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Abstract

Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify
a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a
neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a
non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny
with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-
driven molecular biology approaches, we detected a ,2,100 nt transcript (LeishTER) that contains a 59 spliced leader (SL)
cap, a putative 39 polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the
logarithmic and stationary growth phases of promastigote forms. A 59SL capped LeishTER co-immunoprecipitated and co-
localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary
structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA
motif-containing helix II, representing the template boundary element. This study paves the way for further investigations
on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
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Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP. EJRV is a post-doctoral fellow from Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico – CNPq, Brazil [PDE 202223/2012-4]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: peter.myler@seattlebiomed.org (PM); micano@ibb.unesp.br (MINC)

. These authors contributed equally to this work.

Introduction

Leishmania spp. are trypanosomatid protozoa, considered

ancient eukaryotes whose nuclear genome is organized in linear

chromosomes [1,2]. Like most eukaryotes, their chromosomes end

termini are characterized by sequences known as telomeres [3].

Leishmania telomeres are formed by conserved 59-TTAGGG-39

telomeric repeats that typically end in a 39 overhang that serves as

substrate for repeat addition by telomerase [3–6], a ribonucleo-

protein enzyme minimally composed of two catalytically essential

subunits: the telomerase reverse transcriptase protein (TERT) and

the telomerase RNA (TER) component, which contains the

template that specifies the sequence of the telomeric repeats [7,8].

Enzyme activity has been detected in cell extracts of promastigotes

of three Leishmania species, and also from different Trypanosoma
brucei and Trypanosoma cruzi replicative stages [9–11]. The

trypanosomatids’ TERT component is one of the largest

telomerase (MW ,156 kDa) described so far and the TERT

enzyme from Leishmania species shows greater sequence similarity

(86–95%) with each other than with the telomerases of other

eukaryotes [12,13]. Although trypanosomatid TERT contains

some important amino acid substitutions within the conserved

TERT motifs, the Leishmania and Trypanosoma TERT compo-

nents present all the conserved structural features shared with

other TERTs, such as the N-terminus motifs that are essential for

telomerase RNA (TER) binding and enzyme activity [14–16], the

central domain that contains a less conserved telomerase-specific

T motif, the reverse transcriptase motifs that are essential for

enzyme activity, and a less conserved C-terminal domain [12,17–

20]. Biochemically, Leishmania and Trypanosoma TERTs resem-

ble other telomerases, as they are able to add TTAGGG repeats to

the 39 end of the G-rich telomeric strand and fulfill other essential

criteria for telomerase activity, such as RNase A sensitivity.

Enzyme processivity differs among trypanosomatids, with T.
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brucei TERT being the most processive compared to T. cruzi and

Leishmania TERTs [9–11]. The purification of Leishmania
amazonensis TERT enzyme was only achieved using semi-purified

protein extracts fractionated on a G-rich telomeric DNA affinity

column (G-DNA), indicating that similar to T. cruzi telomerase,

Leishmania TERT bound tightly to an antisense 29O-methyl

oligonucleotide complementary to the T. brucei TER template

sequence [10,11]. This was the first hint that the Leishmania TER

(LeishTER) template sequence was similar to the predicted

minimum model for the RNA template region used by T. brucei
telomerase [9].

Recently, with the characterization of the telomerase RNA

molecule of T. brucei (TbTER), it was possible to confirm that the

TbTER template sequence 59-CCCTAACCCTA-39 differs from

the previously predicted template (59-CCCTAACCC-39) only by

having two nucleotides more at its 39 end [9,21]. In addition,

TbTER is processed through trans-splicing and was shown to

interact and to copurify with TbTERT in vivo. Deletion or

silencing of TbTER causes progressive shortening of telomeres and

mutations in its template domain results in corresponding mutant

telomere sequences, demonstrating that in T. brucei it is essential

for telomerase activity [21,22]. Moreover, like TERs from

different eukaryotes, TbTER differs greatly in nucleotide sequence

and size [21,22]. It shares some secondary structural elements

conserved in most, but not all, eukaryotic TERs, such as a putative

pseudoknot domain, that includes at the 59 end the TER template

motif, in addition to helix I and helix II, the latter of which

contains a putative template boundary element (TBE) [23].

TbTER also binds the core proteins of the C/D small nucleolar

RNA (snoRNA) family and associates with the methyltransferase-

associated protein, whose homolog also binds to mammalian TER

[22].

Here, we report the identification and characterization of the

putative TER components from two Leishmania species, Leish-
mania major (LmTER) and Leishmania amazonensis (LaTER),

using in silico and experimental approaches. Leishmania TERs

(LeishTER), like TbTER, appear to be transcribed by RNA pol II,

as they are located in the sense orientation within an mRNA

directional gene cluster (DGC), and the putative mature RNA was

amplified using the 39 nt spliced leader (SL) RNA sequence

commonly positioned at the 59 end of most mature trypanosoma-

tids RNA pol II transcribed RNAs. The 39 end of both LeishTERs

was also amplified by 39 RAcE using oligo-dT and total RNA,

resembling the mature form of TbTER [21]. LeishTERs also

contain a template domain that is almost identical to TbTER

template sequence. Using immunofluorescence coupled with RNA

in situ hybridization, we demonstrated that LmTER co-localizes

with LmTERT in parasite nucleus. In addition, a 59SL capped

LmTER immunoprecipitates with the telomerase reverse tran-

scriptase component, suggesting that the mature transcript is part

of the ribonucleoprotein complex. We predicted a partial

secondary structure of Leishmania TER that shows some

conserved structural features shared among its TbTER counter-

part and other TERs.

Further experiments are required to elucidate the biological

importance of the LeishTER molecule for parasite survival and,

thus, whether it will serve as a target for anti-parasite therapy. This

discovery would be of great significance because the genus

Leishmania comprises several species that cause leishmaniasis,

which are neglected tropical diseases that threaten hundreds of

millions of people around the world but lack treatment options,

vaccines and prophylaxis protocols (World Health Organization

2010).

