssGSEA) converts the gene expression
profiles of individual samples into gene set enrichment profiles,
a transformation that allows researchers to characterise cellular
states based on the activity levels of biological processes and
pathways rather than the expression levels of individual genes.
Although this method of dividing tumour patients into mul-
tiple immune subtypes has been widely employed in immune‐
related prognostic models for numerous malignancies [17–19],
LUAD patients have not yet benefited from its use.

For this research, we utilised ssGSEA to allot LUAD pa-
tients into low‐ and high‐immune cell infiltration clusters and
confirmed by ESTIMATE, GSEA, the expression level of
multiple human leucocyte antigen (HLA) genes and immune
cell. Subsequently, utilising univariate Cox and least absolute
shrinkage and selection operator (LASSO) regression analysis,
we identified an 11 differentially expressed immune genes
(DEIGs) signature linked to prognosis in a cross‐section of
differentially expressed genes (DEGs) in subtypes and immune‐
related genes (IRGs) from the immport dataset. The validity of
the DEIGs prognostic signature was then evaluated. Ultimately,

we discovered that this prognostic signature was not only
trustworthy for predicting survival but also effective for pre-
dicting the treatment response to ICI for LUAD patients, which
could allow individualised immunotherapy treatment in the
future.

2 | MATERIALS AND METHOD

2.1 | Data collection and collation

We obtained the TCGA‐LUAD cohort's gene expression and
patient information from The Cancer Genome Atlas Pro-
gramme (TCGA; https://portal.gdc.cancer.gov/repository).
The mutation information for these LUAD patients was ob-
tained from the openly accessible TCGA dataset through the
GDC Data Portal. GSE68465 and GSE13213 from the GEO
dataset were recruited for external validation. The expression
values from the TCGA‐LUAD, GSE68465, and GSE13213
datasets were all log2(x + 1) transformed. Subsequently, batch
effects were removed from the three datasets by the ComBat
algorithm of the ‘sva’ package. Figure 1 shows the workflow
and details of this study. 1793 IRGs were downloaded from the
ImmPort Portal database (https://www.immport.org/).

2.2 | ssGSEA and clustering

To examine the associated expression pathways, activity of
immunological‐associated functions, and penetration levels of
various immunological cells, we used 29 immune data sets (such
as immunological‐associated functions, immune cell types, and

F I GURE 1 The workflow and details of this study.
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immune‐associated pathways) and the ssGSEA method with
the R software gene set variation analysis package. After data
correction of the obtained ssGSEA scores by the normalisation
function ‘normalise’, we performed unsupervised hierarchical
clustering of TCGA‐LUAD to develop an immunogenomic
categorisation of LUAD. We utilised k‐means clustering to split
these patients into two categories based on their immunological
scores: Immunity‐high and Immunity‐low cohorts.

2.3 | Assessment of the relationship between
LUAD immunogenomic subtypes and
molecular features

Firstly, the immune cell infiltration levels, tumour purity, and
stromal content of each LUAD specimen were computed in
terms of various scores utilising the ‘Estimation of STromal and
Immune cells in MAlignant Tumour tissues using Expression
data’ (ESTIMATE) technique. Secondly, to uncover the con-
nections between LUAD immunogenomic categorisation and
immune infiltration, we analysed the scores of stromal content,
immune cell infiltration, and estimation scores across various
LUAD immunogenomic subtypes.

In addition, tumour‐infiltrating immune cells (TIICs) in
LUAD specimens were evaluated utilising the ‘Cell type
Identification by Estimating Relative Subsets of RNA Tran-
scripts CIBERSOFT’ (CIBERSORT) deconvolution method.
The CIBERSORT platform (https://cibersortx.stanford.edu/)
was used to collect the gene expression signature matrix of 22
TIICs. We utilised Mann‐Whitney U‐test to evaluate the per-
centages of immune cell subsets amongst LUAD immunoge-
nomic subtypes and defined 100 permutations and P < 0.05 as
the criterion for effective specimen deconvolution.

Next, for each cohort, we computed the levels of HLA
genes expression. The Kolmogorov‐Smirnov test was utilised
to determine the levels of HLA genes expression amongst
immunogenomic subtypes.

Eventually, GSEA was done utilising Java GSEA pro-
gramme to examine how the immune‐associated pathways vary
between the two cohorts. To filter for relevant enrichment
findings, the enrichment threshold was established at a false
discovery rate (FDR) of <0.01. The enrichment findings were
shown graphically utilising the R package ‘ggplot2R.’

2.4 | Selection of immune‐related prognostic
genes in LUAD

The TCGA data were categorised into 2 cohorts premised on
immune cell infiltration levels: high and low. We utilised the
edgeR programme to evaluate DEGs in accordance with the
protocols of the p < 0.05 and | log2FC | > 2 criteria and
the Venn diagram to retrieve DEIGs between the DEGs and
IRGs. We utilised Univariate and LASSO regression analysis to
determine the link between the overall survival (OS) of patients
and the level of IRGs expression.

