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A B S T R A C T   

The adulteration of soymilk (SM) into raw bovine milk (RM) to gain profit without declaration could cause a 
health risk. In this study, electronic nose (E-nose) and headspace-gas chromatography ion-mobility spectrometry 
(HS-GC-IMS) were applied to establish a rapid and effective method to identify adulteration in RM with SM. The 
obtained data from HS-GC-IMS and E-nose can distinguish the adulterated samples with SM by principal 
component analysis. Furthermore, a quantitative model of partial least squares was established. The detection 
limits of E-nose and HS-GC-IMS quantitative models were 1.53% and 1.43%, the root mean square errors of 
prediction were 0.7390 and 0.5621, the determination coefficients of prediction were 0.9940 and 0.9958, and 
the relative percentage difference were 10.02 and 13.27, respectively, indicating quantitative regression and 
good prediction performances of SM adulteration levels in RM were achieved. This research can provide sci-
entific information on the rapid, non-destructive and effective adulteration detection for RM.   

1. Introduction 

Protein is the main nutritional component of raw bovine milk (RM), 
and its content determines the value of milk. However, unscrupulous 
businesses intentionally adulterate milk by adding non-dairy proteins in 
order to gain economic benefits which reduces RM quality and be haz-
ardous to the interests of consumers. With the diversification of dietary 
structure and the increase of vegetarian groups, plant-based milk is 
rapidly emerging domestically and even globally. Plant-based protein 
has been regarded as a potential substitute for protein in dairy industry 
(FARAH et al., 2021; JARIYASOPIT et al., 2021). Among which, soymilk 
(SM) is a common plant-based milk which is much cheaper than RM, and 
importantly, not easy to be detected (FENG, ZHU, CHEN, BAO, & HE, 
2019; UNCU & UNCU, 2020). A study showed that cheese made with 
25% (v/v) SM (4.15%) in RM has a higher protein content than cheese 
made with whole RM (2.6%) (ALI, ABDULLA, MALIK, MAHMOUD & 
HAMADNALLA, 2020a). However, the protein of SM is statutorily 
defined as an allergen and its presence in unlabeled food has a potential 
risk, such as skin pruritus, rash, chest tightness dyspnea and even shock, 
which also triggers a trust crisis from consumers (JARIYASOPIT et al., 

2021). According to the International Union of Immunological Societies, 
Gly m 1 to Gly m 8 has been verified as allergen proteins in soybean 
(KEREZSI, JACQUET & BLECKER, 2022). In Japan, it was found that 
infants and children were more susceptible to allergen proteins in soy-
bean (Wang et al., 2020a). 

Until now, various technologies have been used for detecting adul-
teration of protein from plants or animal milk, including gas 
chromatography-mass spectrometry (GC–MS), nuclear magnetic reso-
nance (NMR) (LI et al., 2017), near-infrared spectroscopy (NIR) (DOS 
SANTOS PEREIRA, DE SOUSA FERNANDES, DE ARAUJO, DINIZ & 
MACIEL, 2020), fourier-transform infrared spectroscopy (FT-IR) (SEN 
et al., 2021), and liquid chromatography-high resolution mass spec-
trometry (LC-MS/MS) (JI et al., 2023; FAN et al., 2023) (Table S1). All 
these methods are sensitive, reliable, and useful for detecting specific 
exogenous proteins in dairy products, but most of them are analyzed 
based on metabolic profiling or different absorption of functional groups 
in protein/fat/carbohydrates, which are complicated and time- 
consuming for sample preparations, and the applied instrumentations 
are inconvenient and expensive. Thus, the development of rapid, sen-
sitive and convenient methods to effectively identified adulteration in 
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RM with SM is necessary. It was reported that protein, fat and solids-not- 
fat were susceptible to compositional differences in milk which can be 
easily detected by milk composition analyzer (ZHU, WEN & WANG, 
2020). Our previous study (TIAN et al., 2022) revealed that milk 
composition analyzer could rapidly and accurately identify acid neu-
tralizers adulterated in RM. Therefore, milk composition analyzer may 
have a potential ability to identify adulteration in RM with SM. 