Materials and Methods

in silico analyses of LeishTER candidates
We started the in silico screening for the Leishmania TER gene

performing a sensitive BLASTn search [24] (-FF –W7 –m8)

against L. major, L. infantum, L. braziliensis, L. mexicana and L.
tarentolae genomes (TriTrypDB 6.0) using as query the template

sequence that consisted of two tandem telomeric hexamer repeats

(THR) identified previously ([6] and Cano, MIN, Personal

Communication). Since the telomeric 39 overhang may vary

between Leishmania species [6,25], we used all six iterations of two

copies of telomeric hexamer repeats (THRs) as follow: query_1: 59

CCTAACCCTAAC 39; query_2: 59 CTAACCCTAACC 39;

query_3: 59 CCCTAACCCTAA 39; query_4: 59 ACCCTAA-

CCCTA 39; query_5: 59 AACCCTAACCCT 39; query_6: 59 T-

AACCCTAACCC 39.

A PERL script was written to discard the great number of

BLAST hits falling within the telomeres, which must have a length

defined by the user. We arbitrarily chose a value of 9 kb from both

chromosome ends to filter out the BLAST hits within those regions

in each chromosome from all species. The template query_4 was

the only one presenting a perfect match in a syntenic locus in all

Leishmania genomes analyzed, and this region was subjected to a

deeper analysis on a comparison to other trypanosomatids (See

results, Table 1 and Table 2).

We ran tBLASTx [24] from the blast+ package and used its

output as an input to the ACT tool [26] to compare the synteny

regarding the TER locus among L. major and L. mexicana chr25,

Trypanosoma brucei chr11 and Crithidia fasciculata chr28 (see

results, Figure 1).

ClustalW [27] and Jalview [28] were used for the generation

and visualization of global multiple alignments, respectively. The

RNA secondary structures were determined by first running

RNAalifold [29], using as input the.aln ClustalW file containing

the expected TER sequences for all five Leishmania species

analyzed, and then the constraints from the consensus structure

were applied to the individual TER modeling by the execution of

mfold with default parameters [30]. Pknots [31], KnotSeeker [32],

and Turbofold [33] algorithms were applied without any success

in our attempt to detect pseudoknots along the entire Leishmania
TER sequences.

Cell lines and cell culture
Promastigotes forms of L. major LT252 (MHOM/IR/1983/

IR) and L. amazonensis (MHOM/BR/73/M2269) were cultured

at 26uC in M199 medium supplemented with 10% heat-

inactivated fetal bovine serum as previously described [34].

L. major and L. amazonensis total RNA isolation
Total RNA from L. major and from L. amazonensis promas-

tigotes and that obtained from nuclear protein extracts and IP

isolates were isolated using TRIzol reagent (Invitrogen) according

to the manufacturer’s instructions. Extracted RNAs were solubi-

lized with 50 mL of water and treated with RNase free-DNase I

(Life Technologies) in 1X DNase I buffer (10 mM Tris-HCl,

2.5 mM MgCl2, 0.5 mM CaCl2, pH 7.6) for 15 minutes at room

temperature. The reaction was inactivated by the addition of 1 ml

25 mM EDTA solution and heating for 10 min at 65uC.

Northern blot analyses
Total RNA isolated from L. major and from L. amazonensis

promastigotes was fractionated in a 1.5% agarose/2.0 M formal-

dehyde gel electrophoresis. A 347 bp LmTER fragment generated

by PCR using the e+f primers (Table S1) was labeled with a-dGTP

Leishmania Telomerase RNA (LeishTER)
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[32P] and used as the specific probe. A membrane containing

transferred RNAs was pre-hybridized with solution I (2X SSC,

0.5% SDS, 0.1% Ficoll, 0.1%PVP, 0.1% BSA, 0.1 mg/mL

ssDNA) and hybridized with LmTER probe in solution II (2X

SSC, 0.5% SDS, 0.02% Ficoll, 0.02% BSA, 0.1 mg/mL ssDNA).

The membrane was washed twice with wash solution I (2x SSC,

0.1% SDS) at room temperature, once with wash solution II (1x

SSC, 0.1% SDS) at room temperature, once with wash solution II

at 65uC and finally twice with wash solution III (0.2X SSC, 0.1%

SDS) at 65uC. The membrane was exposed up to 7 days at

280uC.

59 and 39 Rapid Amplification of cDNA Ends (59 and 39

RAcE)
To map both the 59 and the 39ends of the LmTER transcript,

cDNA was synthesized from total RNA (1.5 mg) using the

QIAGEN OneStep RT-PCR Kit and using respectively the

combination of primers a+d [Forward - spliced leader sequence (5’

RAcE) and Reverse - (5’ RAcE)] and g+h [Forward (39RAcE) and

Reverse - oligo dT (39RAcE)] (for primer sequences and names see

Table S1). Thermal cycler conditions for 59 RAcE were

30 minutes at 50uC for reverse transcription, 15 minutes at

95uC for the initial PCR activation step and 40 cycles of

denaturation for 45 seconds at 95uC, annealing for 1 minute at

57uC and extension for 1 minute at 72uC. Thermal cycler

conditions for 39 RAcE were 30 minutes at 50uC for reverse

transcription, 15 minutes at 95uC for the initial PCR activation

step and 60 cycles of denaturation for 45 seconds at 95uC,

annealing for 1 minute at 58uC and extension for 1 minute at

72uC.

Figure 1. Protein-coding gene synteny view at the TER locus of trypanosomatid species from three different genera. tBLASTx
comparisons were performed, followed by a visualization of the results using the ACT tool. Gray bars represent the forward and reverse strands of
DNA, and the numbers between them correspond to the absolute coordinates within the chromosome where this syntenic locus is located: L.
mexicana (LmxM) and L. major (LmjF) chromosome 25, C. fasciculata (CfaCl) chromosome 28 and T. brucei (Tb927) chromosome 11. The reddish-pink
lines between sequences represent sequence similarity from tBLASTx analyses. The white box features correspond to CDSs, and the blue ones
indicate the TER gene of both L. major and T. brucei. Blue arrows point to the conserved 12 nt TER-template sequence (59 ACCCTAACCCTA 39) found
in all species at this particular locus (in T. brucei it is 11 nt, 59 CCCTAACCCTA 39). TriTrypDB gene accession numbers are written inside each white box
and the last digits placed above the boxes. The two protein-coding genes immediately upstream of TbTER (Tb927.11.820 and 830) appear to be
Trypanosoma-specific, whereas LmjF.25.0840, 0850 and 0860 are indicative of Leishmania-/Crithidia-specific genes. Despite the synteny disruption
observed on the protein-coding content nearby the TER gene, this non-coding RNA seemed to be retained by evolutionary pressure on the same
syntenic position in the three distinct genera.
doi:10.1371/journal.pone.0112061.g001
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Cloning and characterization of 59 and 39 RAcE products
The 59 and 39 RAcE products were purified from agarose gel

using the Wizard SV Gel and PCR Clean-Up System (Promega)

and then inserted into the TOPO TA Cloning vector (Invitrogen).

