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Abstract: A detailed chemical composition of Dendrobium essential oil has been only reported for a few
main species. This article is the first to evaluate the essential oil composition, obtained by steam distilla-
tion, of five Indian Dendrobium species: Dendrobium chrysotoxum Lindl., Dendrobium harveyanum Rchb.f.,
and Dendrobium wardianum R.Warner (section Dendrobium), Dendrobium amabile (Lour.) O’Brien, and
Dendrobium chrysanthum Wall. ex Lindl. (section Densiflora). We investigate fresh flower essential
oil obtained by steam distillation, by GC/FID and GC/MS. Several compounds are identified, with
a peculiar distribution in the species: Saturated hydrocarbons (range 2.19–80.20%), organic acids
(range 0.45–46.80%), esters (range 1.03–49.33%), and alcohols (range 0.12–22.81%). Organic acids
are detected in higher concentrations in D. chrysantum, D. wardianum, and D. harveyanum (46.80%,
26.89%, and 7.84%, respectively). This class is represented by palmitic acid (13.52%, 5.76, and 7.52%)
linoleic acid (D. wardianum 17.54%), and (Z)-11-hexadecenoic acid (D. chrysantum 29.22%). Esters
are detected especially in species from section Dendrobium, with ethyl linolenate, methyl linoleate,
ethyl oleate, and ethyl palmitate as the most abundant compounds. Alcohols are present in higher
concentrations in D. chrysantum (2.4-di-tert-butylphenol, 22.81%), D. chrysotoxum (1-octanol, and
2-phenylethanol, 2.80% and 2.36%), and D. wardianum (2-phenylethanol, 4.65%). Coumarin (95.59%)
is the dominant compound in D. amabile (section Densiflora) and detected in lower concentrations
(range 0.19–0.54%) in other samples. These volatile compounds may represent a particular feature of
these plant species, playing a critical role in interacting with pollinators.

Keywords: Dendrobium; essential oil; steam distillation; mass spectrometry; pollinator