Volatile compounds (VOCs) are an important indicator of RM and SM 
which is also one of the factors that affect consumers to choose dairy 
products (UTZ et al., 2021). However, the beany odour of SM is a major 
manifestation caused by the enzymatic oxidation of lipids and other 
bioactive substances induced by lipoxygenase resulting in differences of 
VOCs compared with RM, especially hexanal hexanol and 2-pentylfuran 
(Wang et al., 2020a). Headspace gas chromatography-ion mobility 
spectrometry (HS-GC-IMS) is an emerging approach with no extensive 
complex and time-consuming of pretreatment, and its high sensitivity 
has been proved to be efficient in identifying the adulteration acts to 
control the quality in food industry (GU, CHEN, WANG, WANG & HUO, 
2020). As previous studies reported (X. WANG, ROGERS, LI, YANG, 
CHEN & ZHOU, 2019), HS-GC-IMS combined with principal component 
analysis (PCA), partial least-squares discriminant analysis and soft in-
dependent modeling of class analogy can accurately identify adultera-
tion of honey according to target the differences in VOCs. A similar study 
found that adulteration of sesame oil could be correctly classified and 
identified based on data provided by HS-GC-IMS with random forests 
classification model and recursive support vector machine method 
(ZHANG et al., 2016). Electronic nose (E-nose) is a bionic olfactory 
technology with an internal array sensor which can capture information 
about the VOCs to analyze differences in odour (ALI, HASHIM, ABD 
AZIZ & LASEKAN, 2020b). E-nose coupled with discriminant function 
analysis, the classification accuracy of identifying soybean oil adulter-
ation levels in cow ghee could achieve more than 99% (ROY et al., 
2022). Moreover, GU et al. (2020) investigated the performances of HS- 
GC-IMS and E-nose, respectively, combined with k-nearest neighbour 
for rapid detection of moldy rice grains from healthy ones and the cor-
rect classification rates reached 94.44% and 91.67%, respectively. A 
feasibility study reported the application of GC-IMS and E-nose for the 
detection of extra virgin olive oil adulterated with soft-refined olive oils 
(DAMIANI, CAVANNA, SERANI, DALL’ASTA & SUMAN, 2020). The 
available methodologies can distinguish kinds of adulterants in milk 
samples while most of them need to be improved in quantifying RM 
adulteration levels. Moreover, the research on identifying adulteration 
in RM with SM detected by HS-GC-IMS and E-nose with chemometric 
methods has been not reported, which needs to be further evaluated. 

The objective of this work was to establish an efficient, accurate and 
sensitive method to rapidly identified the adulteration levels in RM with 
SM. First, the milk composition analyzer was used to preliminarily 
detect the contents of fat, protein and non-fat solids in RM and adul-
terated samples. Then, the VOCs were identified by HS-GC-IMS and E- 
nose, and the differences of VOCs among samples were showed through 
volatile fingerprints. PCA and partial least squares (PLS) regression were 
applied to classify adulterated samples and predict the concentration of 
SM in RM. The 3 times and 10 times the standard deviation of Y-resid-
ual/slope standard deviation were limit of detection (LOD) and limit of 
quantitation (LOQ), respectively, according to the previous method (Gu 
et al., 2020). Value of root means square error of calibration/root mean 
square error of prediction (RMSEC/RMSEP), Rc

2/Rp
2 (decision coefficient 

of calibration set/ decision coefficient of prediction set) and correlation 
coefficient (R2) and ratio of prediction to deviation (RPD) were used to 
evaluate performances of models. This study is helpful to understand 
flavour variations in RM after adulterating with SM and provides a 
reference for the rapid identification of plant-based milk adulteration in 
RM. 

2. Material and methods 

2.1. Sample and sample preparation 

RM samples (0–4 ℃) were collected from Shanghai No. 4 Dairy 
Product Factory and kept in a refrigerator at 4 ± 2 ℃ and analyzed 
within 24 h. Soybeans were purchased from a local market (Shanghai, 
China), and SM was prepared according to a previous study (SHI et al., 
2019). Soybeans were soaked in water for 12 h at a ratio of 1:3 (w/v) and 
then ground in water at a ratio of 1:7 (w/v) using a juicer equipped with 
an automatic centrifugal filter to separate the okara (SM-8000(GT), 
Hurom Co. Ltd., Jilin, China). Subsequently, the obtained SM was boiled 
to 100 ℃ for 10 min, then cooled to room temperature. 

The RM samples were adulterated with SM at the concentrations of 
0.0%, 0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0% (w/w) to prepare 
the adulteration samples and all samples were mixed well before use. 
Three independent samples were prepared for each concentration, in a 
total of 21 test samples. No technical replicates per treatment were used. 

2.2. Milk composition analyzer data acquisition 

A Youchuang UL80BC milk composition analyzer (Hangzhou, CN) 
was used to obtain the content of fat, protein and solids-not-fat, which is 
susceptible to the addition of SM in RM (GAUTAM, SHARMA, LATA, 
RAJPUT & MANN, 2017). A 30 mL sample was added in a cup, which 
was placed below the injection port, then the instrument can start 
automatic detection after pressing the confirmation key. The data can be 
obtained after the end of test, waiting for 1–2 min. The calibration was 
needed before each sample detection. 

2.3. HS-GC-IMS measurement 

Volatile fingerprints of milk samples were determined by an IMS 
system (Flavorspec®, Gesellschaft für Analytische Sensorsysteme mbH, 
Dortmund, Germany), equipped with an Agilent 6890 N gas chromato-
graph (Palo Alto, USA) using a non-polar MXT-5 GC column (15 m ×
0.53 mm × 0.1 μm, Restek, PA, USA). 