The resulting plasmids were analyzed by EcoRI restriction enzyme

digestion, and positive clones were sequenced with M13 primers.

The sequences generated were aligned against the LmTER

predicted sequence.

Indirect immunofluorescence (IIF)
Exponentially growing promastigote cells were washed with 1X

PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM

KH2PO4) and fixed in 1% (v/v) formaldehyde in 1X PBS for

5 min at room temperature. Cells were then treated with 0.1%

Triton-X 100 in 1X PBS for 10 min and free aldehyde molecules

were neutralized with 0.1 M glycine in 1X PBS for 10 min at

room temperature. Cells that were treated with RNase A

(Invitrogen) were washed with 1X PBS and then incubated with

20 mg of RNase A at 37uC for 30 min. Cells not treated with

RNase A were washed with 1X PBS and incubated with 1X PBS

at 37uC for 30 min. RNase A-treated and -non-treated cells were

washed with 1X PBS and incubated with rabbit anti-LaTERT

serum, obtained from recombinant Leishmania amazonensis
TERT N-terminal region containing a putative telomerase RNA

binding domain (TRD) (Giardini & Cano, unpublished data);

LaTERT and LmTERT share about 95% identity (LmTERT)

[12]). a-LaTERT was diluted (1:2000) in blocking solution (4%

(w/v) bovine serum albumin) for 12 h at 4uC. Goat anti-rabbit

IgG (2 mg/mL) labeled with Alexa Fluor 555 (Invitrogen) was

diluted 1:3000 and used as the secondary antibody. Cells were

deposited on poly-L-lysine coated slides and used in fluorescence

RNA in situ hybridization assays.

Indirect immunofluorescence coupled with RNA in situ
hybridization

Poly-L-lysine-coated slides containing RNase A-treated and

non-treated log-phase promastigote cells were dehydrated using an

ethanol series (70%, 80% and 90%) and incubated with

0.3 mg.mL21 of TelG-FITC PNA probe (Panagene) diluted in

1X hybridization buffer (70% formamide, 20 mM Tris-HCl,

pH 7.0 and 1% BSA) at 4uC for 12 h in the dark using a 25 ml

frame (Gene Frame, Pierce Biotechnology). Thereafter, the slides

were washed with 1X washing buffer (50 mM Tris-HCl, pH 7.6)

and dehydrated again using 70%, 80% and 90% ethanol.

VECTASHIELD Mounting Medium with DAPI (Vector Labs)

was used as anti-fade mounting solution and to stain nuclear and

kinetoplast DNA. Finally, slides were sealed using coverslips. For

these experiments, images were analyzed with a Nikon 80i

fluorescence microscope and captured with a digital camera (DS-

Fi1, Nikon). When necessary, images were superimposed using

NIS elements software (version Ar 3.10). The parasites cultures

used for the FISH-IF analysis were not synchronized since we were

able to morphologically discriminate L. major promastigote cell

cycle phases based on a previous report [35].

Immunoprecipitation (IP) and western blot analyses
Two hundred micograms of nuclear protein extract obtained

according to [9] was used as input in IP assays, in conjunction with

10 mg of rabbit anti-LaTERT serum or 10 mg of the correspond-

ing pre-immune serum as control. The IP assays were performed

using Dynabeads Protein A (Novex by Life Technologies)

according to the manufacturer9s instructions. At the end of the

assay, one-tenth of each IP eluate and 10% of the input were

fractionated by 12% SDS-PAGE and transferred to nitrocellulose

membranes (Bio-Rad) in transfer buffer (48 mM Tris-HCl,

pH 8.3, 39 mM glycine, 20% methanol (v/v)) at 16uC. The

membranes were probed with mouse anti-LaTERT and rabbit

anti-LmNOP1 (control) used as primary antibodies. Goat anti-

rabbit IgG (H+L) and goat anti-mouse IgG (H+L) HRP-

conjugates (Bio-Rad) were used as secondary antibodies. The

reactions were revealed using the ECL western blotting analysis

system (GE Healthcare) according to the manufacturer’s instruc-

tions.

Amplification of LmTER from protein extracts and from IP
eluates

Total RNA from protein extract (input) and IP eluates were

obtained using TRIzol reagent (Invitrogen) as described above. A

QIAGEN OneStep RT-PCR Kit was used to amplify cDNAs. For

LmTER amplification, we used three combinations of primers a+
d, e+f, and c+d (see Table S1). The primers Forward - (RT-PCR

control) and Reverse - (RT-PCR control) were used to amplify L.
major histone H2A cDNA fragment (,150 bp), used as a control

(see Table S1). Other control reactions included amplification of

both cDNAs in the absence of reverse transcriptase (Superscript II,

Life Technologies), in the absence of RNA, or using RNA

obtained from pre-immune serum IP extracts.

Results

In silico identification of the putative TER locus within
Leishmania genomes

We searched the five publically available Leishmania genomes

with all six iterations of two copies of the telomeric hexamer repeat

(TTAGGG) using BLASTn [24] (see Methods), based on the

recently described T. brucei TER template, which contains an 11-

nt sequence complementary to the telomeric 39 overhang sequence

[9,21,22], and the cloned telomeric terminus of L. major Friedlin

[36] although the exact nature of the overhang varies between

species [6,25]. In L. major (the species with the best assembled

genome), after running an ad-hoc PERL script to eliminate

BLAST hits within the telomeres, only two non-telomeric loci

showed hits (Table 1). Five out of six queries matched the same

region on chromosome 28, while one (query_4) showed a unique

match on chromosome 25. However, only the latter (between the

LmjF.25.0860 and LmjF.25.0870 protein-coding genes) showed

matches at syntenic loci in all four other Leishmania species

(Table 2). Thus, we concluded that this region contains the

putative TER locus in Leishmania.

