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cuta@sci.muni.cz (M.Č.); polcerova@muni.cz (L.P.); skultetyova@mail.muni.cz (A.Š.)

2 IT4Innovations Centre of Excellence, Brno University of Technology, 612 00 Brno, Czech Republic;
iklima@fit.vutbr.cz (O.K.); spanel@fit.vut.cz (M.Š.); zemcik@fit.vut.cz (P.Z.)

3 Department of Kinesiology and Health Education, The University of Texas at Austin,
Austin, TX 78712-1415, USA; rmalina@1skyconnect.net

4 School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
5 Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy

of Sciences, 53-114 Wrocław, Poland; slawomir.koziel@hirszfeld.pl
6 Outpatient Primary Care Pediatric Center, 625 00 Brno, Czech Republic; lubomir.kukla@recetox.muni.cz
* Correspondence: 18313@muni.cz; Tel.: +420-5-4949-4966

Abstract: A variety of models are available for the estimation of parameters of the human growth
curve. Several have been widely and successfully used with longitudinal data that are reasonably
complete. On the other hand, the modeling of data for a limited number of observation points is
problematic and requires the interpolation of the interval between points and often an extrapolation
of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new
approach for fitting a relatively limited number of longitudinal data using the normal variation of
human empirical growth curves. First, functional principal components analysis was done for curve
phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study).
Subsequently, artificial curves were generated with a combination of 12 of the principal components
and applied for fitting to the newly analyzed data with the Levenberg–Marquardt optimization
algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents
extracted from the reference sample. The samples differed in their distance from the mean age at
peak velocity for the sample and were tested by a permutation leave-one-out approach. The results
indicated the potential of this method for growth modeling as a user-friendly application for practical
applications in pediatrics, auxology and youth sport.

Keywords: human growth; growth modelling; functional data analysis; Sitar

1. Introduction

During the past century or so, knowledge about human growth has led to the devel-
opment of various approaches to the modeling of growth data. The human growth curve
spans birth to adulthood, but its description and modeling cannot be adequately performed
by simple mathematical means, e.g., one single logistic curve or a single Gompertz curve
which are sufficient for some growth processes.

A longitudinal growth study optimally represents a cohort of children which is mea-
sured repeatedly annually or semi-annually across a long time interval, ideally from birth
to adulthood. For subjects who are represented in the sample for the entire interval from
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birth/infancy to 18 years, the growth data are relatively dense and complete. For modeling
of such data, i.e., fitting a growth curve and extracting/estimating growth parameters,
a variety of models have been developed for this task. The methodological principles
range from polynomials/complex parametric models [1–3] through composite models of
several additive curves [4–8], population average B-spline fitting [9–11], and functional
data analysis [12–14]. Although the methods differ in many respects, including mathemati-
cal background and biological plausibility of the extracted coefficients/parameters, many
work very well and have been used successfully for the description of human growth tra-
jectories and the study of various factors affecting growth, providing the data are complete
and without gross measurement errors.

In contrast, difficulties arise when the growth data are relatively sparse and/or limited
to a relatively low number of observations with significant gaps between measurements.
This is often noted in short time-span pediatric records and in short longitudinal studies of
youth athletes [15,16]. For practical or financial reasons, and age at entry into specialized
sport programs, observations are often limited, e.g., 4 to 7 for each subject. In these
instances, the applicability of the above-mentioned growth models is limited. In this
situation, the task of modelling is not only descriptive, but also includes interpolation—
fitting a reliable curve into the limited data points, estimating the growth trajectory in
between them, and estimating the growth parameters from the resulting curve. Growth
modeling with a limited number of observations is also difficult due to measurement
variability (noise). The SITAR protocol (a method proposed and used by Cole et al.,
based on superimposition by translation and rotation of analyzed curves) [11] represents a
remarkable advantage and allows relatively reliable estimates of growth curve parameters
with a small and variable number of measurement points. The method creates a model
curve by superimposing and averaging splines fitted to the individual data (i.e., from the
data itself) and the average model spline is then used to fit the original individual data.

An additional problem involves calendar age per se. This is apparent in short term
studies that begin relatively late, for example, at 11–12 years and conclude relatively
early, 15-16 years. The interval includes considerable variation in growth velocity and
maturity timing among subjects so that there is a high probability that an important growth
milestone of adolescent growth will not be captured in the empirical data of some or many
subjects [see 16]. In addition to description and interpolation, such short-term studies
require extrapolation—a lengthening of the model (curve) to the past (in early maturing
subjects) or to the future (in late maturing subjects) beyond the empirical range of the data.
Depending on modeling methods, this can be done from the data per se (which allows
only simple mathematical models to be considered due to the limited number of empirical
values), or by a type of external “training” of the model by information on an appropriate
growth curve, e.g., in the form of an equation statistically extracted by an abstraction from a
sample of complete growth curves, by a mathematical model accommodated to them (e.g.,
Preece–Baines model), or by a sample-based curve extracted from registered and averaged
incomplete individual curves and uniformly warped back to model individual trajectories
as in SITAR. Nevertheless, even the SITAR method may have difficulties with short term
and incomplete data. Although the SITAR procedure allows extrapolation beyond the
limits of the range of empirical data (i.e., it covers the age range as wide as the sum of
all data but wider than each individual record), it is questionable for application at the
individual level.

Even if an indicator of the current biological age of a prepubertal child is available,
any prediction of the future trajectory of growth and its final status is difficult. For example,
predicted maturity offset, defined as the time before/after peak height velocity (PHV) (in
pubertal phase), and predicted age at PHV, estimated as calendar age (CA) minus predicted
offset [17,18], have been proposed as an indicator of maturity. Unfortunately, the precision
of the predictions is not optimal or satisfactory [19].
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The present study describes an approach for fitting human growth curves for height
to a relatively limited number of longitudinal observations and compares the fitted curves
to estimates based on the SITAR method. The approach is based on functional data analysis
(FDA) and functional principal component analysis (FPCA) [12]. The study drew from
artificial samples using incomplete empirical height records during the adolescent spurt
that require extrapolation for estimates of age at PHV. The focus is on longitudinal data
(time series) of repeated measurements at the individual level and does not address the
cross-sectional research design.