Milk samples (2.0 g) were transferred into a 20 mL headspace sample 
vial and subsequently incubated at 60 ◦C for 10 min at 500 rpm. After 
incubation, a headspace volume of 100 µL was automatically injected 
utilizing a heated syringe (85 ◦C). The column was held at 60 ◦C, and the 
carrier gas and drift gas was nitrogen (99.999% purity). The carrier gas 
passed through the HS-GC-IMS injector transferring the sample into the 
GC column as follows: 2 mL/min for 2 min, then raised to 100 mL/min 
over 18 min and held at 100 mL/min until 30 min. The flow rate of drift 
gas is 150 mL/min. Each analysis was conducted in triplicate 3. 

The GC-IMS data were analyzed by using LAV software (version 
2.2.1, Gesellschaft fürAnalytische Sensorsysteme mbH, Dortmund, 
Germany). VOCs were qualitatively analyzed by comparing the reten-
tion indexes and drift times with those in the GC-IMS library. 

2.4. E-nose measurement 

For the fast gas chromatography-based E-nose analysis which was 
equipped with two different polarity columns working in a parallel 
mode, a 5.0 g of milk sample was accurately weighted and immediately 
placed in a 20 mL headspace sample vial. The vial was closed with a 
leak-proof cap, covered with a silicon/Teflon septum, then incubated at 
50 ◦C for 20 min. The autosampler injected 5 mL of sample from the 
headspace into the GC at a rate of 125 μL/s and collected the analytes in 
a Tenax trap at 40 ℃ for 50 s. After rapid heating, the analytes were 
separated and transferred to two parallel short GC columns (Restek, 
Centre County, PA, U.S.): a non-polar column (MXT-5: 5% diphenyl, 
95% methylpolysiloxane, 10 m × 0.180 mm × 0.4 µm film thickness) 
and a slightly polar column (MXT-1701: 14% cyanopropyl- phenyl, 86% 
methylpolysiloxane, 10 m × 0.180 mm × 0.4 µm film thickness). 
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Hydrogen (99.999% purity) was used as the carrier gas. The system was 
operated at a constant pressure of 80 kPa with a 10 mL/min split flow at 
the column head. The temperature conditions were as follows: the 
sampler temperature was 200 ℃; the temperature program included an 
isothermal step at the beginning of 80 ℃, a slope of 3 ℃/s to 250 ℃, and 
an isothermal step of 250 ℃ for 21 s; and flame-ionization detection 
(FID1/FID2) at 260 ℃. The samples were analyzed in triplicate to obtain 
a better parallel effect. 

2.5. Data analysis 

Unsupervised PCA and supervised PLS were employed to detect the 
latent information from the massive data, build the discriminant anal-
ysis model, and identify the tentative markers. PCA and PLS analyses 
with SIMCA-P software (Version 14.1, Umetrics AB, Umeå, Sweden), 
were used to cluster the RM sample and adulterated samples. One-way 
analysis of variance (ANOVA) was introduced to determine the signifi-
cant difference in the concentrations of SM in RM with p < 0.05 using 
SPSS 22.0 software (SPSS Inc,Chicago, IL, USA). 

3. Results and discussions 

3.1. Identification of adulteration in raw bovine milk with soymilk by milk 
composition analyzer 

The contents of fat, protein and non-fat solids in RM were deter-
mined by milk composition analyzer and the results are shown in 
Table 1. There were significant differences in the indicators of fat and 
protein content between adulterated and non-adulterated samples (p <
0.05). When the concentration of SM was up to 20% in RM, the protein 
content significantly decreased from 3.38 g/100 g to 3.02 g/100 g. 
Moreover, RM (8.84 g/100 g), SM (5.99 g/100 g) and adulterated RM 
samples with 15% − 20% SM (8.27–8.43 g/100 g) were significantly 
different in solids-not-fat (p < 0.05). As the concentration of SM 
increased in RM, fat, protein, and solids-not-fat content in adulterated 
samples showed a decreasing trend, indicating that milk composition 
analyzer could identify these differences between adulterated and non- 
adulterated samples. TIAN et al. (2022) reported that milk composition 

analyzer could judge whether RM was adulterated by neutralizing acid 
adulterants (such as sodium hydroxide, sodium thiocyanate and sodium 
carbonate) but the types cannot be identified. However, it can be seen in 
the present study that the content of fat, protein and solids-not-fat in all 
adulterated samples at six levels (0.5% − 20%) meet the requirements of 
GB 19301–2010 (Food Safety Standard for Raw Milk in China: the 
content of fat (g/100 g) ≥ 3.10; the content of protein (g/100 g) ≥ 2.80; 
the content of solids-not-fat (g/100 g) ≥ 8.10) which means milk 
composition analyzer failed to be used as a tool for the rapid detection of 
adulteration in RM with SM at the level of 0.5% − 20% based on the 
contents of fat, protein, and solids-not-fat in milk. Therefore, E-nose and 
HS-GC-IMS need to be further applied to identify the differences based 
on VOCs compounds between adulterated and non-adulterated samples. 