LmjF.25.0870 is orthologous to Tb927.11.0850, which is the

second gene downstream of the TER locus in T. brucei, so we

explored the synteny surrounding the putative TER locus in the

genomes of three different trypanosomatid genera by using the

ACT tool [26] to visualize tBLASTx comparisons of chr25 from L.
major and L. mexicana, chr28 from Crithidia fasciculata and

chr11 from T. brucei (Figure 1). While L. major and L. mexicana
showed perfect synteny throughout the entire locus, C. fasciculata
and T. brucei contained an additional protein-coding gene

(CfaC1.28.1200 and Tb927.11.840) immediately downstream

of the TER locus. Conversely, T. brucei appeared to lack the three

protein-coding genes immediately upstream of the TER locus in

the other species, but the synteny resumed more 59 at the

Tb927.11.0810 gene. These results support previous findings that

Crithidia is evolutionarily closer to Leishmania than to Trypano-
soma [37,38].

Multiple sequence alignment of all five Leishmania genomes

revealed a high degree of sequence conservation throughout most
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of the 4.5-kb inter-CDS region containing the TER gene (see

Figure S3), but especially surrounding the putative TER template

sequence (Figure 2). Searches for non-coding RNA domains using

the RNAspace webserver platform [39] revealed a,45 nt-long

small nucleolar (sno) RNA domain ,300 nt downstream of the

putative TER template sequence in four species (LmjF, LinJ,

LmxM and LtaP) that best matches snoRNAU90 (or scaRNA7), a

C/D box snoRNA found in human Cajal bodies [40].

Characterization of the LmTER transcript
Northern analysis of RNA extracted from L. major promasti-

gotes using a 347-nt probe specific for the putative LmTER locus,

identified a major transcript of ,2,100 nt (Figures 3B and 3C) and

a similar result was obtained for L. amazonensis (Figure S1). We

also found that both LmTER and LaTER RNAs were expressed at

similar levels in the logarithmic and stationary growth phase

(Figure 3C and Figure S1). Taking into account that trypanoso-

matid ncRNAs transcribed by RNA polymerase II, such as

snoRNAs and TbTER, are trans-spliced and polyadenylated

(Figure 3A) [21,22,41], we performed both 59 and 39 rapid

amplification of cDNA ends (RAcE) PCR to respectively identify

the SL site at the 59 end and the polyA tail at the 39end of the

LmTER transcript. First strand cDNA synthesis with internal

primers b or d (Figure 3B and Table S1) followed by second strand

synthesis using the SL-specific primer a (Figure 3B and Table S1)

revealed products of 103 bp and 276 bp for the 59RAcEs

(Figures 3B and 3E). The 39RAcE revealed a product of ,500 bp

(Figures 3B and 3E), using oligo dT-specific primer h for the first

strand cDNA synthesis and an internal primer g for the second

strand (Figure 3B and Table S1). Sequencing of the 59RAcE PCR

products (Figure S2) mapped the 59 SL site to the position 333,307

on L. major chromosome 25 (Figure 2), while the 39RAcE product

size is indicative of a polyA site at position 335,419 on the same

chromosome. These results are consistent with SL and PolyA sites

previously assigned to this genomic locus by RNA-seq experiments

(tritrypdb.org). On the other hand, RT-PCR using primers c+d,

showed a 550 bp cDNA product (Figure 3D), presumably

representing the longer polycistronic transcript (Figures 3A and

3B). Automated sequencing of this cDNA product confirmed they

came from the targeted locus (data not shown).

LmTER forms a ribonucleoprotein complex with LmTERT
Immunoprecipitation assays were conducted to identify the

LmTER transcript that formed a complex with the telomerase

reverse transcriptase (TERT) protein component in protein

parasite extracts. Western blot analysis of L. major S100 nuclear

extracts immunoprecipitated with rabbit anti-LaTERT serum

confirmed the presence of LmTERT (MW 156kDa) in both

parasite nuclear extract (input 10%) and IP eluate (Figure 4A

upper panel), while the LmNOP1 (MW ,70 kDa) control was

present only in the parasite nuclear extract (input 10%) (Figure 4A

bottom panel) and thus, was not immunoprecipitated by anti-

LaTERT, confirming anti-LaTERT specificity.