2. Materials and Methods
2.1. General Description of the Approach

Traditional models rarely represent empirical growth curves for height that include
all aspects of variation in growth; rather, they provide mathematically defined ideal curves,
i.e., a simplification or an approximation. The mathematical simplicity of the model may
or may not reflect the biologically plausible process at the expense of the empirical data
which may be influenced by noise and random error. In situations with a small number
of measurement points within a limited interval of postnatal growth, such an approach
may be sufficient by statistical criteria, i.e., the simple/ideal curve fits a small number of
points well. However, it does not necessarily mean that the model is the best possible
from a biological perspective which may become evident when compared with a model
of the same growth trajectory based on a full dataset. The SITAR approach provided a
breakthrough [11], but the model operates with uniform deformation of a single curve
which may be different in details for each of the individual growth curves from which it is
derived (represented by B-splines).

Using an extreme example, if two measurement points only are available, the most
parsimonious model would be a straight line through the two points. The line, however, is
not the best model of the true growth apparent in the two points. Growth is more complex
and use of the best fitting model has limitations. Rather, the model should fit the data
points well, but at the same time should be realistic from an empirical point of view, i.e.,
look like the growth curve for height. The issue of concern is the weight which should be
applied for each of the two criteria.

Contrary to traditional models, the proposed approach in the present study is based
on the tracing of empirical growth curves for individuals (Figure 1). Empirical variation
in individual growth trajectories in a large data set (reference sample) based on complete
longitudinal data is initially considered. The data were modeled by fitting complete
growth curves ranging from birth to 18 years. The empirical curves serve as models
to fit to incomplete data. Nevertheless, even with a large reference sample, the pool
of empirical curves does not cover all possible growth trajectories. Given the limited
variation of available curves and using a limited number of empirical curves, modeling
new data may not always result in an optimal fit. Therefore, variation among empirical
curves based on the functional data analysis (FDA) model in combination with principal
component analyses (PCA) of artificial growth curves reflecting empirical variation was
generated. Using an iterative procedure, the generated empirical curves were used as
growth models and those which were best fitted were selected by means of advanced
optimization criteria.
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Figure 1. Scheme of the procedure of this research; BGS—Brno Growth Study, SITAR—a method
based on superimposition by translation and rotation, FDA—Functional Data Analysis, FPCA—
Functional Principal Component Analysis (FPCA), LOO—leave-one-out permutation procedure,
L.-M.—Levenberg–Marquardt optimization algorithm, APV—age at peak velocity in puberty, VPV—
peak velocity in puberty, ATO—age at take-off, VTO—velocity at take-off, D—difference between an
estimate and respective reference.

2.2. Reference Sample—The Brno Growth Study

An archived database collected within the frame of the Brno Growth Study (BGS)
was used as a reference sample applied for the testing [20]. This cohort study began in
1961 under the leadership of Bouchalová at the Department of Social Medicine, Faculty
of Medicine, University of Jan Evangelista Purkyně and the Pediatric Research Institute
in Brno, Czech Republic. A three-birth-years cohort was recruited during the period
between January 1961 and June 1964 [20–23] and continued until 1980. A total of 555
participants were measured longitudinally (278 boys and 277 girls), and 334 remained
until the end of the study (up to 18 years of age). Body dimensions were measured at
birth and subsequently every three months during the first year and every six months in
subsequent years with few exceptions within a window of ±14 days. Detailed raw data
plots are available in Supplementary Materials (Figure S1–S2).

The present study is limited to the 334 individuals with complete or almost complete
growth curves. The remaining participants (N = 221) were followed across variable in-
tervals, and many dropped out before the interval of puberty and adolescence (n = 112).
Drop-out was largely explained by the parents as due to loss of interest (if an explanation
was provided) and at times due to the family moving from the Brno region. Differences
in body height between those who persisted in the study and those who dropped out
were negligible and not statistically significant in girls or boys at birth and one year of age
(Supplementary Materials, Table S1).
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2.3. New Computational Approach

The raw data of body height from paper forms of the Brno Growth Study transcribed
into MS Excel were initially scanned numerically and visually for outliers and errors in tran-
scription of the raw data. After cleaning and correction, if necessary, all cases were largely
complete, i.e., included 39 measurements spanning birth to 18 years. Occasionally, missing
values were interpolated using the na_interpolation function available in the R-package
imputeTS [24] and the Stineman interpolation from the stinepack package [25,26]. Complete
raw data in individual plots, including visualization of subsequent processing and final
estimates of growth milestones at the individual level are available in Supplementary
Materials (Figure S3).

The computational approach used for curve fitting with FDA is described in Ramsay
and Silverman [12,14]. The computational routines and scripts that were applied, including
the R-package fda, are available in Ramsay et al. [13,27]. B-spline curves were fitted to the
raw data for each individual raw data (with some extrapolated missing values) using the
smooth monotone function with the setting for number of basic points on 43, based on the
number of measurement points (39) plus the order of the spline (6) minus 2, and lambda =
0.05 (smoothing parameter; the value was set empirically to be optimal for the given data
type). The 334 individual spline curves were used to develop individual growth milestones
during puberty and adolescence by computing the velocity curve (mathematically: first
derivative of the growth curve spline) and the acceleration curve (mathematically: second
derivative of the growth curve spline), and subsequently detecting the local maximum
and/or minimum on the curves. The following were detected: age at take-off (ATO), age at
peak velocity (APV) and respective velocities and heights at take-off and peak velocity (see
Figure 2, those for all 334 subjects are presented in Supplementary Materials, Figure S3).

