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Cholecystokinin induces crowing in 
chickens
tsuyoshi shimmura1,6,7, Mai tamura1, Shosei ohashi1, Asuka sasaki1, Takamichi Yamanaka1, 
Nobuhiro Nakao5, Kunio Ihara3, Shinsaku okamura1 & takashi Yoshimura  1,2,4,6

Animals that communicate using sound are found throughout the animal kingdom. Interestingly, in 
contrast to human vocal learning, most animals can produce species-specific patterns of vocalization 
without learning them from their parents. This phenomenon is called innate vocalization. The 
underlying molecular basis of both vocal learning in humans and innate vocalization in animals 
remains unknown. The crowing of a rooster is also innately controlled, and the upstream center is 
thought to be localized in the nucleus intercollicularis (ICo) of the midbrain. Here, we show that the 
cholecystokinin B receptor (CCKBR) is a regulatory gene involved in inducing crowing in roosters. 
Crowing is known to be a testosterone (T)-dependent behavior, and it follows that roosters crow but 
not hens. Similarly, T-administration induces chicks to crow. By using RNA-sequencing to compare gene 
expression in the ICo between the two comparison groups that either crow or do not crow, we found 
that CCKBR expression was upregulated in T-containing groups. The expression of CCKBR and its ligand, 
cholecystokinin (CCK), a neurotransmitter, was observed in the ICo. We also showed that crowing 
was induced by intracerebroventricular administration of an agonist specific for CCKBR. Our findings 
therefore suggest that the CCK system induces innate vocalization in roosters.

There are many vertebrate and invertebrate animals that use sound for communication, and their patterns and 
functions are species-specific. For example, dogs bark to threaten other individuals1, and a mother cow moos to 
call her calf2. Interestingly, in contrast to human vocal learning, most animals can produce species-specific pat-
terns of vocalization without learning them from their parents3, which is a phenomenon called innate vocaliza-
tion. However, the underlying molecular basis of both vocal learning in humans and innate vocalization remains 
a mystery. Innate vocalization is a simpler behavior than human language and can therefore serve as an excellent 
model to uncover the molecular basis of vocalization.

The crowing of a rooster is most frequently observed before dawn4. Predawn crowing is a means for roosters 
to inform other individuals of their social status5. Rooster crowing is a form of innate vocalization, as a mature 
rooster fully develops the ability to crow even if his vocal learning is inhibited by either isolation or by surgical 
inhibition of his auditory senses from the time of hatching6. However, the molecules involved in regulating crow-
ing have been not identified.

Steroid hormones such as T have multiple effects on morphology, physiology, and behavior. The social hier-
archy of roosters is determined by certain cues such as comb size and crowing, and these are in turn affected by 
the concentration of T produced by the testes7,8. Roosters therefore crow but hens do not7. Although chicks do 
not crow, chick crowing can be induced by chronic T administration9. As these reports have shown, T regulates 
innate vocalization, but the genes that are regulated by T in this process remain unknown. In contrast with song-
birds, which are capable of vocal learning, the intracerebral vocal pathway of chickens is much less complex10 
(Supplementary Fig. S1). Although electrical stimulation of vocalization in the intercollicular nucleus (ICo) 
region in a number of bird species is controversial due to the complex organization of this area and the current 
applied11–15, the upstream center of vocalization has been proposed to be localized in the ICo of the midbrain10 
(Supplementary Fig. S1). For example, bilateral lesions of the ICo result in muting11, and electrical stimulation 
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produces calls that include crowing16. The androgen receptor (AR) is also localized to the ICo17,18. T binds to the 
androgen receptor and therefore is expected to regulate the expression of various downstream genes in the ICo. 
Therefore, these reports indicate that the T-dependent regulatory gene for crowing is expressed in the ICo of 
chickens.

In this study, we compared gene expression in the ICo using RNA-sequencing between the two comparison 
groups and showed that CCKBR, which encodes the cholecystokinin B receptor, is the gene that induces crowing.

Results
Crowing is a testosterone-dependent vocalization. Mature roosters have bigger combs and can crow, 
while mature hens have smaller combs and do not crow (Fig. 1a). Chickens are social animals, and chicks emit 
a distress call when they are isolated from the group (Fig. 1b). However, as expected, when T is chronically 
administered to chicks through subcutaneous implantation of a silastic tube containing testosterone propionate, a 
prominent comb develops and the chicks begin to emit a crowing sound, which is clearly different from the sound 
of their distress calls (Fig. 1b, Supplementary Fig. S2a,b). For this study, we therefore generated two experimen-
tal groups that allow us to compare individuals that crow with individuals that do not. The first group included 
chicks and chicks administered T, while the second included hens and roosters.