Total RNA isolated from the IP eluates shown in figure 4A was

used to amplify fragments of the LmTER transcript using RT-

PCR. The results of RT-PCR using primer pairs a+d and e+f

amplified products of expected sizes, respectively ,276 bp and

,347 bp (Figures 4B and 4C). We were not able to amplify the

39end of the IP LmTER using primers g+h (data not shown), thus,

we cannot certify that the LmTER in complex with LmTERT is

polyadenylated. In addition, the reaction with primers c+d did not

amplify any product from the IP extract (data not shown),

probably because primer c is located upstream of the expected SL

site for the mature LmTER transcript. This result gives support to

the evidence that there might be only one SL site for the mature

LmTER (SL at position 333,307 on chromosome 25, as mentioned

above) and that only the mature transcript co-immunoprecipitates

with the LmTERT component. The pre-immune sera did not

immunoprecipitate any of the tested proteins from the parasite

extract and thus, no RNA was isolated from these reactions. As a

Figure 2. Global multiple alignment of the intercoding region on chromosome 25 where LeishTER is located. Coordinates are relative to
the first base after the STOP codon of the respective CDSs: L. major (LmjF.25.0860), L. infantum (LinJ.25.0890), L. mexicana (LmxM.25.0860), L. tarentolae
(LtaP25.0910) and L. braziliensis (LbrM.25.0740). The differently shaded colored regions represent the 12 nt template sequence (gray), 59-C[C/T]GTCA-39
motif that is part of the template boundary element (TBE) (pink), snoRNA domains found by the RNAspace webserver [39] (magenta, the one at
position 2216–2259 in LmjF and aligned to other three species is part of snoU90 (or scaRNA7), which is a C/D box snoRNA) and splice acceptor sites
(green) detected by RNA-seq (provided by Myler lab and deposited on tritrypdb.org for L. major). ClustalW [27] and Jalview [28] were used to align
and visualize this locus, respectively. The complete alignment of the whole intercoding region is provided on Figure S3.
doi:10.1371/journal.pone.0112061.g002
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Figure 3. LmTER gene is processed by trans-splicing. A) Schematic representation of the general process of mature RNA synthesis in
trypanosomatids adapted from Requena, J.M. (2011) [69]. After polycistronic transcription of the DNA, RNAs are individualized into monocistronic
mature units through two coupled processing reactions: trans-splicing and polyadenylation. The former occurs at the 59 end of the downstream gene
and consists on the addition of a capped 39 nt miniexon sequence from the SL RNA, while the latter takes place at the 39 end of the upstream gene
for the poly(A) tail generation, similar to what happens on higher eukaryotes RNAs. B) A diagram showing the LmTER non-coding transcript, on its
immature (within the polycistronic RNA precursor) and mature (trans-spliced and polyadenylated) forms. a, b, c, d, g and h indicate the corresponding
positions of primers used in the RT-PCR and RAcE reactions. The combination of primers e and f was used to generate the northern TER probe. The
expected sizes of each amplicon are denoted. C) Total RNA (10 mg), from parasite in the logarithmic and stationary phases were separated on a 1.5%
agarose/2.0 M formaldehyde gel, and the northern blot was probed with a TER specific-probe, which was generated using the primers e+f. Bottom,
ethidium bromide-stained RNA gel showing rRNA, served as a loading control. D) RT-PCR using primers c+d detected a band of ,550 bp which is
indicative of either a polycistronic pre-mRNA or a longer transcript, possibly the TER precursor. An amplicon of ,150 bp from Histone H2A transcript
was detected as control (ctrl). E) 59-560 Spliced form of LmTER confirmed by 59RAcE-PCR using the following primer pairs: a+b, a+d. The 39 end of
LmTER containing the polyA tail was amplified by 39RAcE-PCR using primers g+h. See Table S1 for a complete description of primers. Control
reactions (-) were done in the presence of Taq polymerase only.
doi:10.1371/journal.pone.0112061.g003
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control, Leishmania histone H2A was amplified as a,150 bp

amplicon using specific primers (Table S1) only in the input

sample, demonstrating the specificity of the IP assay (Figure 4B).

Together, these results confirm that the SL sequence-containing

mature LmTER RNA is part of the Leishmania major telomerase

ribonucleoprotein complex.

LmTER co-localizes with LmTERT in promastigotes of L.
major

RNA Fluorescent In Situ Hybridization (FISH) of L. major
promastigotes coupled with indirect immunofluorescence (IIF) was

also performed and confirmed that LmTER co-localizes with

LmTERT. A TelG fluorescein-conjugated PNA probe containing

three telomeric hexameric repeats co-localized with IIF signal

obtained with rabbit anti–LaTERT serum (Figure 5A). Although

there were several clusters of LmTER in most cells, only a few co-

localized with LmTERT. These additional clusters may be due to

hybridization between the telomeric PNA probe and an immature

form of LmTER that is not associated with the LmTERT

ribonucleoprotein complex. The FISH signal was absent in cells

pretreated with RNase A, indicating that the probe was specific for

LmTER RNA and did not cross-hybridize with telomeric DNA

(Figure 5B). LmTER was most abundant in late S/G2 and M

phase of the parasite cell cycle, coincident with the timing of

telomere replication in Leishmania promastigotes (da Silva &

Cano, unpublished data) and in budding yeast [42].

LmTER putative secondary structure
A putative secondary structure of LmTER was obtained by

using its first 59 139 nt as input to the mfold tool [30] (Figure 6A).

Some structural features of LmTER that are conserved in all

TERs already described are signaled in Figure 6A, such as the

single-stranded template sequence highlighted in green (59

ACCCTAACCCTA 39) at position 85, Helix II or TBE (Template

Boundary Element), comprising the conserved short motif 59-

CCGUCA-39 (highlighted in red), and the GC base pairing both

at the proximal end of Helix II.

A comparison between our predicted initial 139 nt LmTER

structure with the one encompassing ,100 nt surrounding

template sequence from TbTER is shown in Figure 6B. Here we

can observe that despite the differences, for example in the

position of the template sequence between LmTER and TbTER,

Figure 4. LmTER is amplified from extracts immunoprecipitated with anti-LaTERT serum. A) Ten percent of a L. major nuclear extract (L.
major NE) used as input in the IP assay and a rabbit anti-LaTERT IP eluate (10%) were fractionated in a SDS-PAGE gel and assayed in a western blot
revealed with mouse anti-LaTERT (upper panel) and rabbit anti-LmNop1 (bottom panel). B) Ethidium bromide-stained agarose gel of RT-PCR of
LmTER and L. major histone cDNAs obtained from RNAs isolated from the L. major nuclear protein extract (input) and from L. major nuclear extract
immunoprecipitated (IP eluate) with anti-LaTERT (IP product). LmTER was amplified with primers e+f and histone H2A was amplified as a RT-PCR
control. Rabbit pre-immune serum was used as an IP control. C) 59-Spliced form of LmTER was amplified by RAcE-PCR from RNAs isolated from L.
major nuclear extract (input) and from an anti-LaTERT IP eluate using primers a+d.
doi:10.1371/journal.pone.0112061.g004
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we identified similar structural features such as the TBE and two

additional hairpins right downstream of the template, which

maintain the general shape conservation and geometry in both

molecules.