1. Introduction

The Orchidaceae family, with its huge number of species that evolved different pollina-
tion systems, is known for the variety and complexity of its floral scents, which according to
Kaiser (1993), could potentially cover all the spectrum of fragrances occurring in nature [1].
Floral scent, which derives from the composition of volatile organic compounds emitted by
the flowers’ tissues (floral VOCs), is fundamental for the defense against pathogens/herbivores
and pollinator responses [2]. This trait, together with other characteristics of flowers,
such as the color, the presence of nectar, and other peculiarities of the reproductive portions,
contributes indeed to defining pollination syndromes [3]. The genus Dendrobium Sw., 1799
(Epidendroideae; Dendrobiinae), which accounts for about 1100 species distributed in
Pacific Islands, Asia, and Australia, is one of the largest of the family [4]. As potted and
cut flowers, Dendrobium species and hybrids are of great economic interest, being at the
top ten among the most commercially traded orchid taxa [5]; several species are also
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grown and sold for medicinal purposes [6,7]. A large number of taxa, the great morpho-
logical diversity, and the wide distribution range have contributed to taxonomic ambi-
guities that are currently under debate [4,8,9]. In the phylogenetic revision of the genus,
Takamiya et al. (2014) considered the presence of papillae on the flower’s lip in entities be-
longing to different clades. They demonstrated that this character evolved as an adaptation
to bee pollination by Dendrobium species [4]. As stated in previous studies, bee-pollinated or-
chid flowers exhibit papillose carpets, identified as osmophores, structures of accumulation
of substances responsible for floral fragrances [10,11]. Takamiya et al. (2014) recorded odor-
producing cells in all species of Section Densiflora and the majority of the Section Dendrobium,
thus hypothesizing that this character has probably been acquired after the divergence
between the Asian and the Australasian Superclades [4]. Despite the great number of stud-
ies aimed at optimizing in vitro propagation protocols (i.e., Marting and Madassery, 2006;
Teixera da Silva et al., 2015; Calevo et al. 2020; and references therein) [12–14], and at
characterizing anatomical and chemical traits (Carlsward et al., 1997; Xu et al., 2013;
Devadas et al., 2016 and references therein) [15–17], the genus Dendrobium has been little
investigated from the point of view of the reproductive biology, and even less is known
about floral volatilome [18]. To the best of our knowledge, only a few authors had carried
out characterizations of floral volatiles from Dendrobium species. Flath and Ohinata (1982)
investigated the VOCs of D. superbum Rchb. f. (syn. D. anosmum Lindl.), which is pollinated
by the melon fly (Dacus cucurbitae), finding a significant amount of 4-phenylbutan-2-one,
whose structure is closely related to another known fly attractant [19]. Brodmann et al. (2009)
worked on D. sinense Tang and F.T.Wang and reported that this species emits (Z)-11-eicosen-1-ol
(a molecule present in the alarm pheromone of honeybees) to attract hornets for pollination [20].
Silva et al. (2015) recognized terpenes as the most abundant class of compounds in the
floral volatiles of D. nobile Lindl. [21]. Julsrigival et al. (2013) found a prevalence of
2-pentadecanone in D. parishii Rchb.f. [22]. Robustelli della Cuna et al. (2017), instead,
compared the essential oil of different portions of D. moschatum (Buch.-Ham.) Sw., includ-
ing the inflorescence: They observed differences among the volatile compositions, and
then hypothesized that compounds like ketones or long-chain methyl and ethyl esters play
a role as pollinator attractants [23]. The few reports dedicated to reproductive biology
have stated that there are various ways for which Dendrobium species attract pollinators:
There are cases of shelter mimicry [24–28], nectar rewarding [18], chemical and visual
attraction [29], rest and mating place offering, or generalized food deception strategies like
a simulation of other co-flowering species occurring in the same habitat [30]. In this work,
we aimed to characterize and compare the floral volatiles of five Dendrobiums belonging
to sections Dendrobium and Densiflora of the Asian Superclade [4,9]. In particular, we
characterized the volatile fractions of the inflorescences of D. chrysanthum Wall. ex Lindl.
(Figure 1A), D. harveyanum Rchb. f. (Figure 1B) and D. wardianum R.Warner (Figure 1C)
from section Dendrobium, Core subclade of Clade A, and D. chrysotoxum Lindl. (Figure 1D)
and D. amabile (Lour.) O’Brien (Figure 1E) from Clade A and C, respectively, of section
Densiflora (according to Takamiya et al. 2014) [4].
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Figure 1. Dendrobium chrysanthum (A), D. harveyanum (B), D. wardianum (C), D. amabile (D), and D. chrysotoxum (E),
greenhouse-grown plants cultivated in Turin (Italy).

2. Results

The yields of D. amabile, D. chrysanthum, D. chrysotoxum, D. harveyanum, and D. wardianum
essential oils obtained by steam distillation from fresh flowers were evaluated as 0.09%,
0.34%, 0.33%, 0.39%, and 0.33% (weight/dry weight basis), respectively. Table 1 shows
the results of qualitative and quantitative oil analyses on the Elite-5MS column. The
compounds are listed in order of their elution and are reported as percentages of the
total essential oil. Differences in the qualitative and quantitative compositions of the
obtained essential oils have been observed. As shown in the Venn’s diagram (Figure 2),
only palmitic acid was shared by all five taxa. On the other hand, 30 compounds were
uniquely identified in D. chrysotoxum, and nine, eight, four, and three in D. wardianum,
D. harveyanum, D. chrysanthum, and D. amabile, respectively. Furthermore, 21 compounds
were found shared by D. chrysotoxum and D. wardianum. Below, the qualitative and quanti-
tative description of essential oils for each taxon. The Pie chart (Figure 3) shows that the
essential oils were different depending on the different species: It can be observed that the
main constituents were compounds belonging to saturated hydrocarbons, acids, esters,
coumarin, and alcohol classes.
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Table 1. Essential oils composition of inflorescences from the five Dendrobium species.

