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Interleukin-13 receptor subunit alpha-2 (IL-13Ra2, CD213A), a high-affinity membrane
receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid
tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer,
adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially
hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence
demonstrates IL-13 can signal through IL-13Ra2 in human cells. In addition,
expression of IL-13Ra2 and IL-13Ra2-mediated signaling has been shown to promote
tumor proliferation, cell survival, tumor progression, invasion, and metastasis. Given its
differential expression in tumor versus normal tissue, IL-13Ra2 is an attractive
immunotherapy target, as both a targetable receptor and an immunogenic antigen.
Multiple promising strategies, including immunotoxins, cancer vaccines, and chimeric
antigen receptor (CAR) T cells, have been developed to target IL-13Ra2. In this mini-
review, we discuss recent developments surrounding IL-13Ra2-targeted therapies in pre-
clinical and clinical study, including potential strategies to improve IL-13Ra2-directed
cancer treatment efficacy.

Keywords: interleukin 13 receptor a2, IL-13Ra2, immunotoxin, CAR (chimeric antigen receptor) T cells,
gliobastoma (GBM)
INTRODUCTION

Cytokine receptor expression is tightly regulated; however, cancer cells can overexpress cytokine
receptors to promote tumor development, progression, and immune evasion. Cytokine receptors
are attractive cancer therapy targets given the differential expression on normal vs. tumor tissue, the
capacity to alter tumor cell fitness and function via receptor modulation/signaling, and variety of
strategies available for selective targeting.

Interleukin-13 receptor subunit alpha-2 (IL-13Ra2) is a high-affinity membrane receptor for the
anti-inflammatory cytokine interleukin 13 (IL-13). IL-13Ra2 was originally considered a decoy
receptor that sequestered IL-13 and inhibited signaling since: i) IL-13Ra2 has a short cytoplasmic
tail and cannot signal through canonical JAK/STAT signaling pathway (1); ii) IL-13 has higher
affinity for IL-13Ra2 than its other receptor, the interleukin 13 receptor subunit alpha 1/interleukin
4 receptor subunit alpha (IL-4Ra/IL-13Ra1) heterodimer (2); and iii) overexpression of IL-13Ra2
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can inhibit IL-13 signaling (3). However, recent studies
demonstrated that IL-13-mediated IL-13Ra2 signaling occurs
via STAT6-independent pathways, involving activation of
activator protein 1 (AP-1) and extracellular signal-related
kinase (ERK), promoting tumor invasion, metastasis, and
production of transforming growth factor beta (TGFb) (4–9).
Differential binding of IL-13 by IL-13Ra1 and IL-13Ra2 has
been discussed elsewhere (10, 11). More recently, Chitinase 3-
like-1 (CHI3L1) was also identified as an IL-13Ra2 ligand, and a
membrane protein TMEM219 was shown to be involved in IL13-
Ra2 signaling (12, 13). CHI3L1 binding induces activation of
mitogen-activated protein kinase (MAPK), protein kinase B
(PKB)/Akt, and/or Wnt/b-catenin signaling to promote TGFb
production and tumor metastasis (12–14).

IL-13Ra2 is overexpressed in melanoma (8, 15), renal cell
carcinoma (RCC) (16), adrenocortical carcinoma (ACC) (17,
18), and a variety of brain tumors (19–21). Additionally, IL-
13Ra2 overexpression correlates with advanced disease and poor
prognosis in colorectal carcinoma (CRC) (22), gastric cancer
(23), breast cancer (24, 25), clear cell ovarian cancer (26), lung
cancer (27), ACC (28), papillary thyroid cancer (29), pancreatic
ductal adenocarcinoma (30), and glioblastoma (GBM) (31–33).
While IL-13Ra2 is a biomarker of prognosis for many solid
tumors after therapeutic intervention, research has focused on
GBM. GBM is the most common and aggressive malignant
primary brain tumor in humans, and the existing treatments
(i.e., tumor resection, radiotherapy, temozolomide) have limited
impact on patient survival (34). IL-13Ra2 is overexpressed in
~76% of GBM but is not detected in normal brain tissue, making
it a highly selective immunotherapy target (32, 33, 35).

In this mini-review, we focus on recent research advances
for IL-13Ra2-targeted therapies. An overview of the therapies
discussed and advantages/disadvantages of each are summarized
in Figure 1. In addition, we discuss strategies to improve therapy
efficacy and remaining questions in the field.
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IL-13Ra2-TARGETED IMMUNOTOXINS

Recombinant immunotoxins were the first strategy to target IL-
13Ra2 in cancer. These chimeric fusion proteins kill cancer cells
via receptor binding, receptor internalization, and cleavage of the
toxin moiety in the cell cytosol, which inhibits protein synthesis
and induces apoptosis (36). To induce IL-13Ra2-directed killing
of tumor cells, IL-13 was fused to truncated Pseudomonas
aeruginosa exotoxin A (PE) (37) or diphtheria toxin (DT) (38).