3.2. Identification of adulteration in raw bovine milk with soymilk by E- 
nose 

Gas chromatography-based E-nose is a new type of electronic anal-
ysis instrument which can accurately identify and analyze VOCs with 
the advantages of fast, simple, and good repeatability (M. ALI et al., 
2020b). The response radar maps of two columns (MXT-5 and MXT- 
1701) towards RM and six adulterated samples were shown in the vol-
atile fingerprint established based on E-nose. As shown in Fig. 1, 
response signals of polar and nonpolar columns both indicated that the 
overall spectra profile of non-adulterated and adulterated samples was 
similar, while the heights of multiple peaks were enhanced with the 
increase of SM concentration in RM. The similarity of the overall aroma 
profile indicated that there was little difference in VOCs between RM 
and adulterated samples. But the difference of peak heights revealed 
that the intensity of some VOCs in adulterated samples was higher than 
that of pure RM samples, especially the concentration of SM in RM was 
greater than 10 %. However, it was difficult to classify the concentra-
tions of SM in RM sample only by observing the sensor signals of E-nose, 
thus the signals at the main peak position of 0–70 s were extracted as 
feature data for subsequent chemometrics analysis of PCA and PLS. 

3.3. Analysis of volatile fingerprints of raw bovine milk and soymilk by 
HS-GC-IMS 

To determine the difference of VOCs in E-nose fingerprints between 
RM sample and adulterated samples with different concentration of SM, 
the volatile fingerprints based on HS-GC-IMS was further investigated, 
and VOCs in different samples showed different peak position and in-
tensity. Fig. 2A is the three-dimensional (3D) imaging consisting of ion 
drift time (X - axes), the retention time of gas chromatographic peaks (Y - 
axes), and the intensity of ion signals (Z - axes). Individual points in the 
3D topographic plot indicated the VOCs detected from the sample, and it 
could be visualized that the VOCs in SM were more than those in RM. To 
observe conveniently, two-dimensional (2D) array full-size top view was 
used to compare the difference of VOCs in SM and RM (Fig. 2B), which 
was obtained by normalizing the ion drift time and reactive ion peak 
(RIP) position. Using the RM sample as a reference, the SM sample was 
subtracted by the reference and each dot represented a VOC whose 
signal of intensity was represented through the colour. If the concen-
trations of VOCs were consistent, the background would appear white 
after deduction, red indicated that the VOCs concentration in SM sample 
was higher than that in the reference, while blue meant lower. The re-
sults showed that most VOCs ions appeared at retention times of 
100–500 s and normalized drift times of 1.0–1.7 ms. 

Qualitative descriptions of the VOCs profiles in RM and SM are 
presented below by comparing their retention time and the ion drift time 
from their HS-GC-IMS spectra. A total of 46 VOCs was identified from 
the topographic maps via GC-IMS Library searches. However, many 
VOCs could generate several signals, which represented monomers (M), 
dimers (D), and trimer (T) in volatile fingerprints. The characteristic 
volatile fingerprints for two samples were established in Fig. 3A, where 

Table 1 
Results of raw bovine milk and the milk adulterated with soymilk samples using 
milk composition analysis.  

Sample Fat (g/100 
g) 

Protein (g/ 
100 g) 

Solids-not-fat (g/ 
100 g) 

Raw bovine milk 3.43 ±
0.15a 

3.33 ± 0.08a 8.84 ± 0.20a 

0.5% soymilk 3.38 ±
0.04 cd 

3.27 ± 0.03ab 8.68 ± 0.08ab 

1% soymilk 3.34 ±
0.05b 

3.23 ± 0.03bc 8.57 ± 0.07abc 

5% soymilk 3.33 ±
0.03b 

3.23 ± 0.03bc 8.58 ± 0.08abc 

10% soymilk 3.29 ±
0.03bcd 

3.22 ± 0.02bc 8.54 ± 0.04abc 

15% soymilk 3.27 ±
0.07d 

3.17 ± 0.02 cd 8.43 ± 0.05bc 

20% soymilk 3.16 ±
0.03c 

3.02 ± 0.01d 8.27 ± 0.02c 

soymilk 1.51 ±
0.08e 

2.28 ± 0.09e 5.99 ± 0.11d 

Standards in GB for bovine 
raw milk 

≥ 3.10 ≥ 2.80 ≥ 8.10 

Standards in GB for soymilk ≥ 0.80 ≥ 2.00 ≥ 4.00 

GB represents Food Safety Standard for Raw Milk in China (GB 19301–2010); 
Any results with different superscripts in the same column are statistically sig-
nificant (p < 0.05). The RM samples were adulterated with SM at the concen-
trations of 0.0%, 0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0% (w/w), namely 
0.5 %SM, 1.0 %SM, 5.0 %SM, 10.0 %SM, 15.0 %SM and 20.0 %SM. 
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row represented the detected compound, and the column represented 
the content of the same VOCs in different samples. The brighter signal 
for each compound indicated a higher concentration, and unidentified 
substances were represented by numbers. 