2.5 | Construct a prognostic model of
DEIGs

The LASSO regression method's coefficients were utilised to
get the risk score formula shown below: risk score = sum of
coefficients * the IRGs expression level. In the TCGA‐LUAD,
GSE68465, and GSE13213 cohorts, the risk score from each
subject was computed independently utilising this formula.
Following that, subjects were split into low‐risk and high‐risk
groups premised on the median risk score. Afterwards, the
Kaplan‐Meier survival curves were plotted for the 3 cohorts. To
assess the model's sensitivity and specificity, we suggested cali-
bration plots and ROC curves. We then undertook a multivar-
iate and univariate analysis of numerous medical features of
TCGA‐LUAD patients to investigate the independence of the
prognostic models in the absence of clinical variables.

2.6 | Assessment of variations between high‐
and low‐risk cohorts

To begin with, we determined the levels of expression of the
CTLA4 and CD274 genes in each subset. The Kolmogorov‐
Smirnov test was utilised to investigate the extent of CTLA4
and CD274 genes expression amongst risk categories.

Furthermore, tumour mutation burden (TMB) was
described as the number of non‐synonymous coding mutations
per megabase (Mb). The GDC data site was utilised to obtain
the mutation annotation format, which was then displayed with
the maftools R programme. The median Mb score was utilised
as a minimum threshold to categorise patients into high‐TMB
and low‐TMB cohorts. Tumour immune dysfunction and
exclusion (TIDE) score was thereafter computed online
(HTTP://tide.dfci.harvard.edu/). Correlation analyses were
performed between risk cohorts and TMB/TIDE scores.

2.7 | Development and evaluation of a
predictive nomogram

Premised on the multivariate analysis findings, a nomogram
was created with the rms R package to estimate the 1‐, 3‐, and
5‐year survival chances for LUAD patients. Furthermore, the
ROC curve was utilised in assessig the nomogram's predictive
capacity.

3 | RESULTS

3.1 | Construction of LUAD clustering

An aggregate of 497 LUAD specimens from the TCGA was
employed in this study. We utilised the ssGSEA scores to
measure the levels of enrichment or activity of immunological
cells, functions, or pathways in cancer specimens. The 497
specimens were then divided into two categories utilising the
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unsupervised hierarchical clustering technique (Figure 2a). We
designated the 2 clusters as 2 LUAD immunogenic sub-
categories termed Immunity High and Immunity Low pre-
mised on the heatmap of expression levels of the 29 IRG sets
(Figure 2b).

The immune subtype of each sample in the TCGA cohort
was shown in Supplementary Table 1.

3.2 | Validation of LUAD clustering

We utilised the ESTIMATE method to evaluate the expression
signature of LUAD and computed the stromal score, ESTI-
MATE score, tumour purity, and immune score. According to
the findings, the tumour purity of the high immune cell infil-
tration cohort was considerably reduced as opposed to the

F I GURE 2 Construction of Lung adenocarcinoma (LUAD) clustering. (a) Unsupervised hierarchical clustering of 497 LUAD in TCGA. (b) The
distribution of stromal score, immune score, estimate score, tumour purity, and 29 immune‐related compositions of each patient in immunity‐high and
immunity‐low cohorts.
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levels of low immune cell infiltration cohort. The ESTIMATE
score, immunological score, and stromal score, on the other
hand, were greater in the high immune cell infiltration cohort
as opposed to the low immune cell infiltration cohort
(Figure 3a). The CIBERSORT technique was utilised to eval-
uate the aforementioned two cohorts, and it revealed that the
high immune cell infiltration cohort exhibited elevated kinds of
immune cells (Figure 3b). The high immune cell infiltration
cohort exhibited considerably elevated proportions of den-
dritic cells resting and neutrophils, macrophages M1, T cells
regulatory (Tregs), T cells CD8, and T cells CD4 memory
activated, whereas dendritic cells activated, NK cells activated,
T cells CD4 naïve, B cell naïve, and Eosinophils proportions
were relatively lower. Furthermore, the HLA family was more
prevalent in the high immune cell infiltration cohort
(Figure 3c). To learn more about the immunogenomic sub-
types' inherent genetic impacts, we executed GSEA to reveal
the pathway of the immunogenomic (Figure 3d). In accordance
with these outcomes, the Immunity High subtypes were pre-
dominantly enriched in natural killer cell‐mediated cytotoxicity
pathway, haematopoietic cell lineage, cell adhesion molecules,
cytokine‐cytokine receptor interaction, etc.

All things considered, our results suggest that the high‐ and
low‐immune groups constructed in this study have strong
immune heterogeneity.

3.3 | Evaluation of DEIGs with low and high
immune cell infiltration

Premised on the threshold of |log2FC| > 2 and FDR 0.05, we
discovered 2033 DEGs between the high and low immuno-
logical cell infiltration cohorts (Figure 4a). We utilised the IRGs
from the immport dataset and the DEGs from the low and
high immune cell infiltration cohorts to perform a Venn
analysis. Afterwards, we discovered 431 DEIGs (Figure 4b).