Discussion

In contrast to protein-coding DNA, non-coding RNA genes are

prone to several non-lethal mutations related to no discernable

phenotype [43] principally due to compensatory nucleotide

substitutions, which maintain the secondary structure of the final

RNA molecule despite the modifications in the primary gene

sequence. This assertion fits on what we observed for the

LeishTER gene. With the exception of the TER template

sequence and short stretches randomly aligned, no overall

sequence similarity was found between telomerase RNA genes

from the Leishmania and Trypanosoma genera (LeishTER and

TbTER). More than two decades ago, in a study of ciliate TER

Figure 5. LmTER co-localizes with LmTERT in late S/G2 phase. RNA FISH coupled with IIF with anti-LaTERT serum. Cells were analyzed
throughout the L. major cell cycle. ‘‘Merged 1’’ combines images from LmTERT and LmTER. ‘‘Merged 2’’ combines all images. Co-localization foci
(white arrows) containing LmTER and LmTERT occur mainly at late S/G2 phases (A). In cells treated with RNase A (B), no RNA hybridization signal or
co-localization was detected, indicating that the results shown in (A) correspond to LmTER and LmTERT co-localizing at the same foci. DAPI (blue) was
used to stain DNA in kinetoplast (K) and nucleus (N). These figures contain representative cells of a series of images captured randomly to avoid bias.
Scale bar represents 2 mm.
doi:10.1371/journal.pone.0112061.g005
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structure, Romero and Blackburn observed high sequence content

divergence between the TER genes of Tetrahymena thermophila
and Euplotes crassus (holotrichous and hypotrichous ciliates,

respectively), which prevented them from either aligning the

sequences or identifying common structural elements with

confidence among those distinct genera [44]. This special ncRNA

feature highlights the need of applying a non-trivial computational

method to capture the LeishTER gene on focus in this study. We

have successfully developed our own in silico approach to scan

LeishTER candidates throughout Leishmania genomes based on

the 12 nt TER template sequence previously assigned to L.
amazonensis [6]. The TER template sequence is a crucial

component of the TERT holoenzyme, possessing the antisense

orientation of the telomeric hexamer repeat (THR) and guiding

the telomerase reverse transcriptase activity on the elongation of

telomeres [9,21,45]. After filtering out all THR hits that fell onto

Leishmania telomeres, two non-telomeric loci showed hits in L.
major genome (Table 1) and only one (on chromosome 25

between the LmjF.25.0860 and LmjF.25.0870 protein-coding

genes) presented matches at syntenic loci in all Leishmania species

studied herein (Table 2). This region was assigned by us as

containing the putative TER locus in Leishmania.

Trypanosomatids share a remarkable degree of synteny between

their genomes [46]. Therefore, we took advantage of this

evolutionarily trait to perform comparative genomics analyses to

reliably identify the LeishTER candidate locus by in silico
methods. We verified that LmjF.25.0870 (the gene immediately

downstream of LmTER) is orthologous to Tb927.11.0850, which

is the second gene downstream of the TbTER gene mapped on

chr11 from T. brucei [21,22]. Exploring the synteny on the TER

locus between three different trypanosomatid genera, it was

possible to detect a lack of conservation on the TER-flanking

protein-coding genes between Trypanosoma and Leishmania
species, with the synteny resuming more 59 at the

Tb927.11.0810 and LmjF.25.0830 genes, and 39 at

Tb927.11.0850 and LmjF.25.0870 (see Results and Figure 1).

We believe that this disruption of synteny for some protein-coding

genes was the main adverse factor that prevented others from

using the TbTER location to easily map the TER gene within

Leishmania genomes. This assessment shows us that trypanoso-

matid TER non-coding RNA gene appears to be maintained by

selective pressure within a synteny-disturbed locus, which might

indicate its functional relevance. It is also clear, by assessing the

loci displayed in Figure 1, that Crithidia genus seems to be

evolutionarily closer to Leishmania than to Trypanosoma, repre-

senting a middle branch between the latter genera, corroborating

other studies on molecular evolution of trypanosomatids [37,38].

It is noteworthy that the CfTER transcript has not yet been

experimentally characterized. Therefore, similar molecular ap-

proaches performed in this work and on both TbTER publications

[21,22] need to be addressed to validate the CfTER gene.

By thoroughly analyzing the entire LeishTER-containing

intercoding region (.4.5 kb) within the chromosome 25 from five

Leishmania species (LmjF, LinJ, LmxM, LtaP and LbrM), we

discovered a series of interesting features: (i) The putative 12 nt

template sequence was perfectly aligned on all sequences in the

global multiple alignment comparison (Figure 2 and Fig. S3),

although it has been previously reported that the telomeric

terminal overhang is different in length and at the 3’ end

nucleotides in L. amazonensis and L. donovani/L. major [6,25,36].

A possible explanation for this situation can be the occurrence of a

non-conserved resection process that couples the removal of the

RNA primer after DNA replication and the action of an

exonuclease to generate longer 39G-overhangs that are substrates

for telomerase elongation. This is a very complex event that was

poorly described in eukaryotic models and is still unknown in

Leishmania spp. [47]. (ii) Considering that non-protein-coding

regions are poorly conserved among the genomes of Leishmania
species from different subgenera [48], we found the following

overall identities among the LeishTER-containing intercoding

regions: averages of 80.7% between species from Leishmania
(Leishmania) subgenus (LmjF, LinJ and LmxM), 48.5% between

Leishmania (Sauroleishmania) tarentolae and Leishmania (Leish-
mania) spp., and 49.6% between Leishmania (Viannia) brazilien-
sis and Leishmania (Leishmania) spp. (Figure S3). It is also

noteworthy that an independent and previously published large-

scale mapping of conserved intercoding sequences (CICS) on the

LmjF, LinJ and LbrM genomes has reported at least four short

CICS within the putative LeishTER genes, one of which is 41 nt-

long (LeishCICS-s8786) and encompasses the 12 nt TER template

sequence [49], suggesting that it might be a conserved functional

domain of the LeishTER ncRNA molecules. (iii) A novel ,3.6 kb

gene (LmjF.25.T0865) was recently mapped within the LmTER-

containing intercoding region and overlaps to the LmTER gene.

This discovery was made together with 1,883 other new genes that

were identified by a polyA-captured RNA-seq assessment in L.
major [50]. Rastrojo and colleagues (2013) have performed no

individual functional characterization on any of those novel

annotated transcripts and claimed they should be considered

ncRNAs until shown to be otherwise. Due to the experimental

results we have gotten for LmTER (Figures 3 and 4), and taking

into account that there are several SL sites within the inter-CDSs

region between LmjF.25.0860 and LmjF.25.0870 protein-coding

genes (RNA-seq data info provided on tritrypdb.org), we believe

that LmjF.25.T0865 gene might reflect either a junction of two or

more transcripts or a longer precursor of LmTER. (iv) One ,45

nt-long small nucleolar RNA domain was detected right down-

stream of the TER template sequence within the transcripts of four

species (LmjF, LinJ, LmxM and LtaP) (Figures 2 and Figure S3,

shaded in magenta). It is part of the snoU90 (or scaRNA7), which

is a C/D box snoRNA found in human Cajal bodies [40]. This

finding partially corroborates the results of Gupta and colleagues

(2013), which suggested that TbTER is a member of the C/D box

class of snoRNAs due to its affinity selection by epitope tagged

TERT and SNU13 (a C/D snoRNA-binding protein), but not by

NHP2 (a protein that binds H/ACA snoRNAs) [22]. Despite these

findings, whether both TbTER and LeishTER act with a function

other than the TERT-associated one remains an open question.