As shown in Fig. 3A and Table 2 9 ketones, 9 aldehydes, 4 alcohols, 3 
esters, 3 terpenes, 1 furan, 1 pyrazine, were identified based on the 
retention time index and normalized drift time of standard substances in 
the database with a tolerable deviation < 5%. Eight substances were 
detected in both RM and SM samples, including acetophenone mono-
mer, acetophenone dimer, benzaldehyde monomer, benzaldehyde 
dimer, furaneol monomer, furaneol dimer, heptanal monomer and 
heptanal dimer, corresponding to the region A of fingerprint (Fig. 3A). 
Diacetyl, 3-octanone, 2-hexanone monomer, 2-butanone monomer and 
2-butanone dimer were only present in RM sample, meaning those 
substances were the characteristic VOCs of RM which were marked as 
area B in Fig. 3A. For SM sample, there were 33 substances detected, 
which were characteristic VOCs of SM, corresponding to region C of the 
fingerprint. Interestingly, trace amounts of acetophenone and 2-hexa-
none in present study were detected, which were not detected in a 
similar study by simultaneous distillation extraction -GC–MS method 
(SACCHI, MARRAZZO, MASUCCI, DI FRANCIA, SERRAPICA & GENO-
VESE, 2020). In addition, acetophenone, styrene, α-pinene, 2,3-pentane-
dione, furaneol and limonene trimers in SM were not detected in 
previous studies, which might be due to low content that simultaneous 
distillation extraction/ solid phase microextraction -GC–MS failed to 
detect (SACCHI et al., 2020). Therefore, it can be proposed that HS-GC- 
IMS was sensitive enough for the detection of VOCs, which could be a 
reliable technology to identify adulteration in RM with different 
concentration. 

3.4. Identification of adulteration in raw bovine milk with soymilk by HS- 
GC-IMS 

HS-GC-IMS was used to analyze the VOCs from RM adulterated with 
different concentrations of SM. As shown in Fig. 3C, the number of 
highlights in 2D spectral highlights were constantly increasing with the 
increase of SM concentration and the dots became brighter. A significant 

difference was observed in VOCs of adulterated samples when the SM 
concentration in RM reached 10% compared to pure RM sample. 
Moreover, in order to distinguish the VOCs between low concentration 
adulterated samples and raw milk, the differential plots were obtained 
by topographic plot deduction of RM plot where the difference even 
between the RM sample adulterated with 0.5% SM and RM could be 
reflected in Fig. 3D. 

As Fig. 3B showed, the fingerprint presented the difference of VOCs 
between pure RM and RM adulterated samples with SM at different 
concentrations (0.5, 1.0, 5.0, 10.0, 15.0, 20.0%). Each row represented 
all the signal peaks detected in RM and adulterated samples, and each 
column represented the signal peaks of the same VOCs in different 
samples. Fig. 3B demonstrated that the VOCs in area A did not change 
significantly with the increase of SM concentration in RM. When the SM 
concentration in RM was 15%, the corresponding VOCs concentration in 
area B significantly decreased compared to the SM concentration<10%. 
The content of VOCs in region C was lower when SM concentration in 
RM was under 5%, while the peak of VOCs was significantly enhanced 
when SM concentration in RM was up to 15%. It was indicated that only 
when the concentration of SM in RM was more than 10%, the volatile 
fingerprints could be clearly distinguished among them (Fig. 3B). 
Therefore, data mining technology was needed to find more information 
and to obtain a more accurate identification of adulteration in RM with 
different concentrations of SM. 

3.5. Discrimination of adulteration levels by principal component analysis 

It was difficult to classify the differences in adulterated samples at 
low-concentration just by observing the E-nose signals and HS-GC-IMS 
spectra. PCA could provide an overview that revealed trends and 
groups of data, which was used to reduce the dimension of multidi-
mensional data matrix, preserving most of the variation in the original 
set of variables (X. WANG et al., 2019). Therefore, PCA was applied to 
give more information about the differences of VOCs in RM with SM at 
different adulterated levels. Before the PCA analysis, the data from E- 
nose and HS-GC-IMS were cleaned, normalized, and scaled to minimize 
background interference. Normalization can eliminate errors from 