3.4 | Prognosis models of DEIGs

Following the integration of clinical data into gene expression
profiles, we retrieved 468 TCGA specimens (Supplementary
Table 2), 442 GSE68465 specimens (Supplementary Table 3),
and 117 GSE13213 specimens (Supplementary Table 4). The

F I GURE 3 Validation of Lung adenocarcinoma (LUAD) clustering. (a) The violin plots precisely illustrated the variations in the 2 subtypes with respect to
stromal cell content, immune cell infiltration level, and estimate score. (b) The variation in the percentage of each immune cell between the 2 cohorts. (c) Comparing
the expression of various HLA genes in the subtypes. (d) Gene set enrichment analysis (GSEA) of the 2 subtypes. (*p < 0.05, **p < 0.01, ***p < 0.001).
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training cohort consisted of TCGA specimens, whereas the test
cohort consisted of GSE68465 specimens and GSE13213
specimens. Subsequently, utilising the TCGA cohort, we created
a prognostic model. Premised on p < 0.01, univariate Cox
regression analysis revealed 37 genes in the training cohort
(Figure 4c). Following that, the LASSO Cox regression method
was executed (Figure 4d,e). S100P, INHA, SEMA7A, INSL4,
CD40LG, AGER, SERPIND1, CD1D, CX3CR1, SFTPD, and
CD79A were discovered as prognose‐related DEIGs, and the

mechanisms associated with these 11 genes studied are shown in
Table 1. The equation belowwas used to compute the risk score:
(S100P*0.016) + (INHA*0.024) + (SEMA7A*0.290) +
(INSL4*0.082) ‐ (CD40LG*0.051) ‐ (AGER*0.033) ‐ (SER-
PIND1*0.029) ‐ (CD1D*0.042) ‐ (CX3CR1*0.044) ‐
(SFTPD*0.026) ‐ (CD79A*0.115). TCGA‐LUAD, GSE68465,
and GSE13213 specimens were categorised into low‐ and high‐
risk cohorts premised on themedian risk score. According to the
survival analysis, low‐risk individuals exhibited considerably

F I GURE 4 Analysis of differentially expressed immune genes (DEIGs) and prognosis model of training cohort. (a) The volcano graph depicts the
distribution of differential genes between the immunity‐high and immunity‐low cohorts, green dots signify downregulated genes, red dots signify upregulated
genes. (b) We identified 431 DEIGs by utilising the Venn diagram to identify intersection points. (c) Prognostic forest map of 37 DEIGs in TCGA. (d and e)
Least absolute shrinkage and selection operator (LASSO) Cox regression analysis of TCGA cohort.

TABLE 1 Possible mechanisms for 11 genes in the immune prognostic model

Genes Effect State Mechanism

S100P Risk factor Verified Wnt/β‐catenin [20] and PI3K/AKT signalling pathway [21].

INHA Risk factor Unverified Induction of tumour angiogenesis [22].

SEMA7A Risk factor Unverified Binding of β1‐integrin receptor [23], induced expression
of chemokines and matrix metalloproteinases [24].

INSL4 Risk factor Verified MAPK and AKT signalling pathways [25].

CD40LG Protective factor Verified Promotion of apoptosis [26].

SFTPD Protective factor Verified Oxidative stress and macrophage accumulation [27].

AGER Protective factor Unverified Induction of tumour cell apoptosis [28]].

SERPIND1 Protective factor Unverified PI3K/AKT signalling pathway [29, 30].

CD1D Protective factor Unverified Promotion of iNKT expression [31].

CX3CR1 Protective factor Unverified Recruitment of NK and T cells [32, 33].

CD79A Protective factor Unverified Promotion of expression of IgM in B cells [34].

32 - GUO ET AL.



lengthier OS as opposed to high‐risk subjects. The ROC curve
analysis illustrated that the sensitivity and specificity were
greatest at‐risk scores of 0.720, 0.680, and 0.631 premised on 1‐,
3‐, and 5‐year survival of the area under ROS curve (AUC) value,
successively (Figure 5a). Survival analysis for the testing group
also revealed that low‐risk individuals exhibited considerably
lengthier OS as opposed to high‐risk cohort. The ROC curve
analysis showed the highest sensitivity and specificity based on
AUC values at 1‐, 3‐, and 5‐year survival, with GSE68465 being
0.658, 0.628, and 0.610, and GSE132132 being 0.801, 0.7, and
0.697, respectively (Figure 5b,c). The calibration chart demon-
strates that the model's efficacy was extremely good with the 45°
line being the best‐anticipated instance. The survival status and

risk score of TCGA‐LUAD, GSE68465, and GSE13213 speci-
mens computed utilising the prognostic model are displayed in
Figure 6a–c. The survival duration for subjects in TCGA,
GSE68465, and GSE13213 specimens was negatively correlated
with the risk score, and their correlation coefficients were
similar.

3.5 | The prognostic value of the risk
subgroups in the TCGA cohort

To explore the link amongst PD‐L1 (CD274)/CTLA4 and risk
subgroups, we examined the differential expression of the 2