As mentioned earlier in this section, Northern blot analyses

identified a,2,100 nt LmTER transcript, but its precursor was not

Figure 6. The predicted secondary structure model of LmTER. A) Proposed secondary structure (mfold - default parameters, followed by
visualization through RNAviz editor [70]) obtained from the first 139 nucleotides of LmTER (39 nt SL sequence from the 59 cap processing plus 100 nt
from the beginning of the gene in the genome). This folding prediction in that particular region led us to infer the existence of two crucial structured
domains already detected in all other TERs reported hitherto: (i) Helix II, containing a CCGUCA motif (red) at its proximal 39 end, which is implicated in
proper template boundary definition in Tetrahymena thermophila; and (ii) the single-stranded template sequence (green). B) The LmTER structure in A
was turned upside-down and compared to the ,100 nt surrounding template TbTER structure (the TbTER sequence used in this analysis and also the
default parameters to run the mfold program were identical to those indicated by Gupta and colleagues, 2013). The dashed green box represents the
template sequence in TbTER. Arrows indicate similar shape of hairpin structures immediately downstream of the template on both TERs.
doi:10.1371/journal.pone.0112061.g006
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detected (Figure 3C) probably because the mature LmTER might

be much more abundant in the total RNA extract. Thus, low levels

of LmTER precursor should only be detected by a high sensitive

method like RT-PCR (Figure 3D). Molecular assays supporting

this hypothesis were very well conceived by the trypanosomatid

research community within the past 2–3 decades [54,55]. For

example, studies with the tandem array of tubulin genes revealed

that polycistronic pre-mRNA precursors are visualized on

Northern blots only when the transcripts accumulate after trans-
splicing blockage by heat shock [54], also polycistronic HSP7O

pre-mRNA appeared to be rare in the nascent RNA population,

possibly because of rapid processing of the nascent RNA in the

intergenic region by cleavage for trans-splicing and polyadenyla-

tion [55].

In addition, LeishTER and the Plasmodium falciparum TER

(,2,200 nt, [51]) might be the longest protozoa TERs described so

far, exceeding the lengths of the most commonly studied TERs in

other organisms such as the ciliate Tetrahymena termophila (159

nt, AF399707.1), the budding yeast Saccharomyces cerevisiae
(,1,300 nt, AM296228.1), the vertebrates Mus musculus (590 nt,

MMU33831) and Homo sapiens (450 nt, AF047386.1), and the

closely related species T. brucei (993 nt) [22,52]. The longest TER

described so far is from Candida glabrata, a parasitic species close

to S. cerevisiae that has a 2.7 kb-long TER [53]. Moreover, similar

levels of LmTER mature transcript were detected during

exponential promastigote growth (logarithmic and stationary

phases), suggesting that the non-replicative forms of the parasite

contains the same LmTER levels as the replicative ones. Although

we do not have an experimental answer to this result, the most

probable explanation is that LeishTER is a highly stable transcript,

which is not degraded during parasite growth, as identical results

were also obtained with L. amazonensis TER (Figure S1 and data

not shown).

The reverse transcription polymerase chain reactions (RT-

PCRs) of total RNA succeeded and the sequencing of these RT-

PCR products (Figure 3E) allowed us to confirm the LmTER

sequence (Fig. S2) and strongly indicated that LmTER has a 59 SL

cap added by trans-splicing at position 333,307 and a possible

polyA tail added at position 335,419 from L. major chromosome

25 (Figures 2 and 3E), corroborating RNA-seq evidence for SL

and polyA sites on this genomic region (tritrypdb.org).

The association of the trans-spliced LmTER form with

LmTERT was first evidenced using both RT-PCR and 59 RAcE

both primed with different pairs of primers (Figures 4B and 4C)

resembling its TbTER counterpart [21]. However, it was not

possible to certify whether the LmTER transcript associated with

LmTERT was terminated by the addition of a polyA tail because

we could not amplified any product from the IP eluate by 39 RAcE

(data not shown), suggesting that the mature LmTER that

associates with LmTERT is not polyadenylated. Our hypothesis

to explain this result relies on the fact that different mechanisms

have evolved for telomerase RNA 39 end formation. Well-studied

TERs (e.g., budding and fission yeasts and human), which are also

RNA pol II-transcribed, have their 39 end processed at sites

located upstream to the mapped polyadenylation sites. Therefore,

after cleavage reaction(s), they are polyA(-) transcripts [56–61].

Non-canonical 39 end processing mechanisms, such as cleavage by

RNase P, are able to process RNA pol II nascent transcripts to

generate their mature 39 ends despite the presence of nearby

polyadenylation signals. It seems that a significant fraction (.25%)

of long transcripts present in cells, which includes the telomerase

RNAs, lack a classical polyA tail and that the selection of a proper

39 end cleavage site represents an important step, not only for the

post-transcriptional regulation of gene expression, but also to

generate the mature 39 ends of these transcripts via multiple

mechanisms, (reviewed [62]). For example, in both Schizosacchar-
omyces pombe and Saccharomyces cerevisiae, the functional/mature

telomerase RNAs have their 39 end processed by a specific

spliceosomal cleavage mechanism and by transcription termina-

tion factors such as Nrd1 and Nab3, respectively [58,60,61,63].

We attempted without any success to find neither Nrd1/Nab3

homolog sequences in Leishmania spp. and T. brucei genomes nor

short conserved cis-elements/motifs within our putative LmTER

39 end boundary region that would be recognized by those yeast

factors (data not shown). Thus, further investigations are required

to determine whether the LmTER mature transcript also

terminates in a non-canonical 39 end site.