Fig. 1. E-nose fingerprints of raw bovine milk and the milk adulterated with soymilk samples at different concentrations. The RM samples were adulterated with SM 
at the concentrations of 0.0%, 0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0% (w/w), namely 0.5 %SM, 1.0 %SM, 5.0 %SM, 10.0 %SM, 15.0 %SM and 20.0 %SM. 
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different sources, such as operation errors, instrument variations, and 
some uncontrollable biological variations. Scaling was used to convert 
concentration of different substances into a scaling coefficient. Three 
major scaling methods were compared: including unit variance (UV) 
scaling, mean centralization (Ctr) scaling and pareto (Par) scaling. The 
interpretation, predictive ability and separation of data treated by Par 
were superior to those of UV and Ctr scaling. Thus, the data were 
analyzed using the Par scaling before the cluster analysis. For the data of 
E-nose, five main components were extracted after PCA analysis from 
the 21 samples × 70 response values data matrix, with the value of R2 =

96.1% and Q2 = 0.8940 (cumulative prediction rate of the model). The 
contribution rates of the first principal component (PC1) and the second 
principal component (PC2) were 70.3% and 13.1%, respectively, and 
the total contribution rate of the first two PCs was 83.1%. It can be seen 
that the first two PCs contained most of the variable information, so the 
first two PCs were selected for data visualization. The analysis results of 
2D scatter plots with PC1 as the × - axis, and PC2 as the y – axis in 
Fig. 4A. The score chart showed that the clear trend of separation trend 
between RM sample and adulterated samples with SM at different con-
centrations was obvious, even for samples with low adulteration 

concentrations such as 0.5% and 1%, whose score tended to right with 
the increase of adulteration concentration. 

With regards to HS-GC-IMS fingerprint spectrum, 21 samples × 46 
selected compounds data matrix was used for PCA analysis, and five 
main components were extracted with R2 of 95.0% and Q2 of 0.816. As 
shown in Fig. 4B, the first two principal components explained 70.9% 
and 12.0%, respectively, and the total contribution rate of the first two 
PCs were up to 82.9%. The score plot showed a general separation trend 
between RM sample and adulterated samples, accompanied with slight 
overlapped, particularly for the distance between the RM adulterated 
with 5% and 1%. There was an obvious distance between the RM 
adulterated sample with 0.5% SM and the pure RM sample, and the 
higher adulteration concentration was, the more inclined the score to 
the left side. Thus, RM sample adulterated with different concentrations 
could be well discriminated based on the E-nose and HS-GC-IMS data 
using the PCA model. The results also showed that PCA was a powerful 
and ideal general dimension reduction method when dealing with more 
than two different data. H. LI et al. (2022) applied HS-GC-IMS and PCA 
model for assessing milk quality through screening potential VOCs (such 
as 2-butanone and diacetyl) which were associated with deterioration. 

Fig. 2. 3D (A) and 2D (B) topographic plots of raw bovine milk and soymilk.  
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Fig. 3. The fingerprint of volatile profiles in raw bovine milk and soymilk (A) and in raw bovine milk and the milk adulterated with soymilk samples of different 
concentrations (B), 2D-topographic plots (C) and subtraction topographic plots (D) of volatile substances in raw bovine milk and the milk adulterated with soymilk 
samples of different concentrations (0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0%, w/w). 
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Another study revealed that GC–MS in combination with PCA could 
identify SM adulteration with RM as low as (1–2)% by determining fatty 
acids (JARIYASOPIT et al., 2021). However, PAC failed to predict the 
concentration of SM adulteration in RM samples and the establishment 
of quantitative model needs further help of more powerful technologies. 

3.6. Quantification of adulteration in raw bovine milk with soymilk by 
HS-GC-IMS vs E-nose data 

In this step, the PLS model was applied to predict the concentration 
of SM adulteration in RM samples based on the data of E-nose and HS- 
GC-IMS. Parameters for PLS models were shown in Table 3. Small 
value of RMSEC/RMSEP and higher value of Rc

2/Rp
2 indicated a better fit 

for the PLS model to the experimental data. In E-nose models, the RC
2 and 

RMSEC were 0.9952 and 0.5498 in calibration set, the RP
2 and RMSEP 

were 0.9931 and 0.7390 in prediction set. The ratio of RPD, LOD and 
LOQ were 10.02, 1.53% and 5.06%, respectively. The results suggested 
that the model based on E-nose data was also suitable for quantitative 
detection of SM adulteration in RM. 

For HS-GC-IMS models, the performance of SM concentration pre-
diction was slightly superior to that of E-nose models. The RC

2 of the 

calibration set was 0.9969, and the RP
2 of the prediction set was 0.9958, 

showing the prediction values of SM concentration were in excellent 
agreement with the true value. The RMSEC and RMSEP were 0.3642 and 
0.5621, indicating the high robustness of the calibration models. The 
obtained RPD was up to 13.27, when PLS models with RPD > 2 were 
recommended for screening purposes, and RPD greater than 3 was good 
for prediction (VESTIA, BARROSO, FERREIRA, GASPAR & RATO, 
2019). LOD and LOQ were 1.43% and 4.72%. The obtained results 
indicated that HS-GC-IMS combined with PLS model was suitable for 
quantitative detection of SM adulteration in RM. In other research on 
adulteration detection of cow milk in buffalo and goat milk, the detec-
tion level was higher than 5% and R2 values were in the range of 
0.96–0.98 by FTIR combined with PLS-discriminant analysis (SEN, 
DUNDAR, UNCU & OZEN, 2021). The dispersions of calibration set 
composed of 21 samples based on HS-GC-IMS and E-nose data intui-
tionally (Fig. 4C) showed that most sample points were evenly distrib-
uted on the line, which confirmed that both HS-GC-IMS and E-nose 
technologies had the potential for rapid detection of possible adultera-
tion in RM with SM. However, HAN et al. (2022) reported poor per-
formance in quantitative analysis of adulteration level of safflower seed 
oil by E-nose and GC-IMS combined with PLS, indicating that the same 