F I GURE 5 Prognosis model of TCGA‐LUAD, GSE68465, and GSE13213 cohort. Survival analysis between low‐risk and high‐risk patients, ROC curve
analysis, and calibration plots for forecasting 1‐, 3‐, or 5‐year overall survival (OS) in the TCGA‐LUAD cohort (a), the GSE68465 cohort (b), and the GSE13213
cohort (c).
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subgroups. The expression level of PD‐L1/CTLA4 in the low‐
risk subgroup was elevated as opposed to high‐risk subgroup
(p < 0.05; Figure 7a,b). Indeed, we observed that patients in the
high‐risk subgroup have higher TMB than in the low‐risk sub-
group (Figure 7c). When the risk score was combined with the
TMB level, patients with reduced TMB levels and increased
immunological risk exhibited considerably shorter survival as
opposed to those with elevated TMB and reduced immune risk
(Figure 7d). Tumour immune dysfunction and exclusion was
then utilised to examine the prospective clinical efficacy of
immunotherapy in various risk categories. In our results, the
high‐risk subgroup exhibited a reduced TIDE score as opposed
to the low‐risk subgroup, implying that high‐risk patients might
derive more benefits from ICI treatment as opposed to low‐risk
patients (Figure 7e). Furthermore, we discovered that the low‐
risk subgroup exhibited an elevated MSI score and T cell
dysfunction, whereas the high‐risk subgroup exhibited an
elevated T cell exclusion score (Figures 7f,h).

3.6 | Prognostic model is independent
prognostic factors in patients with LUAD

To investigate if the risk score functions as an independent
prognostic marker for LUAD patients, multivariate and uni-
variate Cox regression analyses were undertaken. Following the
adjustment of other clinical variables, the risk score was still
found to be an independent significant predictor for LUAD
prognosis [HR 3.278, 95% CI (2.199–4.887), p < 0.001] (Fig-
ures 8a,b).

3.7 | Predictive nomogram development and
validation

Following that, we created a nomogram that combined clinical
risk variables with risk subgroups to calculate the likelihood of
survival in LUAD patients (Figure 8c). By adding risk

F I GURE 6 The risk score and survival time of TCGA‐LUAD, GSE68465, and GSE13213 cohort. The risk score, survival status, and correlation between
the risk score and overall survival (OS) in the TCGA‐LUAD cohort (a), the GSE68465 cohort (b), and the GSE13213 cohort (c).

34 - GUO ET AL.



subgroups, the chance of surviving was calculated by plotting a
vertical line down to the survival axis. Furthermore, the ROC
curve was applied to forecast the precision of the nomogram
(Figure 8d). The AUC of the nomogram for OS was 0.831,
0.866, and 0.851 at 1, 3, and 5 years, respectively. As a result,
the nomogram exhibited a superior prediction value in terms
of both long‐ and short‐term survival in LUAD patients.

4 | DISCUSSION

Due to the tumour heterogeneity and complex tumourigenic
process of LUAD, it is difficult to accurately predict clinical
outcomes and the immune therapy response using only indi-
vidual biomarkers. Therefore, this study attempts to construct
a model that could both assess prognosis and predict the ef-
ficacy of immunotherapy in patients with LUAD through the
lens of immune scoring and immune genes.

By intersecting the differential genes of the immune cohort
with the immune genes, followed by Cox analysis and Lasso
regression analysis, we identified 11 genes associated with
prognosis, including S100P, INHA, SEMA7A, INSL4,
CD40LG, AGER, SERPIND1, CD1D, CX3CR1, SFTPD, and
CD79A. Among them, S100P, INHA, SEMA7A, and INSL4
were high‐risk genes, while CD40LG, AGER, SERPIND1,
CD1D, CX3CR1, SFTPD, and CD79A were low‐risk genes.

As shown in Table 1, other research studies have confirmed
the significance of five genes in the development of lung cancer:
S100P, SERPIND1, INSL4, CD40LG, and SFTPD. In NSCLC
cell lines (H1975 cells), SIX3 was found to downregulate S100P
via the Wnt/β‐catenin signalling pathway, thereby inhibiting cell
metastasis and proliferation [20]. At the same time, studies

supported that the level of S100P mRNA was linked to the
triggering status of the PI3K/AKT pathway, which is a well‐
recognized classical pathway that promotes migration, inva-
sion, proliferation, and anti‐medication consequence of a variety
of cancers [21]. SERPIND1 can inhibit thrombin activity
through interaction with heparin, also known as heparin
cofactor II, and has been shown to participate in the PI3K/
AKT signalling pathway and affect cell migration in both
NSCLC [29] and epithelial ovarian cancer [30]. INSL4 is a
member of the insulin/IGF/relaxin superfamily, and one study
found that INSL4 to be an active tumour‐enhancing gene in
NSCLC because it stimulates the proliferation, invasion, and
migration of lung cancer cells, which might be linked to
improving the regulation of MAPK and AKT signalling path-
ways [25]. As a binding protein for the CD40L ligand of the
tumour necrosis factor superfamily, CD40LG has been
demonstrated to exert anti‐proliferative and pro‐apoptotic ef-
fects on lung cancer cells [26]. On the other hand, in mice with
metastatic renal cell carcinoma, injection of CD40 in conjunc-
tion with IL‐2 to promote T cell proliferation and boost den-
dritic cell differentiation and activity resulted in an adaptive
immune response that had anticancer effects [35]. SFTPD is a
pulmonary aggregate synthesised primarily by alveolar type II
cells. It was found that SFTPD‐negative mice showed more
nitrogen oxides and macrophages in their lungs after ozone
inhalation relative to SFTPD‐positive mice, suggesting that
SFTPD may act by enhancing innate immune defence and
reducing oxidative stress [27].