Compound a RI b RI c
Section Dendrobium Section Densiflora

D. chrysotoxum D. harvejanum D. wardianum D. amabile D. chrysanthum Identification d

% % % % %

Octane 800 800 - 0.15 - - - RI, NIST
Hexanal 802 801 0.73 0.06 0.02 - - RI, NIST

2-hexanol 804 808 - 0.12 - - - RI, NIST
Diacetone alcohol 841 841 - - - - 0.68 RI, NIST

α-pinene 939 931 0.21 - - - - MS, NIST
Benzaldehyde 960 958 0.14 - - - - RI, NIST

β-pinene 979 973 0.03 - - - - MS, NIST
Caproic acid 1005 1003 0.06 - - - - RI, NIST
α-terpinene 1017 1015 0.10 - - - - RI, NIST
o-Cymene 1026 1023 0.09 - - - - RI, NIST
Limonene 1029 1027 0.17 - - - - RI, NIST

Benzyl alchol 1032 1035 0.21 - 0.52 - - RI, NIST
β-Isophorone 1042 1041 0.51 - - - RI, NIST

Phenylacetaldehyde 1042 1043 0.84 - 0.06 - - RI, NIST
2-octenal 1056 1058 - 0.13 - - 0.06 RI, NIST

γ-Terpinene 1060 1059 0.76 - 0.04 - - RI, NIST
Unidentified - 1065 - - 2.89 - - -

cis-sabinene hydrate 1070 1067 0.27 - - - - MS, NIST
dihydromyrcenol 1073 1073 - 0.04 - - 0.06 RI, NIST

1-octanol 1070 1074 2.80 - 0.41 - - MS, NIST
trans-sabinene hydrate 1098 1098 0.20 - - - - RI, NIST

Linalool 1097 1101 0.34 0.08 - - - MS, NIST
Nonanal 1102 1105 - 0.16 - - - RI, NIST

2-phenylethanol 1107 1115 2.36 - 4.65 - - MS, NIST
Methyl octanoate 1127 1127 0.04 - - - - RI, NIST

cis-verbenol 1141 1142 0.92 - - - - RI, NIST
trans-verbenol 1145 1148 4.60 - - - - RI, NIST

Camphor 1150 1157 - 0.12 - - - MS, NIST
Nonenal 1162 1161 0.41 - 0.17 - - RI, NIST

α-phellandren-8-ol 1170 1169 2.15 - - - - RI, NIST
Terpinen-4-ol 1177 1179 1.53 - - - - RI, NIST

Diethyl succinate 1182 1184 0.33 - - - - RI, NIST
p-cymen-8-ol 1183 1186 0.29 - - - - RI, NIST
α-terpineol 1189 1192 0.18 - - - 0.28 RI, NIST
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Table 1. Cont.

Compound a RI b RI c
Section Dendrobium Section Densiflora

D. chrysotoxum D. harvejanum D. wardianum D. amabile D. chrysanthum Identification d

% % % % %

Ethyl octanoate 1196 1199 0.20 - - - - RI, NIST
Decanal 1202 1206 - - 0.04 - - RI, NIST

Verbenone 1205 1210 0.20 - - - - MS, NIST
2,4-nonandienal 1212 1214 - - 0.03 - - RI, NIST
4-vinylphenol 1224 1221 - - 0.52 0.08 - RI, NIST

3-phenyl-1-propanol 1232 1231 - - 0.08 - - RI, NIST
Phenylacetic acid ethyl ester 1247 1247 0.15 - 0.72 - - RI, NIST

Nerol 1254 1256 0.06 - - - - RI, NIST
2,4-decadienal (E,E) 1291 1295 0.40 0.39 0.39 0.16 - RI, NIST

2-methoxy-4-vinyl-phenol 1315 1315 - - 0.24 - - RI, NIST
2,4-decadienal (E,Z) 1319 1317 0.63 0.88 0.48 0.72 RI, NIST