At the same time, these curves with B-spline bases were used as the input for creating
the Functional Data Analysis (FDA) model [12]. In the recently applied version of the
procedure, a crucial aspect of the model creation is the separation of growth curve phase
and growth curve amplitude [13]. The key step for the separation was determining the cor-
respondences of individual growth periods in all investigated curves. The correspondence
between curves was determined by registering (alignment of salient or selected features)
individual curves to the average growth curve in a given population. The registration was
a two-step procedure. In the first step, we used the previously detected APV and calcu-
lated the average APV for the entire population, and subsequently, made the landmark
registration of individual curves at this point. After registration, all curves were deformed
so that their APV equaled the age of population average APV. As a numerical output (a
record of the procedure) of the registration we received so-called time-warping functions,
which determined the shift of the phase of each curve compared to the average. These
time-warping functions again took the form of FDA splines (Figure 3). Subsequently, during
the second phase of the registration, the time-warping functions were slightly optimized
by a continuous registration, which no longer requires any other inputs (in the form of
landmarks) apart from the growth curves themselves and are thus automatic from this
point of view. Technical note: it can only be used to refine the previous landmark registra-
tion, as it is based on local (or fine) numerical optimization. Using solely this automatic
local numerical optimization on raw data without previous substantial point registration,
it would in many cases diverge from the original growth curves. The time-warping functions
obtained during the registration can be used to deform the individual growth curves so
that after their application the individual growth phases correspond (Figure 3).
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Figure 2. Individual longitudinal data (points are connected by segments creating an impression of curves) for height of
individual subjects from the Brno Growth Study for boys (A) and girls (B); two examples (C) a boy, (D) a girl of estimated
growth milestones used as reference values: crosses—raw measurement, light blue solid line—distance curve (fitted
B-spline), solid grey line—velocity curve (1st derivative of the distance curve), dashed grey curve—acceleration curve (2nd
derivative of the distance curve), dashed horizontal line—zero value for velocity and acceleration curves (at value 60 of the
y-axis), blue vertical—Age at Take-off (ATO), red vertical—Age at Peak Velocity (APV); to both velocity and acceleration
values a constant (+60) was added and simultaneously they were multiplied by another constant (+5) to be visible in one
data-dense plot and readable against the same y-axis of the distance curve.
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Figure 3. Analytical procedure of the first Functional Data Analysis in an example of te n individual trajectories: (A) original
distance curves (B-splines), (B) individual distance curves after registration (warping) to identical phase (warped to identical
APV, i.e., mean population APV), (C) individual acceleration curves corresponding to the distance curves in the plot A,
(D) identical acceleration curves after registration of the phase corresponding to the distance curves in the plot B, (E)
time-warping functions, (F) inverse time-warping functions. The course of the analysis can be described: from (A), (C) is
determined, this is registered to (D), then E is extracted and applied to A to be warped to B. (F) (inverse time-warping
function) is used in the reverse process for generating artificial curves applied in the fitting and growth estimation of
new data.
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The FDA model is made up of two Functional Principal Components models (FPCA).
The first FPCA is applied to the inverse time-warping functions (Figure 3) and describes
the deformation of the average population curve to each original individual curve. After
applying FPCA to a set of inverse time-warping functions, we obtained a generative model
that was able to deform the average growth curve in terms of growth phase to new cases,
created on the basis of specified model parameters. Given the statistical nature of the model,
it can be assumed that if the parameters of the model are entered within certain/realistic
intervals (range of plus or minus three standard deviations), then the resulting curves
modeling new individuals will be biologically plausible (i.e., based on empirically recorded
variation).The meaning of the first two main components of the model, i.e., of the main
two harmonic functions of the model, is visualized in Figure 4. The second part of the FDA
model involves also a Functional Principal Component Analysis (second FPCA) modeling
of the amplitude of the curves. This is obtained by applying FPCA to the aligned growth
curves; the resulting variation described by the second FPCA is illustrated in Figure 4
(complete set of components is visualized in Figure S6 for boys and Figure S7 for girls).
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Figure 4. Functional Principal Component Analysis of the height data for boys in the Brno Growth Study: FPCA for phase
(upper row) and FPCA for amplitude (lower row) variation—black line represents mean curve and color lines represent +3
Standard Deviations (red) and −3 Standard Deviations (blue); percentages of variance are indicated in parentheses; FPC1–3
are Functional Principal Component 1–3).
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Generating a growth curve for a newly modeled case (several measurements of an
individual subject) is based on the combination of both FPCA models. The parameters for
the second FPCA model, describing the amplitude, are initially entered. The resulting curve
has the same growth phase as the average curve but can differ in amplitude. Subsequently,
a time-warping function is generated from the first FPCA model based on the entered
parameters; the function will deform the obtained curve to adjust its phase, i.e., growth
timing.

Based on the preceeding procedure, a completely new, artificially generated growth
curve can be obtained; however, the curve always (a) represents a biologically possible
human growth trajectory and (b) respects the statistical properties of the population data
set. In other words, the generated curves respect both the possible shapes of the curves
empirically recorded in the population and also the distribution of the shapes within the
population. In this particular setting, we propose to use six parameters, i.e., harmonic func-
tions (principal components), for modeling the growth phase, and the other six parameters
for modeling the growth amplitude. The 12 components are thus used to generate model
curves (for plots of variations in each of the 12 components see Supplementary Materials).
Although most of the growth variation is described by the first three components of both
FPCA models (Figure 4); preliminary testing indicated three other components of each
FPCA, which could be interpreted as local effects and represented circa 1% of the variation
(i.e., can be interpreted as noise). Nevertheless, they have a positive effect during registra-
tion/fitting (described further in text), where they increased the flexibility of the growth
curve and reduced the residues between the measured values and the model curve.

2.4. Application of the Model to Newly Analyzed Cases

The proposed model can be used to fit new data, i.e., to interpolate or even to ex-
trapolate the growth trajectory in a case with low number of measurements and/or with
measurements distributed across variable time intervals, and in turn to estimate ATO and
APV from the curve. The FPCA model described above generates artificial curves (a large
number of curves) and the best fitting curve—the one best modeling the new data—is
selected by means of an optimization procedure.