At present, the role of six genes—INHA, SEMA7A, AGER,
CD1D, CX3CR1, and CD79A—in lung cancer requires further
validation. INHA is a protein belonging to the transforming
growth factor‐beta (TGF‐beta) superfamily. In human ovarian

F I GURE 7 The prognostic significance of the risk subgroups in the TCGA cohort. Comparison of PD‐L1 expression (a), cytotoxic T lymphocyte antigen 4
(CTLA4) expression (b), and tumour mutation burden (TMB) (c) between the high‐ and low‐risk subgroups. (d) Kaplan‐Meier (KM) curves illustrated
considerably prolonged survival in patients with high TMB and low risk as opposed to patients with low TMB and high risk. Tumour immune dysfunction and
exclusion (TIDE) (e), MSI (f), T cell dysfunction (g), and exclusion score (h) in the different risk subgroups. The score between the 2 subgroups was evaluated
via the Wilcoxon test (*p < 0.05, **p < 0.01, ***p < 0.001). TMB, tumour mutational burden; TIDE, tumour immune dysfunction and exclusion; MSI,
microsatellite instability.
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tissue, INHA mediates tumour angiogenesis by activating the
SMAD1/5 signalling pathway and eliciting a strong paracrine
response in endothelial cells [22]. Although the reports are not
entirely consistent, SEMA7A has been found to facilitate
metastasis in a variety of tumour types. All of the reports indicate
a connection with cell adhesion mechanisms, such as activation
of the epithelial‐mesenchymal transition in oral cancer [36] and
binding of β1‐integrin in melanoma [37] and breast cancer [23].
In glioma cells, it has been demonstrated that AGER is posi-
tively linked with apoptosis, albeit the precise mechanism has
not yet been thoroughly investigated [28]. Both CD1D and
CX3CR1, which control NK cells, are protective factors for
people with tumours since they are involved in the immune
response process. [31, 32]. The homing of permetastatic T cells
to CX3CL1‐producing tumours is also improved by ectopic
production of CX3CR1, which results in increased T cell infil-
tration and slowed tumour growth in tumour tissue [33].
CD79A, essential for IgM expression on the surface of human B

cells, was found to enhance IgM expression by his high
expression, and this facilitated expression prevented sponta-
neous and FasL‐induced apoptosis of immune cells [34].

Overall, these 11 genes are involved in tumour cell pro-
liferation, migration, and apoptosis as well as immune cell
function, which may account for the better performance of the
combined score of these 11 genes than the assessment of one
immune checkpoint gene alone.

Although the discovery and application of ICI led to an
unprecedented improvement in clinical response and OS, a
great number of LUAD patients did not react to these treat-
ment monoclonal antibodies targeting immunological check-
points [38]. Contrasted with other biomarkers, the TIDE score
has recently been found to be a better predictor of tumour
response to immunotherapy [39]. The TIDE prediction score
correlated with T cell dysfunction in tumours with elevated
infiltration of cytotoxic T lymphocytes (CTL) and the inhibi-
tion of T cell infiltration in tumours having reduced levels of

F I GURE 8 Nomogram construction and validation premised on the immune‐related prognostic model. (a) Univariate and (b) multivariate Cox regression
analysis of the prognostic significance of clinical variables and the risk score in TCGA cohort. (c) Nomogram combining clinical variables with the risk
subgroups for forecasting 1‐, 3‐, and 5‐year survival probability. (d) ROC curves for evaluating the predictive efficacy of the nomogram.
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CTL thus represent two different mechanisms of immune
escape [40]. In this research, we discovered that the levels of
CTLA4 and PD‐L1 expression were more elevated and TMB
was reduced in the low‐risk cohort. But interestingly, con-
trasted to the high‐risk LUAD patients, the low‐risk patients
exhibited elevated MSI scores, T cell dysfunction score, and
TIDE score, and lower T cell exclusion score. The elevated
TIDE score, the greater possibility of tumour immune escape,
and the lower possibility of anti‐PD‐1/CTLA4 benefit, which
additionally explains why some patients exhibiting elevated
expression of PD‐L1 or CTLA4 have poor treatment re-
sponses for ICI. Moreover, their lower ICI response might be
due to immune evasion via T cell dysfunction. However, the
TIDE score focussed on patient response to immunotherapy
rather than patient survival time, and life expectancy was also
important in making treatment decisions. In our study, the
predictive value of signature was comparable with TIDE
and signature might be a better predictor of OS at longer
follow‐up.

This research had some shortcomings that ought to be
acknowledged. First, our prognostic signature's performance
ought to be verified in larger LUAD datasets. Second, all of the
findings were founded on publicly available datasets and ought
to be validated by other actual trials.

5 | CONCLUSION

In summary, using the ssGSEA algorithm and an immunoge-
nomics perspective, we discovered a unique predictive signa-
ture for LUAD that consists of 11 immune genes, including
S100P, INHA, SEMA7A, INSL4, CD40LG, AGER, SER-
PIND1, CD1D, CX3CR1, SFTPD, and CD79A. The model
was validated on three datasets. Furthermore, the model was
able to predict prognosis and immunotherapy sensitivity in
LUAD patients, which may be helpful for personalised
counselling.