IL13-PE (IL13-PE38QQR or cintredekin besudotox) has been
used extensively in preclinical and several Phase 1-3 clinical
studies. The PE38QQR exotoxin is mutated to prevent
ubiquitous eukaryotic cell targeting via a2-macroglobulin and
to enhance endoplasmic reticulum localization for production
(36, 39). IL13-PE is highly cytotoxic to human solid tumor cell
lines, including those derived from RCC, GBM, and head and
neck squamous cell carcinoma (HNSCC) (32, 37, 40–42). IL13-
PE cytotoxicity is correlated with expression of IL-13Ra2 (40,
43), and lack of expression on normal cells confers significant if
not complete resistance to IL13-PE (43–45). IL13-PE treatment
of orthotopic GBM and pancreatic xenografts significantly
reduced tumor burden and increased overall survival (20, 45,
46). IL13-PE also decreased subcutaneous pheochromocytoma,
pancreatic, and ACC xenograft tumor burden (18, 47, 48).

After intracerebral convection-enhanced delivery (CED) of
IL13-PE was determined to be feasible and safe in Phase 1/2
clinical trials (49, 50), a randomized Phase 3 trial (PRECISE)
with intraparenchymal IL-13PE administration was initiated in
GBM patients. IL13-PE was well-tolerated but showed similar
overall survival to carmustine-releasing Gliadel wafers, the only
FDA-approved local treatment for recurrent GBM (51). During
retrospective analysis, it was determined that only ~50% of
patients had fully conforming catheters in respect to overall
placement, and optimally positioned catheters had larger
coverage volumes with regard to drug delivery (52, 53).
FIGURE 1 | Advantages and disadvantages of the therapeutic strategies used to target IL-13Ra2 in cancer. ADCC, antibody-dependent cellular cytotoxicity; CDC,
complement-dependent cytotoxicity; CRS, cytokine release syndrome; mAb, monoclonal antibody; MHC, major histocompatability complex; MOA, mechanism of
action; TAA, tumor associated antigen.
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Thus, efficacy of IL13-PE may have been severely constrained by
delivery and diffusion issues in the PRECISE trial. Similarly, in a
Phase 1 clinical trial in children with diffuse intrinsic pontine
glioma, CED-delivered IL13-PE did not reach the entire MRI-
defined tumor volume in any patient. Even with these constraints
with drug delivery/diffusion, IL13-PE temporarily arrested
disease progression in 2 of 5 patients and was well-tolerated
(54). Additional clinical studies are needed to optimize
distribution of CED-delivered IL13-PE.

Outside of brain malignancies, Phase 1 clinical trials using
intravenous IL13-PE were initiated in RCC (55) and metastatic
ACC with confirmed expression of IL-13Ra2 (56). In the ACC
trial, dose limiting toxicities, including Grade 3 anemia, were
observed at the higher dose (2 mg/kg) of IL13-PE. While the
lower dose (1 mg/kg) of IL13-PE was well-tolerated, neutralizing
antibodies were observed in all patients (56). It was not reported
whether neutralizing antibodies were generated against both PE
and IL-13, which will be important to identify potential
toxicities. Additional clinical trials could not be performed due
to lack of availability of clinical grade IL13-PE. However, to
address immunogenicity issues (57), future studies should
consider pre-treatment lymphodepletion, immunosuppression,
or utilize a less immunogenic immunotoxin.

Two DT-conjugated IL-13 immunotoxins, DTIL13 and DT-
IL13QM, also demonstrated cytotoxicity to GBM cell lines (38,
58, 59). In mice with orthotopic GBM xenografts, DTIL13
treatment significantly improved survival in a dose-dependent
manner (38, 59). To improve tumor targeting and address
antigen heterogeneity, bispecific immunotoxins were
developed. Todhunter et al. synthesized DTAT13, which
simultaneously targets overexpressed IL-13R and urokinase-
type plasminogen activator receptor (60). Small subcutaneous
GBM xenografts underwent regression for 40-50 days with
DTAT13. Intracranial DTAT13 also had less toxicity versus
DTIL13 (60). Stish et al. generated a bispecific DTEGF13
immunotoxin that targets IL-13R and epidermal growth factor
(EGF) (61). Compared to monospecific immunotoxins,
DTEGF13 increased cytotoxicity and reduced the growth of
established prostate cancer xenografts (61). CED DTEGF13
promoted similar results in rats bearing orthotopic GBM
xenografts (62). Since DT is derived from a bacterial toxin and
most adults are vaccinated against diphtheria, patients may have
pre-existing immunity to DT and/or quickly develop
neutralizing antibodies to IL13-DT (63). Thus, similar to PE,
lymphodepletion, immunosuppression, or de-immunization
strategies may be needed to increase the therapeutic window of
DT-conjugated immunotoxins.
IL-13Ra2-SPECIFIC CAR-T CELLS