Genome-wide expression analysis to identify genes that induce crowing. Although the dorso-
medial nucleus of the ICo (DM) controls sound production in song birds, the DM has not been characterized 
anatomically in chickens3 (Supplementary Fig. S1). Therefore, we first developed a method to punch out the ICo 
(Supplementary Fig. S3). We collected ICos from inbred chickens 2 h before light-onset when crowing was most 
frequently observed4,5. Next, we determined the precision of our punches of the ICo based by measuring the 
expression of AR using in situ hybridization (Supplementary Fig. S3), and obtained a total of 16 punches, con-
sisting of four samples each from four groups (control chicks, T-administered chicks, hens, roosters). We went 
on to extract RNA from each ICo punch with which we prepared 16 cDNA libraries from each RNA extract, and 
performed RNA-sequencing using SOLiD 5500 (Thermo Fisher Scientific, MA). We amplified approximately fifty 
million reads per sample, aligned them against a chicken reference genome, counted the number of reads in each 
transcript, and performed statistical tests (p < 0.05, false discovery rate (FDR) < 0.1) and filtration (see Materials 
and Methods).

Comparison of control chicks with T-administered chicks identified 82 differently regulated transcripts 
(Fig. 2a), including 69 that were upregulated (Fig. 2c) and 13 that were downregulated (Fig. 2d). Additionally, 
we identified 368 transcripts (Fig. 2b), including 324 that were upregulated (Fig. 2c) and 44 that were downreg-
ulated (Fig. 2d) by comparing hens and roosters. To identify candidate genes whose expression was altered in 
both comparison groups, we combined the results from the two comparisons and identified two common genes, 
namely CCKBR, which was upregulated (Fig. 2c), and histone cluster 1, H2B-VII-like 4 (HIST1H2B7L4), which 
was downregulated (Fig. 2d). When we measured the expression level of these two genes in the ICo by using in 
situ hybridization, CCKBR showed differences that paralleled the upregulation observed with RNA-sequencing 
(Fig. 2e, P < 0.01, n = 3–6), while ICo-specific expression was not observed for HIST1H2B7L4 (Fig. 2F, P > 0.05, 
n = 3). Therefore, we identified CCKBR as a candidate gene that regulates crowing.

CCKBR induces crowing. The cholecystokinin system is activated by binding of the ligand cholecystokinin 
(CCK) to either cholecystokinin A receptor (CCKAR) or cholecystokinin B receptor (CCKBR). When we meas-
ured the expression level of these genes in the ICo by in situ hybridization, we detected the expression of AR, CCK, 
and CCKBR in the ICo, but not the expression of CCKAR (Fig. 3a). We therefore hypothesized that CCK binds to 
CCKBR in the ICo. We also determined if crowing is induced by intracerebroventricular administration of gas-
trin, an agonist specific for CCKBR. Since the ICo is in contact with the lateral ventricle (Supplementary Fig. S3), 
gastrin can reach the ICo if administered into the third ventricle. We also confirmed that chick crowing was 
observed when the chicks were placed in groups and tested this under the low-stress conditions (Supplementary 

Figure 1. Crowing and comb size are dependent on testosterone. (a) In contrast with hens, roosters crow and 
have bigger combs. (b) While both control chicks and T-administered chicks emit distress calls, T-administered 
chicks also crow and have bigger combs (Fig. S2).
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Fig. S4). Under these conditions, we found that the chicks that received gastrin emitted chick crowing more fre-
quently than the control chicks that received saline (Fig. 3b).

Discussion
In this study, to identify genes that regulate innate vocalization in animals, we used rooster crowing as our model 
and performed functional genomics using RNA-sequencing. We compared individuals that crow with those 
that do not. To our surprise, despite the large behavioral difference, only a small number of genes showed large 
fold-change values (Fig. 2a,b). One possible explanation for this is that changes in gene expression are smaller 
in the specific nucleus of the brain compared with peripheral tissues19. However, through integrative functional 
genomics, including intracerebroventricular administration, we successfully identified CCKBR as a candidate 