The registration/fitting of artificial curves to newly analyzed points is formulated as
a problem of nonlinear least squares, which are solved as a local numerical optimization
using the Levenberg–Marquardt algorithm [28]. During this optimization, the linking of
two sets of residuals into one vector is minimized. The first set includes the residuals of
heights at each observation, i.e., the differences between measured values and respective
values in the generated FPCA model curves. This part of the optimization minimizes the
distance of the model curve from the measured values and ensures that the generated
model curve precisely intersects the measured values. The second set of residuals includes
those of the parameters of the model. Since there is a normal probability distribution in the
growth curves, the average curve, which corresponds to the zero parameters of the FPCA
models, is also the most probable. Thus, the second set of residuals in the optimization
serves to penalize less probable curves and increases the probability of the finally selected
curve. During the registration, a compromise is sought between the exact intersection
of the measured values and the population probability of the selected curve. This is
important because the measured data naturally contain error or noise as measurements
are not absolutely precise. Therefore, it is not expected that the resulting curve will exactly
pass through the empirically measured points; this could lead to unlikely, unnatural
deformations of the curve far removed from the real biological nature of growth.

To demonstrate the applicability of the FPCA growth model, a permutation test of
its performance on artificially prepared testing samples was performed. Measurement
points from the reference sample were artificially selected to represent situations which
may present themselves to pediatricians and sport anthropologists, i.e., a limited number
of observations spanning various intervals and chronological ages during the interval
of the growth spurt. Each test sample was represented by five measurements (with one
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year between adjacent points) in a different position relative to the average APV for the
population by setting a specific range of chronological ages. From this selection, seven
test samples differing by 1 year in each step resulted (Figure 5), from sample 1 in which
the average of the last measurement ended 1 year before the average APV, to sample 4 in
which the middle measurement average age equals APV, to sample 7 in which the average
of the first measurement age was 1 year after the population average APV.

The testing round represented, in fact, a leave-one-out permutation procedure. In each
testing round, each individual was separated from the rest of the sample, his/her data were
limited/selected to the testing sample of 5 points, and on the remaining data (without the
selected individual) the FPCA model was trained (established) using the above-mentioned
procedure. At the same time, the testing sets were not comprised of the original raw
measurements. Since children were measured at regular intervals spanning half a year of
calendar age, ages of the raw measurement were not in the whole year difference relative
to the average APV. The testing samples were, therefore, computed using B-spline base
curve fitted to the full data and interpolation values on these curves for each required age.
Since the B-splines are already smoothed models, we added a random Gaussian noise on
y-axis (with parameters mean = 0 days and SD = 20 days) to each testing point to slightly
de-regularize the imputing testing samples.
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Figure 5. Sampling scheme of the testing samples 1–7. The individual five-point horizontal lines
represent 7 permuted samples (all with five measurements one year apart) and the x-axis indicates
the distance of each measurement from the population Age at Peak Velocity (APV) for the given sex.
Thus, for example, the first measurement of sample 1 corresponds to an age 5 years before the APV
and the fifth measurement of sample 1 corresponds to an age 1 year before the APV.

2.5. Comparison with an Alternative Fitting Method

To demonstrate the properties of the newly proposed approach, its results were
compared with an analogically processed SITAR model [11] as available in the R-package
sitar [29]. To provide a fair comparison with the new approach, the SITAR model was
computed analogically as the leave-one-out procedure described above: first, the SITAR
model was fitted on the full data, i.e., a longitudinal record of 39 measurements (of 166 boys
or 166 girls), excluding (leaving-out) the tested case. When applied to the entire age range
(0–18 years), the growth curve was variable in the first 3–5 years, and it was hard to find
convergence in the model. Therefore, the age span was limited to a range from 6 to 18 years
and the degrees of freedom of the B-spline were set to 30. In the second step, the model
was used to fit the test data (5 points) of each test case to estimate the growth parameters.

In all test procedures, correlations and differences between reference values and
estimates of growth milestones (APV, VPV, ATO, VTO) were used as criteria of the model’s
performance. The differences were expressed in scatter plots (estimates plotted against
references) and Bland-Altman plots of differences plotted by routines available in the
R-package BlandAltmanLeh [30]. The standard deviations were also plotted relative to the
mean values of all differences to visualize the overall differences between testing samples
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and both methods. Outliers and extremes in the estimates (i.e., cases incorrectly predicted)
were detected and evaluated relative to their growth variations.

To test the effect of the shift in the coverage of APV within the testing sample (i.e., the
effect of differences between testing samples on their estimates of population APV) a linear
mixed effect model of the R-package nlme [31] was used, where D (difference between an
estimate and reference computed as estimate minus reference) was the dependent variable,
the testing sample (1–7) was the studied factor both at the population and individual level,
and the data were grouped (random effect) by subjects. The mixed models were computed
on the sample of all results and the effects of sex (males, females), method (FPCA, SITAR)
and true APV on the estimate differences (D) were included.

3. Results
3.1. Description of the Source Sample

Complete data for height of all complete cases in the Brno Growth Study are illustrated
separately for boys and girls in Figure 2 along with two examples of individual curves
augmented with velocity and acceleration curves and the ATO and APV milestones. Indi-
vidual distance curves for heights for all cases are available in Supplementary Materials.
Descriptive statistics for ATO and APV, and the respective velocities at each milestone in
the reference sample are summarized in Table 1. ATO was approximately 1.5 years earlier
in girls compared to boys, but the decrease in growth velocity was not as pronounced in
girls as in boys. Boys reached APV approximately 2 years later and peak velocities were,
on average, higher in boys than in girls. The observed differences are consistent with the
noted sex differences in the timing of the adolescent growth spurt and maximum growth
velocities in height. This difference is also reflected in the differences in the growth curves
for height. Descriptive plots and more comprehensive statistical descriptions of the BGS
sample are also available in Supplementary Materials (Figure S4–S5, Tables S2-S5).