2-nonenoic acid-γ-lactone 1345 1344 0.39 - 0.49 - - RI, NIST
Capric acid 1359 1359 - 0.32 - RI, NIST

Eugenol 1367 1366 - - - 0.10 - RI, NIST
1-tetradecene 1390 1393 - 0.07 - 0.57 MS, RI

3,4-dihydrocoumarin 1398 1399 - - - 0.10 - RI, NIST
Coumarin 1434 1436 0.71 0.19 0.54 95.49 - RI, NIST

9-epi-(E)-caryophyllene 1466 1458 - - 1.32 - - MS, NIST
Ethyl-cinnammate 1467 1468 - - 0.55 - - RI, NIST

2,4-di-tert-butylphenol 1494 1489 - 0.12 22.81 MS, NIST
β-selinene 1494 1489 0.25 - 1.30 - - MS, NIST

9-oxo-ethyl-nonanoate 1507 1510 1.28 - - - - MS, NIST
Lauric acid 1566 1568 0.23 - - - - RI, NIST

Ethyl laurate 1593 1596 0.15 - - - - RI, NIST
Unidentified - 1658 - 5.16 - - - -

Pentadecan-2-one 1667 1667 - - 0.26 - - RI, NIST
Heptadecane 1700 1700 0.31 - 0.54 - - RI, NIST
Unidentified - 1767 0.39 - 3.04 - - -
Myristic acid 1780 1776 - 3.59 - - MS, NIST
1-octadecene 1790 1796 0.32 - 0.41 - - MS, RI

Methyl pentadecanoate 1820 1828 0.04 - - - - MS, NIST
Unidentified - 1879 5.74 - - - - -

Ethyl pentadecanoate 1890 1896 0.36 - 0.19 - - MS, NIST
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Table 1. Cont.

Compound a RI b RI c
Section Dendrobium Section Densiflora

D. chrysotoxum D. harvejanum D. wardianum D. amabile D. chrysanthum Identification d

% % % % %

Heptadecan-2-one 1902 1903 0.11 - - - RI, NIST
Methyl palmitate 1927 1928 0.34 - 0.44 - - RI, NIST

cis-9-hexadecenoic acid 1942 1943 - - - - 4.06 RI, NIST
Z-11-Hexadecenoic acid 1953 1953 - - - - 29.22 RI, NIST

Palmitic acid 1958 1960 0.05 7.52 5.76 0.61 13.52 RI, NIST
Neocembrene 1960 1966 0.52 - 3.07 - - MS, NIST

Ethyl palmitate 1992 1997 3.05 - 0.99 - - MS, NIST
Octadecan-1-ol 2074 2071 0.17 - 0.60 - - MS, NIST

Eicosane 2000 2000 - 40.42 - - 0.55 RI, NIST
Unidentified - 2037 - 2.06 - - -

Methyl linoleate 2051 2068 7.48 2.50 13.17 - 1.03 MS, NIST
10-Heneicosene 2060 2073 - - - 0.43 - MS, RI

Heneicosane 2100 2100 1.01 2.92 1.66 0.25 - RI, NIST
Linoleic acid 2144 2147 0.12 - 17.54 - - RI, NIST

Ethyl linolenate 2169 2171 26.98 - 32.24 - - RI, NIST
Ethyl oleate 2179 2181 5.39 - 0.72 - - RI, NIST

Ethyl octadecanoate 2193 2198 0.80 - 0.31 - - RI, NIST
Docosane 2200 2204 1.66 26.82 - 1.94 17.53 RI, NIST

9-Triacosene 2279 2275 0.31 - - - - MS, RI
Tricosane 2300 2307 9.33 - - - - RI, NIST

Tetracosane 2400 2401 0.40 0.90 - - 2.07 RI, NIST
9-Pentacosene 2474 2475 0.07 - - MS, RI
Pentacosane 2500 2501 0.95 6.53 - - 6.40 RI, NIST
Hexacosane 2600 2600 - 2.46 - - - RI, NIST

9-Eptacosene 2676 2676 - - - - 1.15 MS, RI
Heptacosane 2700 2701 0.18 - - - - RI, NIST
Aldehydes 3.15 1.62 1.20 0.88 0.06
Alcohols 7.97 0.12 7.02 0.30 22.81

Acids 0.45 7.84 26.89 0.61 46.80
Coumarin 0.71 0.19 0.54 95.59 -

Esters 46.59 2.50 49.33 - 1.03
Ketones 0.62 0.12 0.26 - 0.68
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Table 1. Cont.