AUTHOR CONTRIBUTIONS
Zehuai Guo, Xiangjun Qi, and Yang Cao conceptualized the
study; Zehuai Guo and Zeyun Li drafted the manuscript; Jia-
nying Yang, Zhe Sun, Peiqin Li, and Ming Chen collected the
data; Zehuai Guo, Xiangjun Qi, Zeyun Li, and Jianying Yang
performed all data analysis; Yang Cao supervised the study, and
Yang Cao was responsible for project administration. All au-
thors reviewed and approved the final manuscript.

ACKNOWLEDGEMENTS
We thank TCGA and GEO databases for providing the plat-
form and contributors to upload their meaningful datasets.
This study was supported by grants from the National Natural
Science Foundation of China (81973815).

CONFLICTS OF INTEREST
The authors declare no conflicts of interest regarding the
publication of this work.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in NCBI Gene Expression Omnibus at https://www.
ncbi.nlm.nih.gov/geo/, The Cancer Genome Atlas Program at
https://portal.gdc.cancer.gov/repository, and ImmPort Portal
database at https://www.immport.org/.

CONSENT FOR PUBLICATION
All authors granted consent to publish.

ORCID
Zehuai Guo https://orcid.org/0000-0002-7085-9502

REFERENCES
1. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA A
Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.
21660

2. Melocchi, V., et al.: Aggressive early‐stage lung adenocarcinoma is
characterized by epithelial cell plasticity with acquirement of stem‐like
traits and immune evasion phenotype. Oncogene 40(31), 4980–4991
(2021). https://doi.org/10.1038/s41388‐021‐01909‐z

3. Finn, O.J.: Immuno‐oncology: understanding the function and dysfunc-
tion of the immune system in cancer. Ann. Oncol. 23((Suppl 8)), viii6–9
(2012). https://doi.org/10.1093/annonc/mds256

4. Haas, O.A.: Primary immunodeficiency and cancer predisposition
revisited: embedding two closely related concepts into an integrative
conceptual framework. Front. Immunol. 9, 3136 (2018). https://doi.org/
10.3389/fimmu.2018.03136

5. Doroshow, D.B., et al.: Immunotherapy in non‐small cell lung cancer:
facts and hopes. Clin. Cancer Res. 25(15), 4592–4602 (2019). https://doi.
org/10.1158/1078‐0432.ccr‐18‐1538

6. Rolfo, C., et al.: Immunotherapy in NSCLC: a promising and revolu-
tionary weapon. Adv. Exp. Med. Biol. 995, 97–125 (2017)

7. Herbst, R.S., et al.: Atezolizumab for first‐line treatment of PD‐L1‐
selected patients with NSCLC. N. Engl. J. Med. 383(14), 1328–1339
(2020). https://doi.org/10.1056/nejmoa1917346

8. Lei, X., et al.: Immune cells within the tumor microenvironment: bio-
logical functions and roles in cancer immunotherapy. Cancer Lett. 470,
126–133 (2020). https://doi.org/10.1016/j.canlet.2019.11.009

9. Kalbasi, A., Ribas, A.: Tumour‐intrinsic resistance to immune checkpoint
blockade. Nat. Rev. Immunol. 20(1), 25–39 (2020). https://doi.org/10.
1038/s41577‐019‐0218‐4

10. Gandhi, L., et al.: Pembrolizumab plus chemotherapy in metastatic non‐
small‐cell lung cancer. N. Engl. J. Med. 378(22), 2078–2092 (2018).
https://doi.org/10.1056/nejmoa1801005

11. Otter, S.J., et al.: The role of biomarkers for the prediction of response to
checkpoint immunotherapy and the rationale for the use of checkpoint
immunotherapy in cervical cancer. Clin. Oncol. 31(12), 834–843 (2019).
https://doi.org/10.1016/j.clon.2019.07.003

12. Zhang, Y., et al.: Multi‐omics data analyses construct TME and identify
the immune‐related prognosis signatures in human LUAD. Mol. Ther.
Nucleic Acids 21, 860–873 (2020). https://doi.org/10.1016/j.omtn.2020.
07.024

13. Ling, B., et al.: Microenvironment analysis of prognosis and molecular
signature of immune‐related genes in lung adenocarcinoma. Oncol. Res.
28(6), 561–578 (2021). https://doi.org/10.3727/096504020x1590742
8281601

14. Wang, L., et al.: A gene expression‐based immune signature for lung
adenocarcinoma prognosis. Cancer Immunol. Immunother. 69(9),
1881–1890 (2020). https://doi.org/10.1007/s00262‐020‐02595‐8

15. Guo, D., et al.: A new immune signature for survival prediction and
immune checkpoint molecules in lung adenocarcinoma. J. Transl. Med.
18(1), 123 (2020). https://doi.org/10.1186/s12967‐020‐02286‐z