Table 1. Descriptive statistics for the parameters of the adolescent spurt in height—reference values—
for girls and boys in the Brno Growth Study; units: years (for APV and ATO) and cm per year (for
VPV and VTO).

GIRLS BOYS

n Mean sd min Max n Mean sd Min Max

APV 167 11.61 0.90 9.09 13.75 167 13.61 0.91 10.95 16.57
VPV 167 7.57 0.88 5.19 10.80 167 9.21 1.22 6.15 11.96
ATO 167 9.03 0.92 6.4 11.23 167 10.54 0.89 7.99 13.02
VTO 167 5.19 0.67 3.26 7.23 167 4.77 0.56 3.49 6.31

3.2. Functional Principal Component Analysis

Shape changes in the functional principal components of the first and the second
FPCA are illustrated for boys in Figure 4, along with the percentages of explained variance.
In both FPCAs, the first principal component extracted about 79% of variance in boys and
the first three principal components explained more than 99% of variance in boys. Among
girls, the corresponding estimate for the first principal component was 76%, while the first
three principal components explained more than 95% of the variance (see Supplementary
Materials). The FPCs thus extracted a substantial proportion of the original variation of
the fitted B-splines. FPC1 represents the variation in growth timing (early through late)
for most of the growth curve (except for the first 2–3 years). FPC2 represents a shift in
timing of the trajectories of the younger and older part of the curve with change point at a
prepubertal age; it is associated with major variation in the prepubertal decline in growth
velocity. FPC3 represents the corresponding variation in the growth curve phase here
divided into three periods with opposing timing trends. The amplitude PCA represents a
similar pattern in the growth amplitude, i.e., size for a given age. Amplitude PC1 reflects a
uniform shift in size almost across the entire growth trajectory. Amplitude PC2 represents
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opposite trends in size in the younger and older parts of the trajectory, and amplitude PC3
reflects the opposite changes in each third of the curve. The resulting PCs showed a similar
pattern of variations in girls; the plots are available in Supplementary Materials.

3.3. Testing Results

The complete set of descriptive statistics for all samples, methods and growth mile-
stones are available in Supplementary Materials. Correlations between estimates and the
reference for growth milestones (ATO, VTO, APV, VPV) are illustrated in Figure 6 (for
individual values see Figures S8–S9). Correlations are higher for age estimates (APV, ATO)
than for velocity estimates (VPV, VTO) among boys, while correlations are more variable
among girls. Correlations between estimates of APV and the reference are high with both
methods in each sex; the highest correlations are apparent in samples 4–6 for both methods.
Variation in correlations between samples is greatest for VPV in samples 3, 4, and 5 for
the FPCA method and samples 2, 3, and 4 for the SITAR method. The correlations with
both methods are relatively comparable in all milestones except for estimated VPV, which
showed the largest differences between methods in favor of FPCA method.
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Figure 6. Sex-specific Pearson product moment correlations between estimates and the reference for growth milestones
(APV, VPV, ATO, VTO) for each method and testing sample.

Descriptive statistics compared with the reference values are illustrated in Figure 7
(for numerical values see Tables S6–S9), while differences (D) between the estimates and
reference values are summarized in Table 2 (for individual values in Bland-Altman plots see
Figures S10–S11). The mean values are plotted relative to the residual standard deviations
in Figures 8 and 9, while the results of the linear mixed models are summarized in Tables 3
and 4 and Tables S10–S12.
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method (FPCA, SITAR) among girls and boys and by testing sample (1–7) relative to the reference
values (R) in the column of each plot.
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Figure 8. Residuals of the estimates of growth milestones between the FPCA (blue, dashed line) and
SITAR (red, solid line) methods among boys; the standard deviations of residuals (y-axis) are plotted
relative to the mean residuals (x-axis). Samples 1 to 7 are coded s1r to s7r (blue) for FPCA method
and s1s to s7s (red) for SITAR method.
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Figure 9. Residuals of the estimates of growth milestones between the FPCA (blue, dashed line) and
SITAR (red, solid line) methods among girls; the standard deviations of residuals (y-axis) are plotted
relative to the mean residuals (x-axis). Samples 1 to 7 are coded s1r to s7r (blue) for FPCA method
and s1s to s7s (red) for SITAR method.

Table 2. Descriptive statistics of the residuals (differences between estimates and reference values) of growth milestones
(APV, VPV, ATO, VTO) for all testing samples (1–7), both sexes (girls, boys) and both tested methods (FPCA, SITAR); units
of age estimates (APV, ATO) are years, units of velocity estimates are cm per year.