Compound a RI b RI c
Section Dendrobium Section Densiflora

D. chrysotoxum D. harvejanum D. wardianum D. amabile D. chrysanthum Identification d

% % % % %

Saturated hydrocarbons 22.84 80.20 2.20 2.19 26.55
Unsaturated hydrocarbons 0.69 0.07 0.41 0.43 1.72

Terpenes 2.04 - 5.73 - -
Oxygenated terpenes 8.31 0.11 - - 0.34

Miscellanea 0.48 - 0.49 - -
Unidentified 6.13 7.22 5.92 - -

a) Compounds are listed in order of elution from an Elite-5 column. b) Retention Indices according to Adams [31], unless stated otherwise. c) Retention index (mean) determined on an Elite-5 column using a
homologous series of n-hydrocarbons, d) Method of identification: MS, mass spectrum; NIST, comparison with library [32]; RI, retention indices in agreement with literature values.



Plants 2021, 10, 1718 8 of 14Plants 2021, 10, x FOR PEER REVIEW  4 of 12 
 

 

 

Figure 2. Venn’s diagram  shows both  the number of compounds  shared and unshared/peculiar 

among  the  five Dendrobium  species. Percentages are  referred  to  the  total number of  compounds 

found, not to the relative abundance. 

 

Figure 3. Pie chart of distribution of the classes. 

   

Figure 2. Venn’s diagram shows both the number of compounds shared and unshared/peculiar
among the five Dendrobium species. Percentages are referred to the total number of compounds
found, not to the relative abundance.
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Figure 3. Pie chart of distribution of the classes.

Dendrobium amabile: The dominant compound was coumarin, accounting for 95.59%
of the total essential oil. Of its derivatives, 3,4-dihydrocoumarin has been detected but in
lower amounts (0.10%). The second-largest class (2.19%) is represented by saturated hydro-
carbons, particularly docosane (1.94%) and heneicosane (0.25%). Aldehydes (0.88%) are



Plants 2021, 10, 1718 9 of 14

represented by (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal (0.72 and 0.16%). Unsaturated
hydrocarbons are dominated by 10-heneicosene (0.43%).

Dendrobium chrysanthum: The main bulk of constituents is represented by acids ac-
counting for 46.80% of the total essential oil, from which (Z)-11-hexadecenoic acid (29.22%),
palmitic acid (13.52%), and (Z)-9-hexadecenoic acid (4.06%) are the most abundant com-
pounds. The second-largest class is featured by saturated hydrocarbons (26.55%) from
which docosane (17.53%), pentacosane (6.40%), and tetracosane (2.07%) are the most abun-
dant compounds. Alcohols (22.81%) are dominated by 2,4-di-tert-butylphenol (22.81%). Un-
saturated hydrocarbons (1.72%) are represented by 9-heptacosene (1.15%) and 1-tetradecene
(0.57%). Esters are represented by methyl linoleate (1.03%).