Table 2 
Qualitative detection of volatile compounds in raw bovine milk and soymilk using GC–IMS.  

Number Compound CAS# Formula MW RI Rt [s] Dt [RIPrel] 

1 Diacetyl 431–03-8 C4H6O2  86.1 603.0  120.849  1.1739 
2 2-Butanone(D) 78–93-3 C4H8O  72.1 603.2  120.924  1.2382 
3 2-Butanone(M) 78–93-3 C4H8O  72.1 599.6  119.823  1.0592 
4 3-Octanone 106–68-3 C8H16O  128.2 996.7  469.600  1.3016 
5 Acetophenone(M) 98–86-2 C8H8O  120.2 1064.7  611.373  1.5634 
6 Acetophenone(D) 98–86-2 C8H8O  120.2 1066.5  615.383  1.1847 
7 Furaneol(M) 3658–77-3 C6H8O3  128.1 1090.1  669.401  1.2212 
8 Furaneol(D) 3658–77-3 C6H8O3  128.1 1088.4  665.512  1.5934 
9 2-Hexanone(M) 591–78-6 C6H12O  100.2 781.4  212.717  1.1732 
10 2-Hexanone(D) 591–78-6 C6H12O  100.2 790.1  219.742  1.4963 
11 Acetoin 513–86-0 C4H8O2  88.1 708.8  162.716  1.3490 
12 Propanal 123–38-6 C3H6O  58.1 509.4  92.572  1.0486 
13 Butanal 123–72-8 C4H8O  72.1 590.8  117.169  1.2924 
14 Benzaldehyde(M) 100–52-7 C7H6O  106.1 957.6  404.092  1.1472 
15 Benzaldehyde(D) 100–52-7 C7H6O  106.1 955.7  401.095  1.4663 
16 Octanal 124–13-0 C8H16O  128.2 1005.1  485.428  1.4079 
17 Heptanal 111–71-7 C7H14O  114.2 909.9  338.855  1.3423 
18 Heptanal 111–71-7 C7H14O  114.2 895.6  321.750  1.6870 
19 Ethanol C64175 C2H6O  46.1 452.9  75.520  1.0563 
20 1-Hexanol 111–27-3 C6H14O  102.2 866.2  289.637  1.3240 
21 Ethyl acetate(M) 141–78-6 C4H8O2  88.1 614.5  124.414  1.0944 
22 Ethyl acetate(D) 141–78-6 C4H8O2  88.1 615  124.566  1.3394 
23 2-Methylpyrazine(M) 109–08-0 C5H6N2  94.1 813.4  239.459  1.1180 
24 2-Methylpyrazine(D) 109–08-0 C5H6N2  94.1 803.9  231.223  1.3917 
25 1-Pentanol Monomer 71–41-0 C5H12O  88.1 762.6  198.100  1.2488 
26 1-Pentanol Dimer 71–41-0 C5H12O  88.1 760.4  196.499  1.5114 
27 2-Pentanone (M) 107–87-9 C5H10O  86.1 683.5  149.898  1.3662 
28 2-Pentanone(D) 107–87-9 C5H10O  86.1 679.8  148.200  1.1230 
29 2-Heptanone(M) 110–43-0 C7H14O  114.2 886.6  311.615  1.2642 
30 2-Heptanone(D) 110–43-0 C7H14O  114.2 886.1  311.002  1.6237 
31 Pentanal(M) 110–62-3 C5H10O  86.1 724.1  171.700  1.1889 
32 Pentanal(D) 110–62-3 C5H10O  86.1 694.2  155.014  1.4199 
33 n-Nonanal 124–19-6 C9H18O  142.2 1099.4  691.015  1.4740 
34 n-Nonanal 124–19-6 C9H18O  142.2 1099.0  690.080  1.9359 
35 Hexanal(M)) 66–25-1 C6H12O  100.2 790.9  220.349  1.269 
36 Hexanal(D) 66–25-1 C6H12O  100.2 790.4  219.959  1.5541 
37 Limonene (M) 138–86-3 C10H16  136.2 1025.1  525.229  1.2134 
38 Limonene (D) 138–86-3 C10H16  136.2 1024.3  523.622  1.2900 
39 Limonene (T) 138–86-3 C10H16  136.2 1025.4  525.812  1.6418 
40 Styrene 100–42-5 C8H8  104.2 869.4  292.998  1.4051 
41 Pinene 80–56-8 C10H16  136.2 949.0  391.279  1.6751 
42 2–3-Pentanedione 600–14-6 C5H8O2  100.1 714.1  165.750  1.2320 
43 2,3-Pentanedione 600–14-6 C5H8O2  100.1 716.9  167.328  1.3220 
44 (Z)-3-Hexenol 928–96-1 C6H12O  100.2 852.3  275.555  1.2344 
45 isoPropyl acetate 108–21-4 C5H10O2  102.1 654.1  137.756  1.1622 
46 2-Pentylfuran 3777–69-3 C9H14O  138.2 989.3  456.240  1.2481 