GIRLS BOYS

FPCA SITAR FPCA SITAR

Mean sd Median Mean sd Median Mean sd Median Mean sd Median

sample 1 −0.09 0.66 −0.06 −0.06 0.64 −0.05 −0.20 0.50 −0.10 −0.14 0.54 −0.08

sample 2 −0.02 0.60 −0.01 0.05 0.53 0.04 −0.11 0.41 −0.01 −0.05 0.40 −0.02

sample 3 −0.01 0.49 0.03 0.15 0.62 0.07 −0.08 0.32 0.01 0.03 0.37 0.06

APV sample 4 0.02 0.35 0.05 0.04 0.40 0.03 −0.03 0.33 0.03 0.02 0.29 0.04

sample 5 0.11 0.34 0.09 0.04 0.40 0.05 0.05 0.28 0.08 −0.04 0.38 0.00

sample 6 0.13 0.37 0.11 0.11 0.40 0.11 0.06 0.30 0.09 −0.04 0.30 −0.02

sample 7 0.19 0.43 0.14 0.18 0.46 0.14 0.10 0.39 0.10 −0.02 0.37 −0.05

sample 1 0.45 0.84 0.42 0.37 0.83 0.30 0.72 1.30 0.59 0.33 1.14 0.38

sample 2 0.34 0.71 0.25 0.31 0.77 0.31 0.66 1.17 0.45 0.29 1.04 0.34

sample 3 0.18 0.48 0.18 0.23 0.76 0.25 0.49 0.95 0.37 0.24 1.01 0.24

VPV sample 4 0.12 0.38 0.15 0.22 0.80 0.25 0.26 0.50 0.30 0.25 1.10 0.19

sample 5 0.01 0.53 0.11 0.20 0.84 0.18 0.09 0.60 0.27 0.28 1.16 0.24

sample 6 0.03 0.67 0.15 0.16 0.83 0.15 0.06 0.91 0.27 0.28 1.13 0.23

sample 7 0.24 0.84 0.29 0.11 0.81 0.14 0.36 1.20 0.51 0.26 1.11 0.26

sample 1 0.24 0.65 0.28 0.30 0.76 0.31 0.23 0.52 0.23 0.04 0.64 0.06

sample 2 0.40 0.61 0.29 0.40 0.64 0.38 0.33 0.49 0.27 0.13 0.53 0.09

sample 3 0.49 0.66 0.42 0.51 0.67 0.45 0.39 0.49 0.33 0.21 0.51 0.13
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Table 2. Cont.

GIRLS BOYS

FPCA SITAR FPCA SITAR

Mean sd Median Mean sd Median Mean sd Median Mean sd Median

ATO sample 4 0.49 0.63 0.45 0.50 0.59 0.46 0.47 0.51 0.40 0.21 0.55 0.17

sample 5 0.56 0.62 0.49 0.51 0.65 0.51 0.55 0.53 0.48 0.16 0.63 0.15

sample 6 0.59 0.65 0.54 0.58 0.65 0.58 0.55 0.58 0.46 0.15 0.60 0.11

sample 7 0.60 0.70 0.55 0.64 0.67 0.61 0.53 0.61 0.44 0.17 0.62 0.09

sample 1 0.17 0.28 0.16 0.29 0.45 0.33 0.15 0.30 0.12 0.30 0.42 0.27

sample 2 0.20 0.38 0.16 0.24 0.45 0.33 0.15 0.34 0.11 0.25 0.43 0.24

sample 3 0.17 0.39 0.11 0.20 0.48 0.30 0.11 0.39 0.08 0.22 0.44 0.21

VTO sample 4 0.07 0.47 0.07 0.22 0.48 0.28 0.04 0.44 0.02 0.22 0.45 0.24

sample 5 −0.02 0.51 −0.01 0.21 0.50 0.28 0.00 0.45 0.00 0.24 0.46 0.29

sample 6 0.01 0.52 0.01 0.18 0.51 0.27 0.02 0.45 0.04 0.24 0.46 0.26

sample 7 0.03 0.55 0.05 0.15 0.53 0.22 0.02 0.44 0.05 0.23 0.46 0.26

Average values of D for APV are close to zero for all testing samples and vary slightly,
at most by about 0.2 year (see Figures S12–S13 for individual trends). For the FPCA method,
there is a trend to slight underestimation in the low-numbered samples (1, 2, and 3) and
overestimation in the high numbered samples. Standard deviations of the D for APV are
also comparable for both methods and vary from 0.66 years (sample 1, girls FPCA method)
to 0.28 years (sample 5, boys FPCA method). In general, there is a tendency for higher
variance of D in girls than in boys (Table 2). Sample, sex and reference APV have significant
single effects on the estimates, but method does not (Table 3). However, there are significant
interactions between sample and method (i.e., significantly different performances of each
method on different samples), and among method, sample and reference APV; significant
variations are associated with differences in pubertal timing.

Table 3. Analysis of Variance of the Linear Mixed Effects model for differences (D) between estimates
and references values of Age at Peak Velocity (APV) with effects of sample (samp, 1–7), sex (sex,
males, females), estimation method (met, FPCA, SITAR), and reference APV (apv.ref, age in years),
including all interactions.

numDF denDF F-Value p-Value

(Intercept) 1 4330 17.5932 <0.0001
samp 1 4330 56.6251 <0.0001
met 1 4330 3.2439 0.07
sex 1 330 20.0942 <0.0001
apv.ref 1 330 735.1555 <0.0001
samp:met 1 4330 103.4955 <0.0001
samp:sex 1 4330 0.3127 0.6
met:sex 1 4330 6.2683 0.012
samp:apv.ref 1 4330 11.9666 0.0005
met:apv.ref 1 4330 9.5817 0.002
sex:apv.ref 1 330 17.0984 <0.0001
samp:met:sex 1 4330 11.7618 0.0006
samp:met:apv.ref 1 4330 1.5042 0.22
samp:sex:apv.ref 1 4330 5.9837 0.015
met:sex:apv.ref 1 4330 46.0603 <0.0001
samp:met:sex:apv.ref 1 4330 0.7064 0.4

For ATO, overestimation is apparent in all samples and with both methods, spanning
from 0.04 years (sample 1, boys, SITAR method) up to 0.64 years (sample 7, girls, SITAR
method). The effects of all factors and most interactions are significant in the mixed model;
the interaction between sample and reference ATO and among sample, sex, and reference
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ATO are exceptions (Table 4). By inference and contrary to the estimates of APV, the D
values of ATO do not differ among the samples relative to reference ATO and sex (Table 4).

Table 4. Analysis of Variance of the Linear Mixed Effects model for differences (D) between estimates
and references values of Age at Take-off (ATO) with effects of sample (samp, 1–7), sex (sex, males,
females), estimation method (met, FPCA, SITAR), and reference ATO (ato.ref, age in years), including
all interactions.

numDF denDF F-Value p-Value

(Intercept) 1 4330 496.6572 <0.0001
samp 1 4330 159.4303 <0.0001
met 1 4330 676.2191 <0.0001
sex 1 330 31.8098 <0.0001
ato.ref 1 330 1110.021 <0.0001
samp:met 1 4330 76.7323 <0.0001
samp:sex 1 4330 6.9282 0.0085
met:sex 1 4330 773.0021 <0.0001
samp:ato.ref 1 4330 0.0824 0.8
met:ato.ref 1 4330 9.1492 0.0025
sex:ato.ref 1 330 17.4343 <0.0001
samp:met:sex 1 4330 44.7276 <0.0001
samp:met:ato.ref 1 4330 16.5127 <0.0001
samp:sex:ato.ref 1 4330 1.1218 0.3
met:sex:ato.ref 1 4330 20.0348 <0.0001
samp:met:sex:ato.ref 1 4330 20.7452 <0.0001

Both velocities (VPV and VTO) are generally overestimated by the two methods; for
some samples (samples 5–6) the performance of FPCA method is better and the average
estimates are much closer to the reference values than for the SITAR method (Figure 7).
Mean values of the differences (D) resulting from the SITAR procedure are more similar
among the different samples (e.g., VPV in boys in Figure 7), while those resulting from
FPCA method are more variable. The differences between methods are also apparent in
the results of the mixed model for VTO (see values of F-statistics for the factor of method
and interactions with this factor in Tables S11–S12) but are less evident for the VPV results.