GUO ET AL. - 37

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/repository
https://www.immport.org/
https://orcid.org/0000-0002-7085-9502
https://orcid.org/0000-0002-7085-9502
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41388-021-01909-z
https://doi.org/10.1093/annonc/mds256
https://doi.org/10.3389/fimmu.2018.03136
https://doi.org/10.3389/fimmu.2018.03136
https://doi.org/10.1158/1078-0432.ccr-18-1538
https://doi.org/10.1158/1078-0432.ccr-18-1538
https://doi.org/10.1056/nejmoa1917346
https://doi.org/10.1016/j.canlet.2019.11.009
https://doi.org/10.1038/s41577-019-0218-4
https://doi.org/10.1038/s41577-019-0218-4
https://doi.org/10.1056/nejmoa1801005
https://doi.org/10.1016/j.clon.2019.07.003
https://doi.org/10.1016/j.omtn.2020.07.024
https://doi.org/10.1016/j.omtn.2020.07.024
https://doi.org/10.3727/096504020x15907428281601
https://doi.org/10.3727/096504020x15907428281601
https://doi.org/10.1007/s00262-020-02595-8
https://doi.org/10.1186/s12967-020-02286-z
https://orcid.org/0000-0002-7085-9502


16. Song, C., et al.: A prognostic nomogram combining immune‐related gene
signature and clinical factors predicts survival in patients with lung
adenocarcinoma. Front. Oncol. 10, 1300 (2020). https://doi.org/10.
3389/fonc.2020.01300

17. Jin, Y., et al.: Identification of novel subtypes based on ssGSEA in
immune‐related prognostic signature for tongue squamous cell carci-
noma. Cancer Med. 10(23), 8693–8707 (2021). https://doi.org/10.1002/
cam4.4341

18. Shen, S., et al.: Development and validation of an immune gene‐set based
Prognostic signature in ovarian cancer. EBioMedicine 40, 318–326
(2019). https://doi.org/10.1016/j.ebiom.2018.12.054

19. Xiao, B., et al.: Identification and verification of immune‐related gene
prognostic signature based on ssGSEA for osteosarcoma. Front. Oncol.
10, 607622 (2020). https://doi.org/10.3389/fonc.2020.607622

20. Liu, S., et al.: TRIM27 acts as an oncogene and regulates cell proliferation
and metastasis in non‐small cell lung cancer through SIX3‐β‐catenin
signaling. Aging 12(24), 25564–25580 (2020). https://doi.org/10.18632/
aging.104163

21. De Marco, C., et al.: Specific gene expression signatures induced by the
multiple oncogenic alterations that occur within the PTEN/PI3K/AKT
pathway in lung cancer. PLoS One 12(6), e0178865 (2017). https://doi.
org/10.1371/journal.pone.0178865

22. Singh, P., et al.: Inhibin is a novel paracrine factor for tumor angiogenesis
and metastasis. Cancer Res. 78(11), 2978–2989 (2018). https://doi.org/
10.1158/0008‐5472.can‐17‐2316

23. Black, S.A., et al.: Semaphorin 7a exerts pleiotropic effects to promote
breast tumor progression. Oncogene 35(39), 5170–5178 (2016). https://
doi.org/10.1038/onc.2016.49

24. Song, Y., et al.: The involvement of semaphorin 7A in tumorigenic and
immunoinflammatory regulation. J. Cell. Physiol. 236(9), 6235–6248
(2021). Portico. https://doi.org/10.1002/jcp.30340

25. Scopetti, D., et al.: INSL4 as prognostic marker for proliferation and
invasiveness in Non‐Small‐Cell Lung Cancer. J. Cancer 12(13),
3781–3795 (2021). https://doi.org/10.7150/jca.51332

26. Xu, W., et al.: Anti‐tumor activity of gene transfer of the membrane‐
stable CD40L mutant into lung cancer cells. Int. J. Oncol. 37(4),
935–941 (2010). https://doi.org/10.3892/ijo_00000744

27. Groves, A.M., et al.: Prolonged injury and altered lung function after
ozone inhalation in mice with chronic lung inflammation. Am. J. Respir.
Cell Mol. Biol. 47(6), 776–783 (2012). https://doi.org/10.1165/rcmb.
2011‐0433oc

28. Jandial, R., et al.: Inhibition of GLO1 in glioblastoma multiforme in-
creases DNA‐AGEs, stimulates RAGE expression, and inhibits brain
tumor growth in orthotopic mouse models. Int. J. Mol. Sci. 19(2), 406
(2018). https://doi.org/10.3390/ijms19020406

29. Liao, W.Y., et al.: Heparin co‐factor II enhances cell motility and pro-
motes metastasis in non‐small cell lung cancer. J. Pathol. 235(1), 50–64
(2015). https://doi.org/10.1002/path.4421

30. Guo, Q., et al.: SERPIND1 affects the malignant biological behavior of
epithelial ovarian cancer via the PI3K/AKT pathway: a mechanistic
study. Front. Oncol. 9, 954 (2019). https://doi.org/10.3389/fonc.2019.
00954

31. Hix, L.M., et al.: CD1d‐expressing breast cancer cells modulate NKT
cell‐mediated antitumor immunity in a murine model of breast cancer
metastasis. PLoS One 6(6), e20702 (2011). https://doi.org/10.1371/
journal.pone.0020702

32. Lavergne, E., et al.: Fractalkine mediates natural killer‐dependent anti-
tumor responses in vivo. Cancer Res. 63(21), 7468–7474 (2003)

33. Siddiqui, I., et al.: Enhanced recruitment of genetically modified
CX3CR1‐positive human T cells into Fractalkine/CX3CL1 expressing
tumors: importance of the chemokine gradient. J. Immunother. Cancer
4(1), 21 (2016). https://doi.org/10.1186/s40425‐016‐0125‐1