Mw represents molecular mass, RI represents relative retention index on MXT-5, Rt represents retention time of gas chromatography, Dt represents relative drift time of 
ion mobility spectrometry, M represents monomer, D represents dimer, T represents trimer. 

H. Tian et al.                                                                                                                                                                                                                                    



Food Chemistry: X 18 (2023) 100696

8

Fig. 4. PCA analysis of E-nose (A) and HS-GC-IMS (B), linear regression plots of true and prediction concentration of soymilk in milk validation sample set obtained 
by HS-GC-IMS and E-nose (C). The RM samples were adulterated with SM at the concentrations of 0.0%, 0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0% (w/w), namely 
0.5 %SM, 1.0 %SM, 5.0 %SM, 10.0 %SM, 15.0 %SM and 20.0 %SM. 
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detection method was greatly affected by different mechanisms. More-
over, HS-GC-IMS is more usable to E-nose to some extent, which is in line 
with previous studies (Gu et al., 2020). This may be due to the fact that 
GC-IMS is extremely sensitive to low ppbv (parts per billion by volume) 
levels, thus components with trace content still could be detected among 
samples for significant differences (Wang et al., 2020b). Another pre-
dominant factor might be the influence of environmental conditions 
(temperature, humidity) on the responses of E-nose sensor, which will 
lead to some errors (DAMIANI et al., 2020). Additionally, a similar study 
on cow-buffalo milk using attenuated total reflectance Fourier transform 
infrared spectroscopy (ATR-FTIR) has also been reported, obtained 
inferior results in RC

2 = 0.99 and RP
2 = 0.92 (JAISWAL, JHA, BORAH, 

GAUTAM, GREWAL & JINDAL, 2015). Moreover, the LOD of present 
study (1.43% for HS-GC-IMS and 1.53% for E-nose) was lower than the 
previous results (1.75%) reported by GAUTAM et al. (2017). Therefore, 
as shown in Table S1, GC-IMS and E-nose combined with chemometric 
methods as rapid, non-destructive, and effective tools showed more 
convincing performances for the detection of adulteration in RM with 
SM which also provided a potential to predict the concentration of SM in 
RM. 

4. Conclusions 

In the present study, the volatile fingerprints of RM and adulterated 
sample with SM were established using fast Gas chromatography-based 
E-nose and HS-GC-IMS. Significant differences were observed between 
RM and SM in VOCs, while RM had fewer types compared to SM. The 
obtained data from HS-GC-IMS showed that diacetyl, 3-octane, 2-hex-
anone monomer, 2-butanone monomer and 2-butanone dimer were only 
identified in RM while 33 substances, e.g., butanal, isopropyl acetate 
was just detected in SM. E-nose data combined with PCA could afford a 
clearer distinction of adulterated and non-adulterated samples accord-
ing to VOC profiles than that with HS-GC-IMS data, and those results 
were also better than the independent E-nose or HS-GC-IMS data on 
classification. Subsequently, the feasibility of SM adulterated levels in 
RM detected using HS-GC-IMS and E-nose fingerprints was assessed by 
PLS models. The RMSEP, RP

2 of the prediction, and RPD of HS-GC-IMS 
and E-nose PLS model were 0.5621 and 0.7390, 0.9958 and 0.9940, 
13.27 and 10.02, respectively. Meanwhile, the results indicated that the 
PLS models could rapidly identify SM levels adulterated in RM and the 
detection limits of HS-GC-IMS quantitative models was 1.53% which 
was superior to that of E-nose (1.43%). Both HS-GC-IMS and E-nose 
methods have the potential to recognize SM adulteration in RM with 
little sample preparation, and HS-GC-IMS fingerprinting could be used 
as an alternative tool for a truly fully automatable, labor-saving, cost- 
efficient, and in particular highly sensitive method. Nevertheless, HS- 
GC-IMS failed to detect alkane compounds, and there were still many 
signal peaks that had not been identified, so the HS-GC-IMS database 
needs further to be supplemented and refined. Follow-up studies are still 
needed to expand the scale of samples to improve the stability and 
reliability of models. 
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