In general, both methods underestimate variation in all of the tested growth milestones.
The tendencies are slight for ages (APV, ATO) and much higher for estimated velocities,
and higher for the SITAR than for the FPCA method (Figure 7), i.e., standard deviations of
VPV residuals are much lower for the SITAR than the FPCA method. While the reference
value for the standard deviation of VTO was 0.67 cm/year for girls and 0.56 cm/year in
boys, SITAR estimates (among samples) varied between 0.26 and 0.32 cm/year in girls and
between 0.25 and 0.31 cm/year in boys which were in some samples less than one-half
of the references value (see Supplementary Materials for detailed descriptive statistics of
all variables). This reduction in variance is the most evident in estimates of VPV in boys
computed by the SITAR method.

Variances of the random effects in the mixed effects models for D values of all tested
variables are relatively small (Supplementary Materials). This applies both for the total
random variance and the separately estimated intercept and slope variances (D against
sample); in models for ATO and VTO, the slope variances are numerically zero. ICCs are
moderate to high which indicates relatively similar estimates for all samples and high
inter-individual differences in D values. The model for VPV is an exception; it has a
relatively low intraclass correlation (ICC = 0.13) and a relatively high proportion of random
variance (σ2 = 0.27) which indicates a high intra-individual influence of testing sample on
the model performance.
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4. Discussion
4.1. General Aspects of the Approach

The analysis followed the general idea of fitting a model to a complete (training)
dataset, developing the model, and then applying the model to estimate growth milestones
with new data. This idea is not new. Hermanussen and Meigen [32] for example, pro-
posed an approach based on a discrete Ramsay and Bock [33] growth model separating
phase and amplitude variation with principal components analysis [34]. Growth curves
of the reference population were brought into correspondence using a shifting algorithm
(Ramsay, Silverman 1997) and maximum likelihood principle and Hooke-Jeeves [35] algo-
rithms with linear interpolation were used for regressing the model into an arbitrary set of
measurements of an individual child.

In contrast to the previous approaches, the present analysis was focused on continuous
data analysis. Growth curves of the reference population were described using splines,
registered using landmark-based and continuous methods, and finally processed using
functional principal component analysis (FPCA). The regression model was formulated as
a non-linear least squares problem and optimized using the Levenberg–Marquardt solver.
The performance of two methods was tested by fitting growth curves to 7 samples of sparse
data (5-point by1 year distances) which differed in their relationship to the population
mean APV. As the first step of the procedure with both methods, a model was trained on
the complete dataset of full growth curves (0–18 years, 39 points), and subsequently was
applied to the 5-point testing samples to fit and estimate growth milestones. It should
be noted that with both the FPCA and SITAR methods the procedure was designed as
leave-one-out approach, i.e., for each subject a new individually specific model was created
applying reference data without the currently estimated subject. In other words, the subject
was never included in the model by which his/her testing samples were estimated. Thus,
all models were based on 166 full reference curves (both in boys and girls), against 167 for
the total sample. The differences between the FPCA and SITAR methods were only in how
the final model was created and fitted to the testing samples. With the SITAR method, the
model curve represented an average B-spline of superimposed curves uniformly deformed
to the data of the testing sample and the deformation was optimized by means of the
Maximum Likelihood method (since sitar package uses the optimization method from
nlme R-package [31]). With the FPCA method, the model represented a combination of 12
functional PCs (6 amplitude and 6 phase PCs) permuted and fitted to the testing samples by
means of the Levenberg–Marquardt algorithm [28]. We did not follow the original SITAR
application which would be applied only to each of the testing samples (i.e., sitar would
load and be trained only on the 5-point data as a population set) since the testing samples
were composed of many cases covering growth before or after APV, and not having an
S-shape) and most of the attempts to fit the sitar model were not successful.

4.2. Comparison between FPCA and SITAR

Estimates of both methods were similar especially in mean values which varied close
to the reference values. The APV estimates of the FPCA method changed with increasing
order of the testing sample with the best approaching the reference in the middle order
testing samples (3–5); this may have reflected the registration procedure in FDA—the
curves were explicitly registered by means of individual APV values. This may be the
reason why FPCA estimates were closest to the reference in samples subsuming population
APV in the majority of cases (samples 3 to 5). FPCA method also overestimated ATO values
more than the SITAR method. Both methods overestimated all mean values of growth
velocities (except for VTO in sample 5 in girls estimated by FPCA method), which was,
in contrast, higher for the SITAR than for the FPCA method. The SITAR method showed
considerably more even estimates within all testing samples both for ages and velocities.
This likely reflected the universal average B-spline method which did not satisfactorily
address the whole variation range.
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The decreased variation in estimates with both methods was a concern. The decrease
was relatively moderate and similar for both methods for age estimates (APV, ATO), but the
variation was generally much lower than in the reference values for velocity estimates (VPV,
VTO); the latter was especially evident for the SITAR method. This may have been related
to the use of one universal fitting B-spline curve which could not handle all variations in
curve slopes during the most intensive interval of pubertal growth. If the true (reference)
variation in the velocity of the most intensive growth interval would be higher compared
to other parts of the growth curve, the uniform morphing of the entire curve applied in the
SITAR procedure could not reflect the values of maximum growth velocities in a sufficient
range (whole range of maximum slopes), despite the fact that it could perfectly detect APV.
The lowest reduction in variation of velocities (both for VPV and VTO) was recorded for
estimates with the FPCA method in the first four samples in both boys and girls, where
the ranges of velocity estimates were almost as high as in the reference sample. Thus, for
reliable detection of the whole range of velocities with the FPCA method, knowledge of
the growth trajectory before the velocity point (acceleration part of curve) is more important
than knowledge of the trajectory after the point (deceleration part of the curve).