34. Huse, K., et al.: Mechanism of CD79A and CD79B support for IgM+ B
cell fitness through B cell receptor surface expression. J. Immunol.
209(10), 2042–2053 (2022). https://doi.org/10.4049/jimmunol.2200144

35. Murphy, W.J., et al.: Synergistic anti‐tumor responses after administration
of agonistic antibodies to CD40 and IL‐2: coordination of dendritic and
CD8+ cell responses. J. Immunol. 170(5), 2727–2733 (2003). https://doi.
org/10.4049/jimmunol.170.5.2727

36. Liu, T.J., et al.: Semaphorin‐7A contributes to growth, migration and
invasion of oral tongue squamous cell carcinoma through TGF‐β‐
mediated EMT signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 22(4),
1035–1043 (2018)

37. Lazova, R., et al.: The semaphorin 7A receptor Plexin C1 is lost during
melanoma metastasis. Am. J. Dermatopathol. 31(2), 177–181 (2009).
https://doi.org/10.1097/dad.0b013e318196672d

38. Mazieres, J., et al.: Immune checkpoint inhibitors for patients with
advanced lung cancer and oncogenic driver alterations: results from the
IMMUNOTARGET registry. Ann. Oncol. 30(8), 1321–1328 (2019).
https://doi.org/10.1093/annonc/mdz167

39. Pallocca, M., et al.: Combinations of immuno‐checkpoint inhibitors
predictive biomarkers only marginally improve their individual accuracy.
J. Transl. Med. 17(1), 131 (2019). https://doi.org/10.1186/s12967‐019‐
1865‐8

40. Jiang, P., et al.: Signatures of T cell dysfunction and exclusion predict
cancer immunotherapy response. Nat. Med. 24(10), 1550–1558 (2018).
https://doi.org/10.1038/s41591‐018‐0136‐1

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Guo, Z., et al.: Development
and validation of an immune‐related gene signature for
prognosis in Lung adenocarcinoma. IET Syst. Biol.
17(1), 27–38 (2023). https://doi.org/10.1049/syb2.
12057

38 - GUO ET AL.

https://doi.org/10.3389/fonc.2020.01300
https://doi.org/10.3389/fonc.2020.01300
https://doi.org/10.1002/cam4.4341
https://doi.org/10.1002/cam4.4341
https://doi.org/10.1016/j.ebiom.2018.12.054
https://doi.org/10.3389/fonc.2020.607622
https://doi.org/10.18632/aging.104163
https://doi.org/10.18632/aging.104163
https://doi.org/10.1371/journal.pone.0178865
https://doi.org/10.1371/journal.pone.0178865
https://doi.org/10.1158/0008-5472.can-17-2316
https://doi.org/10.1158/0008-5472.can-17-2316
https://doi.org/10.1038/onc.2016.49
https://doi.org/10.1038/onc.2016.49
https://doi.org/10.1002/jcp.30340
https://doi.org/10.7150/jca.51332
https://doi.org/10.3892/ijo_00000744
https://doi.org/10.1165/rcmb.2011-0433oc
https://doi.org/10.1165/rcmb.2011-0433oc
https://doi.org/10.3390/ijms19020406
https://doi.org/10.1002/path.4421
https://doi.org/10.3389/fonc.2019.00954
https://doi.org/10.3389/fonc.2019.00954
https://doi.org/10.1371/journal.pone.0020702
https://doi.org/10.1371/journal.pone.0020702
https://doi.org/10.1186/s40425-016-0125-1
https://doi.org/10.4049/jimmunol.2200144
https://doi.org/10.4049/jimmunol.170.5.2727
https://doi.org/10.4049/jimmunol.170.5.2727
https://doi.org/10.1097/dad.0b013e318196672d
https://doi.org/10.1093/annonc/mdz167
https://doi.org/10.1186/s12967-019-1865-8
https://doi.org/10.1186/s12967-019-1865-8
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1049/syb2.12057
https://doi.org/10.1049/syb2.12057

	Development and validation of an immune‐related gene signature for prognosis in Lung adenocarcinoma
	1 | INTRODUCTION
	2 | MATERIALS AND METHOD
	2.1 | Data collection and collation
	2.2 | ssGSEA and clustering
	2.3 | Assessment of the relationship between LUAD immunogenomic subtypes and molecular features
	2.4 | Selection of immune‐related prognostic genes in LUAD
	2.5 | Construct a prognostic model of DEIGs
	2.6 | Assessment of variations between high‐ and low‐risk cohorts
	2.7 | Development and evaluation of a predictive nomogram

	3 | RESULTS
	3.1 | Construction of LUAD clustering
	3.2 | Validation of LUAD clustering
	3.3 | Evaluation of DEIGs with low and high immune cell infiltration
	3.4 | Prognosis models of DEIGs
	3.5 | The prognostic value of the risk subgroups in the TCGA cohort
	3.6 | Prognostic model is independent prognostic factors in patients with LUAD
	3.7 | Predictive nomogram development and validation

	4 | DISCUSSION
	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICTS OF INTEREST
	DATA AVAILABILITY STATEMENT
	CONSENT FOR PUBLICATION