Dendrobium chrysotoxum: The main bulk of constituents is represented by esters
(46.59%), from which ethyl linolenate (26.98%), methyl linoleate (7.48%), ethyl oleate
(5.39%), ethyl palmitate (3.05%), and 9-oxo-nonanoic acid, ethyl ester (9.28%) are the most
abundant compounds. The second-largest class is represented by saturated hydrocar-
bons, accounting for 22.84% of the total essential oil, from which heneicosane (10.01%),
tricosane (9.33%), and docosane (1.66%) are the most abundant compounds. Oxygenated
terpenes (8.31%) are dominated by trans-verbenol (4.60%), followed by terpinen-4-ol (1.53%)
and cis-verbenol (0.92%). Alcohols, accounting for 7.97% of the total essential oil, are
featured by 1-octanol (2.80%), 2-phenylethanol (2.36%), and α-phellandren-8-ol (2.15%).
Aldehydes (3.15%) are represented by phenylacetaldehyde (0.84%), hexanal (0.73%),
(E,Z)-2,4-decadienal (0.48%) and (E,E)-2,4-decadienal (0.40%). Terpenes (2.04%) are fea-
tured by γ-terpinene (0.76%) and neocembrene (0.52%).

Dendrobium harveyanum: The main bulk of constituents is represented by saturated
hydrocarbons, accounting for 80.20% of the total essential oil, from which eicosane (40.42%),
docosane (26.82%), pentacosane (6.53%) heneicosane (2.92%), and hexacosane (2.46%) are
the most abundant compounds. The second-largest class is characterized by acids account-
ing for 7.84% of the total essential oil. The dominant compound of this class appears to be
palmitic acid (7.52%). Aldehydes (1.62%) are represented by (E,Z)-2,4-decadienal (0.88%)
followed by (E,E)-2,4-decadienal (0.39%).

Dendrobium wardianum: The main bulk of constituents is represented by esters (49.33%)
from which ethyl linolenate (32.24%), methyl linoleate (13.17%), ethyl palmitate (0.99%),
phenylacetic acid ethyl ester (0.72%), ethyl oleate (0.72%) and ethyl cinnamate (0.55%) are
the most abundant compounds. The second-largest class is characterized by acids accounting
for 26.89% of the total essential oil, from which linoleic acid (17.54%), palmitic acid (5.76%),
and myristic acid (3.59%) are the most representative compounds. Alcohols, accounting for
7.02% of the total essential oil are featured by 2-phenylethanol (4.65%), octadecan-1-ol (0.60%),
4-vinylphenol (0.52%), benzyl alcohol (0.52%) and 2-methoxy-4-vinyl-phenol (0.24%).
Terpenes (5.73%) are characterized by neocembrene (3.07%), 9-epi-(E)-caryophyllene (1.32%)
and β-selinene (1.30%). Saturated hydrocarbons, accounting for 2.20% of the total essential
oil, are represented by heneicosane (1.66%) and heptadecane (0.54%). Aldehydes (1.20%)
are featured by (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal (0.48 and 0.39%).

3. Discussion

Little is known about the pollinators of the studied species, but as argued by Dobson (2006)
and Witjes et al. (2011), it is possible to reconstruct the pollinator community behind a
certain species by analyzing the volatile composition of flowers [33,34]. While research is
still needed to identify pollinators, our analyses constitute a first contribution for the study
of compounds possibly involved in plant-animal interactions. However, other functions
of floral volatiles, that may play a crucial role in herbivory avoidance and as defensive
molecules against pathogens, cannot be excluded [35,36]. Differences in the floral scents of
related taxa could play a role in reproductive isolation by influencing pollinator’s behavior
and choices [37–40]. Indeed, in some cases, a simple change in the amount of one floral
VOC has been linked with strong reproductive isolation, as seen in Silene dioica (L.) Clairv.
and S. latifolia Poir. [41]. However, this ethological type of isolation seems to be more or less
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pivotal depending on the specialization of both the plants and pollinators considered, high-
lighting the need to carry out additional detailed behavioral experiments to understand
plant-pollinator interactions [3].

In this work, the relative composition in floral VOCs of the five Dendrobium species was
qualitatively studied. The highest number of species-specific compounds were recorded
for entities from section Dendrobium. Palmitic acid was the only compound shared by all
the five taxa examined. This molecule is frequently found in the volatilome of several plant
species (Orchidaceae included) [23,35,42], and also in other organisms; we observed that it
was relatively abundant in D. chrysanthum (13%), followed by D. harveyanum (7.52%) and
D. wardianum (5.76%), while in the remaining two species it was less represented.