Co-localization assays using RNA-FISH coupled with IIF using

a specific anti-telomerase serum, confirmed that LmTER and

LmTERT partially associate principally at late S-G2 phase of the

promastigote cell cycle, coinciding with the timing of parasite

telomere replication (da Silva MS and Cano, unpublished data).

The access of human and yeast TERs to telomerase and their

substrates are regulated as a function of the cell cycle. In humans,

hTER and hTERT are found in distinct nuclear foci throughout

most of the cell cycle. Only during S phase, hTER, which is

mainly retained in Cajal bodies, moves with TERT in the

direction of telomeres. In yeast, in contrast, the mature TER

(TLC1) is first exported to the cytoplasm to assemble with the

telomerase holoenzyme, and then the entire RNP complex re-

enters the nucleus and only in S phase TER co-localizes with a few

telomeres; and like in humans, yeast TER accumulation does not

also require assembly with TERT (reviewed in [61]). Despite the

clear evolutionary divergence among trypanosomatids, yeast and

vertebrates, it is possible that they all share common features of the

telomerase RNP biogenesis pathway and regulation.

Relying on the results of the RT-PCR from the TERT-IP

nuclear extracts, where we used the SL sequence as the forward

primer (Figure 4C), we found that the splice site for the TERT-

interacting mature LmTER is near the template sequence (as

ascribed on Figure 2 and above discussed). In contrast to TbTER,

which was reported to present the template sequence located far

from the 59end of TER (position 370), LmTER template is fairly

close to its 59 end (position 85) (Fig. 6), similarly to ciliates and

vertebrate TERs [64]. Although we could not propose a secondary

structure for the entire LmTER RNA molecule, due to its

remarkable length (.2 kb) and the marked drop in computational

prediction accuracy as the sequence length increases [65], we were

able to detect, by using the first 59 139 nt from LmTER as input to

the mfold tool, some bona fide structures, such as the single-

stranded region encompassing the template sequence and Helix II

[30]. Similar results regarding these two bona fide structures were

also retrieved when we attempted to run RNAalifold [29], using a

multiple alignment of all LeishTERs studied herein, and then

applying the constraints from the consensus structure on the

individual TER modeling by executing mfold [30] (data not

shown). Figure 6A depicts both the single-stranded template

sequence and Helix II, which harbors elements required for the

proper template boundary definition (TBE) [66–68]. The

conserved short motif 59-CCGUCA-39, though slightly different

from the one in Tetrahymena (59-CUGUCA-39), is also found at

the proximal 39 end of Helix II in Leishmania TERs, as it is in

ciliates [68]. Notably, we observed the exact match 59-CUGUCA-

39 in L. braziliensis TER (Figure 2 and Figure S3, 21 nt upstream

of the template sequence). More important, the GC base pairing at

the proximal end of Helix II, which is essential for proper template

boundary definition and required for binding of the Tetrahymena
telomerase reverse transcriptase (TERT) [68], is also present in
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both Plasmodium falciparum TER (PfTER) and LeishTERs

TBEs, although both RNA secondary structures have yet to be

experimentally validated.

The comparison between the generated LmTER and TbTER

structures (Figure 6B) showed that despite the huge differences, for

example in the template sequence location within both TERs, we

identified similar structural features (e.g. same shape and geometry

of two stem-loops right downstream of the template) that might be

suggestive of common interaction pathways with their respective

TERT partners and, consequently, similar functionality in the

holoenzyme complex.

In this manuscript we have identified and partially character-

ized LeishTER, a long non-coding RNA that preserves some

conserved features and also presents unique ones that categorize it

as a strong candidate for the Leishmania TER component. Despite

its similarities with the recently described TbTER component,

further structure-driven studies need to be addressed to unravel

the biochemical and biophysical details of the whole Leishmania
TERT core complex and the importance of telomerase biogenesis

for parasite cell survival and homeostasis.

Supporting Information

Figure S1 Molecular validation of L. amazonensis TER

candidate. A) 59 Spliced form of LaTER was confirmed by

RAcE-PCR using primers a+b; arrows indicate nonspecific

amplified bands. The putative 39 end of LaTER containing the

polyA tail was also confirmed by RAcE-PCR using primers g+h.

LaTER was detected from the polycistron using primers c+d.

Histone H2A was used as control (ctrl). B) Total RNA (10 mg) from

parasites in the logarithmic and stationary phases of growth were

separated on a 1.5% agarose/2.0 M formaldehyde gel, and the

blot was probed with a LmTER-specific-probe, which was

generated using the combination of primers e+f. Bottom, ethidium

bromide-stained RNA gel showing rRNA as the loading control.

The primers used in assays shown in A) and B) are the same used

in Figures 3 and 4 and are listed in Table S1.

(TIF)

Figure S2 LmTER undergoes trans-splicing. cDNA prepared

from wild-type L. major and L. amazonensis cells were cloned into

the TOPO-TA vector (Invitrogen). The pre-LeishTER sequence

was amplified using a sense SL RNA primer and an internal

reverse primer from the LmTER sequence (as shown in Figure 3).

The positions of the spliced leader (SL) (blue), Helix II structure

(red), and template (green) are depicted.

(TIF)

Figure S3 Complete global multiple alignment and identity

matrix of the entire intercoding region of LeishTER locus.

Coordinates are relative to the first base after the stop codon of

the respective CDSs: L. major (LmjF.25.0860), L. infantum
(LinJ.25.0890), L. mexicana (LmxM.25.0860), L. tarentolae
(LtaP25.0910) and L. braziliensis (LbrM.25.0740). The differ-

ently shaded colored regions represent the 12 nt template

sequence (gray), 59-C[C/T]GTCA-39 motif that is part of the

template boundary element (TBE) (pink), snoRNA domains

reported by the RNAspace webserver (magenta), splice acceptor

sites upstream of the template sequence (green) and polyA sites

downstream of the template (red) identified by RNA-seq (provided

by Myler lab and deposited on tritrypdb.org for L. major).

ClustalW run locally and on the web, as well as Jalview, were used

to align the sequences, build the identity matrix and visualize the

alignment, respectively.

(PDF)

Table S1 List of primers.

(DOC)
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