4.3. Strengths of the Method and Comparisons with Alternative Approaches

Allowing for the preceding limitations, the tested approach—fitting trained models
derived from full empirical curves to a small number of sparse data points—showed
potentially applicable estimates, not only for the task of interpolation but also as a predictive
means of extrapolation for future growth. Methods for prediction of future growth are
based on a combination of chronological age at the time of measurement and biological
age. Since X-ray based methods for the assessment of biological age are increasingly not
possible outside of medical diagnostics, predicted estimates based on chronological age
and anthropometric dimensions are developed [17,18]. When comparing the differences
between predictions and true values of the Mirwald method (which requires chronological
age, sitting height, estimated leg length, height and weight) with methods of the present
study (both FPCA and SITAR) applied to sample 1 (i.e., 5 points with maximum age 1 year
before population APV), the standard deviations for the differences are similar (Mirwald
method: 0.49 years and 0.65 years for two samples of boys, and 0.49 years and 0.68 years
for two samples of girls, FPCA method on sample 1: 0.50 years for BGS boys, and 0.66 years
for BGS girls). Although there was a substantial difference in the inputs of the respective
methods (5 height measurements in our tests and only one measurement point in Mirwald
method), the latter incorporated several anthropometric dimensions and the proportion of
estimated leg length to sitting height.

One challenge for new, computer intensive methods like those tested in this study
is the possibility of using them for practical applications. Neither the computational
procedure nor trained models can be easily shared, e.g., as a simple equation, and then
simply applied by other members of the scientific community. Therefore, an on-line
application based on the FPCA estimates accessible on the Internet was developed.

5. Conclusions

A method for description, interpolation and prediction of human postnatal growth
trajectory was developed and tested. The principle of the approach was based on functional
data analysis, training the functional principal component model on the full data set and
the generation of artificial fitting curves by a combination of principal components, while
at the same time respecting the natural variation in the shape of the human growth curve
and optimizing the fit to the sparse data by means of the Levenberg–Marquardt algorithm.
This FPCA procedure of generating, optimizing and fitting the model curve into sparse
and non-numerous data provided comparable results with the SITAR method (applied in
an identical leave-one-out procedure) when estimating ages at growth milestones (APV,
ATO), but had more realistic results in terms of variance in estimates of growth velocities
(VPV, VTO).
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The FPCA procedure should be further tested on different data sets, especially for
different populations. The computational nature of the procedure allows the method to be
complemented and/or combined with data for indicators of biological age (skeletal age,
stage of puberty) that could be used to refine the resulting estimates.

We also believe that our proposed method could have a more general application and
could be applied not only to other growth processes in the human body, but also to other
types of growth data (e.g., in demography or economics); however, a must-have input
condition is always a sufficiently robust sample of complete, empirically recorded data,
which will be used to train a model on which to generate artifactual/test curves.
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7. Novák, L.; Kukla, L.; Čuta, M. Child and Adolescent Longitudinal Growth Data Evaluation Using Logistic Curve Fitting with

Use of the Dynamic Phenotype Method. Scr. Med. 2008, 81, 31–46.
8. Novák, L.; Kukla, L.; Zeman, L. Characteristic Differences between the Growth of Man and the Other Animals. Prague Med. Rep.

2007, 108, 155–166.
9. Beath, K.J. Infant Growth Modelling Using a Shape Invariant Model with Random Effects. Stat. Med. 2007, 26, 2547–2564.

[CrossRef]
10. Cole, T.J.; Pan, H.; Butler, G.E. A Mixed Effects Model to Estimate Timing and Intensity of Pubertal Growth from Height and

Secondary Sexual Characteristics. Ann. Hum. Biol. 2014, 41, 76–83. [CrossRef]
11. Cole, T.J.; Donaldson, M.D.C.; Ben-Shlomo, Y. SITAR—A Useful Instrument for Growth Curve Analysis. Int. J. Epidemiol. 2010, 39,

1558–1566. [CrossRef]
12. Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer Science+Business Media, Inc.: New York, NY, USA, 2005.
13. Ramsay, J.O.; Hooker, G.; Graves, S. Functional Data Analysis with R and MATLAB; Springer: Dordrecht, The Netherlands;

Heidelberg, Germany; London, UK; New York, NY, USA, 2009; ISBN 978-0-387-98184-0.
14. Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies, 1st ed.; Springer: Berlin/Heidelberg,

Germany; New York, NY, USA, 2002; ISBN 0-387-95414-7.
15. Malina, R.M.; Claessens, A.L.; Van Aken, K.; Thomis, M.; Lefevre, J.; Philippaerts, R.; Beunen, G.P. Maturity Offset in Gymnasts:

Application of a Prediction Equation. Med. Sci. Sports Exerc. 2006, 38, 1342–1347. [CrossRef] [PubMed]
16. Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.;

Malina, R.M. The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci.
2006, 24, 221–230. [CrossRef] [PubMed]

17. Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements.
Med. Sci. Sports Exerc. 2002, 34, 689–694. [CrossRef] [PubMed]

18. Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a Somatic
Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [CrossRef]

19. Malina, R.M.; Kozieł, S.M.; Králik, M.; Chrzanowska, M.; Suder, A. Prediction of Maturity Offset and Age at Peak Height Velocity
in a Longitudinal Series of Boys and Girls. Am. J. Hum. Biol. 2020, e23551. [CrossRef]
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