The scent recognized for both D. chrysotoxum and D. wardianum could be due to the
high presence of esters in floral VOCs that we detected during our analyses. Esters are
produced by the reaction of alcohols with organic acids; they typically have fruity smells
and are indeed among the molecules responsible for the odors of many fruits [43]. High
content of volatile esters has been linked with the strong flavor of the “snow chrysanthe-
mum” cultivar of Coreopsis by Kim et al. (2020) [44]. In D. moschatum, a putative role as
semiochemicals involved in pollinator attraction has been hypothesized for methyl and
ethyl esters by Robustelli della Cuna et al. (2017) [23]. According to da Silva et al. (1999)
and Cseke et al. (2007), terpenes are more abundant in flower VOCs of species pollinated
by food-seeking bees [45,46]. As shown in Table 1, D. wardianum had the highest level
(5.73%) of terpenes in the essential oil, followed by D. chrysotoxum (2.04%), but this class of
compounds was not the predominant one in these two species. Conversely, oxygenated
terpenes have been detected only in D. chrysotoxum (8.31%), while they were present in
lower percentages in D. harveyanum and D. chrysanthum. Therefore, due to their ester and
terpenoid contents, and considering similar results obtained by Flath and Ohinata (1982)
for D. superbum, we cannot exclude that D. chrysotoxum and D. wardianum could rely on the
action of frugivorous flies or bees, or other animals for their pollination [19].

It is noteworthy that the VOCs spectrum of D. amabile, a scented orchid, was almost
entirely dominated by coumarin, a compound having a sweet smell that resembles vanilla.
On the contrary, this compound was present only in very small percentages in all the
other Dendrobiums considered. As previously stated by Robustelli della Cuna et al. 2017,
coumarin was abundant, although less represented in respect to D. amabile, also in VOCs
from inflorescences and leaves of D. moschatum [23]. In this species, authors hypothesized
a phytoalexin-like defensive role for coumarin. In the future, a possible role of coumarin in
plant-pollinator interactions should be investigated. Interestingly, D. chrysanthum showed
a distinctive floral volatile composition compared to the other species. Indeed, this entity
displayed the highest amounts of acids (accounting for 46.8% of the total essential oil),
together with a good representation of alcohols (22.8%) if compared to the other species con-
sidered. Among acids, the most representative one (29.2%) was Z-11-Hexadecenoic acid,
a known sex pheromone in moths [47]. Considering the relatively high content of this com-
pound, we can again hypothesize its possible role as pollinator (putatively, moth) attractant.
Concerning alcohols, 2,4-di-tert-butylphenol was relatively abundant in D. chrysanthum. This
molecule was also present in traces in D. amabile. Zhang et al. (2017) and Huang et al. (2018)
recorded the occurrence of this alcohol in flowers of D. moniliforme (L.) Sw. and rhizomes
of Gastrodia elata Blume, respectively [48,49]. This compound, known for its toxicity, ex-
erts several bioactivities and has insecticidal, nematicidal, antibacterial, and antifungal
properties (Zhao et al., 2020 and references therein) [50]. Therefore, a defensive role for
2,4-di-tert-butylphenol in D. chrysanthum cannot be excluded. Finally, it is interesting to
notice that among the Dendrobium and Densiflora sections, three self-incompatible species,
D. amabile and D. harveyanum, and D. chrysanthum, respectively, showed a reduced spectrum
of volatiles [51,52]. It is tempting to hypothesize that this has a role in pollination biology;
indeed, discouraging pollinators from pollinating more flowers of the same plant and
inducing pollinators to visit different individuals, would result in a higher fruit set.
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4. Conclusions

In conclusion, this is the first study reporting the floral volatile components of
D. amabile, D. chrysanthum, D. chrysotoxum, D. harveyanum, and D. wardianum. Our re-
sults can put the basis for the investigation of Dendrobium’s pollination biology and plant-
herbivore interactions, but further studies to find the pollinators and understand their
behaviors are required for deciphering the role of the compounds detected in these five
Dendrobium species. Considering the present results, studies on the fingerprint of the
essential oils of other Dendrobium sections (i.e., Calcarifera, Crumenata, Fugacia, Latouria, and
Spatulata) are in progress in our lab.