Figure 2. Identification of a gene that induces crowing using a functional genomics approach. (a,b) MA-plots 
of transcripts analyzed by RNA-sequencing. The number of differently expressed transcripts is indicated by 
colored dots, compared between T-administered chicks and control chicks (a) (82), and between roosters 
and hens (b) (368) (p < 0.05, FDR < 0.1). The photographs of chick heads are the same as Fig. S2 (a). (c,d) 
Combining the two comparisons, the upregulated CCKBR (c) and downregulated HIST1H2B7L4 were 
identified as candidate genes (d). (e,f) in situ hybridization analysis showed that the gene expressions of CCKBR 
in the ICo (arrowhead) paralleled the upregulation observed with RNA-sequencing (t = 10.6 (control chicks 
versus T-administered chicks) and 6.8 (roosters versus hens), both p < 0.01, t-test, mean + SEM, n = 3–6, e), 
while ICo-specific expression was not observed for HIST1H2B7L4 (p > 0.05, n = 3, f).
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gene that regulates crowing. CCKAR and CCKBR are ~50% identical in their sequences, and while CCK acts as a 
gastrointestinal hormone in peripheral tissues by binding to CCKAR, CCK also functions as a neurotransmitter in 
the brain by binding to CCKBR20,21. CCKBR also encodes a G-protein coupled receptor for CCK and gastrin, and 
has multiple effects on physiology and behavior through binding CCK and/or gastrin in the brain20,21. CCKBR 
expression was dependent on androgen (Fig. 2a,c), and AR, CCK, and CCKBR expression were observed in the 
ICo (Fig. 3a). It is therefore reasonable to speculate that androgens induce CCKBR expression in the ICo, acceler-
ating the binding of CCK to CCKBR, which results in the induction of crowing.

CCK acts as a gastrointestinal hormone in peripheral tissues by binding to CCKAR20,21. In the brain, CCK 
instead functions as a neurotransmitter by binding to CCKBR20,21, which the results of our in situ hybridization 
agree with (Fig. 3a). The intracerebral CCK system involving CCKBR is activated by social stresses, such as when 
unfamiliar individual is suddenly introduced into home cage22. Crowing is also induced in roosters by social 
stressors such as when an unfamiliar individual crows (even if the crowing sound is played over a speaker). 
Induction is observed immediately, within tens of seconds when we presented social stimuli such as crowing by 
other individuals using a speaker4,5. Previous studies have also revealed that when mammals and chickens are 
subjected to intracerebroventricular administration of an agonist specific for CCKBR, stress-like anxiety behavior 
is observed immediately23–26. Therefore, it may be reasonable to conclude that activation of the CCK system in 
midbrain ICo induces crowing, which is indeed supported by the results that intracerebroventricular administra-
tion of an agonist specific for CCKBR-induced crowing (Fig. 3b).

In songbirds that show vocal learning, the innate and simple calls, but not learned songs, emerged by the 
electrical stimulus of the ICo27–29. Interestingly, the CCK system also exists in the ICo of songbirds30,31. Also, the 
ICo of birds corresponds to the midbrain periaqueductal gray (PAG) in mammals3,10. The innate vocalization of 
rodents is controlled by the PAG. Even in humans, involuntary vocalizations, such as when a person shrieks in 
response to an aversive stimulus, are regulated in PAG3,10. It was also revealed that CCK is a major transmitter 
in the PAG32. As these previous studies have indicated, the CCK system of vertebrates is highly conserved in the 
region of the brain involved in innate vocalization33,34. Therefore, the CCK system is of interest to understanding 
the evolution of innate vocalization in animals.

The molecular basis of innate vocalization had thus far not been determined. In this study, we showed that 
the involvement of the CCK system triggers the innate vocalization of animals. Most animals use species-specific 
innate vocalization for communications. Therefore, properly functioning innate vocalization by the CCK system 
may be critical for animal survival.

Materials and Methods
Animals. Inbred chickens of the GSP strain35 were used for RNA-seq and in situ hybridization where indi-
vidual differences were expected to be small. Commercial White Leghorn chicks were used for administration 
experiments because many chicks can be used at the same time. The chickens were kept under a 12-h light:12-h 
dark cycle. The chickens had ad libitum access to water and feed. All operations were conducted under anesthe-
sia using pentobarbital (25 mg/kg body weight). Brain samples were collected after euthanasia by decapitation. 
Animals were treated in accordance with the guidelines of Nagoya University. All experimental protocols were 
approved by Nagoya University.

Sample preparation and collection. Chick gender of the GSP strain group was determined by PCR-based 
methods according to a previous report36. To induce chick crowing, male chicks received a hypodermic implan-
tation with 35 mm silastic tubes (Dow Corning Toray, Japan) containing testosterone propionate (Internal diame-
ter: 0.64 mm; External diameter: 1.19 mm; T-1875, Sigma-Aldrich, Japan) within 24 h of hatching37. Control male 
chicks were implanted with empty tubes. We confirmed that chick crowing in T-administered chicks was observed 
more frequently 4 d after T administration (Fig. S2). In the experiment to collect brain samples for RNA-seq, the 
crowing of the chicks was measured individually 3 d after hatching for 10 min in a single light- and sound-tight 