5. Materials and Methods
5.1. Plant Material

All examined species were provided by specialized sellers, in details: D. wardianum
(Buchanan-Hamilton) Swartz, D. chrysotoxum (Lindley) and D. harveyanum (Rchb.f.) from
Orchid’s and more, (Ismaning, Germany), D. amabile (O’Brien) and D. chrysanthum
(Wallich ex Lindley) from Kopf Orchideen und Floristik, (Deggendorf, Germany). Plants
were identified according to Dressler (2016) [53], and cultivated under intermediate green-
house conditions at the University of Turin, Italy, for two years before analyses. Plants
were grown in intermediate conditions in a greenhouse during winter months and outside
from April to October using a bark well-drained potting medium. Samples were collected
at the flowering stage and stored at −20 ◦C until extraction. Before extraction, the flowers
were brought back to room temperature and subjected to steam distillation.

5.2. Isolation of the Essential Oil

Flowers (D. amabile 25 g, D. chrysanthum 5.53 g, D. chrysotoxum 5.87 g, D. harveyanum 6.14 g,
D. wardianum 6.26 g), to which octyl octanoate (98%, Sigma-Aldrich, Inc., St. Louis, MO, USA)
was added as internal standard, were steam distilled with odor-free water for 3 h. The
distillate was extracted with methylene chloride (3 × 100 mL) (Merck, Darmstadt, Germany),
dried over anhydrous sodium sulfate (Sigma-Aldrich, Inc., St. Louis, MO, USA), and
concentrated at first with a rotary evaporator and subsequently using a gentle stream of
N2 for successive GC/FID and GC/MS analyses [23,36].

5.3. GC-FID Analysis

The analyses were carried out using a Hewlett Packard model 5980 GC, equipped
with Elite-5MS (5% phenyl methyl polysiloxane) capillary column of (30 m × 0.32 mm i.d.)
and film 0.32 µm thick. The carrier gas was He at a flow of 1 mL/min. One µL aliquots
of essential oil were manually injected in splitless mode. The oven temperature program
included an initial isotherm of 40 ◦C for 5 min, followed by a temperature ramp to 260 ◦C at
4 ◦C/min, and a final isotherm at this temperature for 10 min. Injector and detector temper-
atures were set at 250 and 280 ◦C, respectively. The relative amount of each component was
calculated based on the corresponding FID peak area without response factor correction.

5.4. GC-MS Analysis

The analyses were carried out using a GC Model 6890 N, coupled to a benchtop
MS Agilent 5973 Network, equipped with the same capillary column and following the
same chromatographic conditions used for the GC/FID analyses. The carrier gas was
He at a constant flow of 1.0 mL/min. The essential oils were diluted before analysis,
and 1.0 µL was manually injected into the GC system with a split ratio of 30:1. The ion
source temperature was set at 200 ◦C, while the transfer line was at 300 ◦C. The acquisition
range was 40–500 amu in electron-impact (EI) positive ionization mode using an ionization
voltage of 70 eV.
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5.5. Identification and Quantification of the Essential Oil Components

The identification of the volatile oil components was performed by their retention
indices (RI) and their mass spectra [31], and by comparison with a NIST database mass
spectral library, as well as with literature data [32,54]. Retention indices were calculated
by Elite-5MS capillary columns using an n-alkane series (C6–C35) (Sigma-Aldrich, Inc.,
St. Louis, MO, USA) under the same GC conditions as for samples. The relative amount of
each component of the oil was expressed as percent peak area relative to total peak area
from GC/FID analyses of the whole extracts. The quantitative data were obtained from
GC/FID analyses by an internal standard method and assuming an equal response factor
for all detected compounds.
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