Figure 3. CCKBR induces chick crowing. (a) AR, CCK, and CCKBR, but not CCKAR, were expressed in the 
ICo (arrowhead). (b) Intracerebroventricular administration of gastrin, an agonist specific for CCKBR, induces 
chick crowing in a group situation (t = 2.2, p < 0.05, t-test, mean + SEM, n = 16).
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room using an IC recorder (ICD-UX300F, Sony, Tokyo Japan) connected to a microphone (ECM-CZ10, Sony). 
We visualized the sound using Sony Sound Forge Audio Studio ver. 9.0 (Sony), and counted the number of chick 
crowing sounds emitted according to a previous study9 (Figs 1A, S2). At day 5, we obtained brain samples 2 h 
before light-onset when rooster crowing was observed frequently4,5. Brains were rapidly removed, unilateral 2 
mm-thick and 1 × 4 mm square punches of the ICo were collected (Fig. S2), and both the punches for RNA-seq 
and the other brain areas for validation by in situ hybridization were flash-frozen on dry ice.

For roosters and hens, we used chickens after they had reached 20 weeks of age at which the roosters of 
the GSP strain show complete crowing. Before brain sample collection, we confirmed that roosters did in fact 
crow through direct observation in the birds’ home cage after light onset. As with the chicks, we obtained brain 
samples 2 h before light-onset. Brains were removed, and 2 mm-thick and 1 × 6 mm square punches of the ICo 
were collected (Supplementary Fig. S2). We used only the punches for RNA-seq that passed validation by in situ 
hybridization (Supplementary Fig. S2).

In situ hybridization. Frozen coronal sections (20 μm thick) of the ICo were examined with 33P-labelled 
oligonucleotide probes as previously described38. Densitometric analysis of hybridization signals was per-
formed with Multi Gauge software (Fujifilm, Tokyo, Japan). Sections were counterstained by acetylcholinesterase 
staining. No hybridization signal was observed in the sense control. Gene-specific probes used are shown in 
Supplementary Table S1.

RNA-sequencing and analysis. A total of 16 ICo punches consisting of four samples from each 
of the four groups (chicks, T-administered chicks, hens, and roosters) were used for RNA-sequencing. 
Ribosomal-RNA-minus RNAs (–rRNA) were prepared by removing DNA with the TURBO DNA-free Kit 
(Ambion) from isolated RNA before isolating ribosomal RNA with the RiboMinus Eukaryote Kit for RNA-Seq 
(Invitrogen). Next, we prepared the cDNA libraries from rRNAs using the SOLiD RNA-seq kit (Applied 
Biosystems). Quality of the RNA and cDNA obtained were confirmed with Agilent 2100 Bioanalyzer (Agilent 
Technologies). The cDNA libraries were sequenced by 5500 SOLiD (Life Technologies) with 75-bp and 35-bp 
paired-end reads at the Center for Gene Research, Nagoya University. The average (±SEM) number of reads gen-
erated are 50.8 ± 0.3 million per sample. RNA-seq reads were aligned to a chicken reference genome and anno-
tation (Ensemble WASHUC2 (14 May 2012), iGenomes index and annotation packages) using Tophat (version 
1.3.2)39 with the options for SOLiD color space. The Ensemble WASHUC2 was an early but current version when 
RNA-seq was performed. Aligned short reads were counted using Cufflinks (version 2.0.2)39. The normalization 
and differential analysis was performed using edge R40. Transcripts with inverted fold-change between the two 
experimental groups (e.g. up-regulation in chicks versus T-administered chicks, but down-regulation in roosters 
versus hens) and without annotation were filtered out.

Intracerebroventricular administration. Chick gender of commercial White Leghorn chicks was 
determined by examining differences in feather development. Male chicks were selected and kept in a group as 
described above. Gastrin (Phoenix Pharmaceuticals, USA), an agonist specific for CCKBR and not CCKAR, was 
dissolved in saline together with 0.1% Evans Blue. Following a previous report25, chicks received gentle intrac-
erebroventricular administration of 10 μl of 500 ng gastrin or saline at 5–8 days of age. The total amount of chick 
crowing amongst five chicks grouped together was counted for 1 h just after gastrin administration. Chick crow-
ing was counted as described in the experiment involving T administration. After the experiments, we confirmed 
that the Evans Blue reached the lateral ventricles by sectioning the brains. We used the data of five chicks as a 
single set of data.

Statistical analysis. Data were analyzed using Student’s t-test between the two groups. All data were ana-
lyzed by the statistical software program Statcel2.

Data Availability
RNA-seq data are available from the NCBI Gene Expression Omnibus [GSE113699]. All other data are available 
from the authors upon request.
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