Chimeric antigen receptor (CAR) T cell therapy is a promising
treatment approach for many malignancies. First generation
CARs contain a synthetic receptor typically consisting of a
tumor associated antigen (TAA)-targeted extracellular single
chain variable fragment (scFv), a transmembrane domain, and
Frontiers in Immunology | www.frontiersin.org 3
only the TCR CD3z signaling domain. Second and third
generation CARs carry one or multiple costimulatory domains,
respectively (64, 65). CAR T cells have produced remarkably
effective and durable clinical results. Five second-generation
CAR T therapies are approved by the FDA for the treatment
of B-cell hematological malignancies (66). The application of
CAR T cells in solid malignancies has presented many
challenges, and efficacy has been limited. Regardless,
IL-13Ra2-targeted CAR T cells are under investigation in six
clinical trials in primary CNS malignancies and one in
melanoma (clinicaltrials.gov, Table 1). Two clinical trials
in primary CNS malignancies have been completed
(clinicaltrials.gov, Table 2).

First generation IL-13(E13Y) zetakine CAR T cells (IL13-
zetakine CTL (cytotoxic T lymphocytes)) utilized a membrane-
tethered, mutated IL-13 (E13Y) instead of scFv to redirect T cells
to IL-13Ra2 and reduce cross-reactivity with IL-13Ra1. Initial
studies demonstrated remarkable efficacy of IL13-zetakine CTL
against human GBM orthotopic xenografts and no-cross
reactivity with IL-13Ra1 (70). However, additional studies
suggested IL13-zetakine CTLs do recognize IL-13Ra1-positive
targets, which could lead to off-target toxicities (71–73). The
first-in-human trial using intracranial delivery of first generation
IL13-zetakine CAR T cells demonstrated that repeated
administration was well-tolerated, and two of three patients
underwent transient anti-glioma responses. Durable responses
were not observed, which correlated with short CAR T cell
persistence (71).

Second-generation IL13BBz CAR T cells were genetically
engineered to incorporate IL-13 (E13Y-mutated), 4-1BB
(CD137), and mutated IgG4-Fc linker, which resulted in the
enrichment of central memory T cells (TCM). In orthotopic
human GBM models, anti-tumor activity and T cell persistence
were significantly improved in IL13BBz (67). IL13BBz CAR T
cells are currently in clinical trials. In one patient, multiple
intracranial infusions of IL13BBz CAR T cells over 220 days
were well-tolerated, increased cytokine levels and immune cell
frequencies were observed in the cerebrospinal fluid, and the
patient underwent regression for 7.5 months (68). While none of
the initial tumors recurred, preliminary results suggest
recurrence of new tumors with reduced expression of IL-
13Ra2. Thus, antigen escape may be a significant issue against
the generation of durable responses.

More recently, to further reduce cross-reactivity with IL-13Ra1,
Kim et al. reported the generation of YYB-103, a mutated IL-13-
based CAR with multiple amino acid substitutions (E13K, R66D,
S69D, and R109K) (74). YYB-103 was more selective than IL-13
(E13Y) zetakine CTL for IL-13Ra2. Intracranial and intravenous
administration of YYB-103 reduced orthotopic GBM xenograft
tumor burden and increased survival (74).

On the other hand, Krenciute et al. constructed a panel of
IL-13Ra2-specific CARs containing an anti-IL-13Ra2-scFv
instead of a mutated IL-13, short or long spacer regions, a
transmembrane domain, endodomains derived from
costimulatory molecules CD28, 4-1BB, or OX40, and CD3z
(75). In a murine GBM study, IL-13Ra2-CAR T cells with
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short spacer regions and CD28z, 4-1BBz, and CD28.OX40z
displayed potent anti-glioma activity with high specificity for
IL-13Ra2 and no cross-reactivity to IL-13Ra1 (75). CD28z CAR
T cells persisted and proliferated in the brains of glioma-bearing
mice after intracranial administration (76). Importantly, mice
that underwent complete IL-13Ra2-positive tumor regression
Frontiers in Immunology | www.frontiersin.org 4
were also protected against rechallenge with IL-13Ra2-negative
tumors, suggesting that the IL-13Ra2-specific CARs assist
in the development of diversified long-term anti-glioma
immunity (76).

Given the heterogeneity of antigens on GBM tumors, multi-
antigen-targeted CAR molecules may enhance efficacy and
TABLE 2 | Completed IL-13Ra2-targeted CAR T cell therapy clinical trials (from clinicaltrials.gov).

Study Title
(Clinical Trial Identifier)

Study
Phase

(#
patients)

Target
Tumor

ROA CAR T Cell
(Reference)

IO
Combination

Sponsor Results
(Reference)

Cellular Adoptive Immunotherapy Using Genetically Modified T-Lymphocytes
in Treating Patients With Recurrent or Refractory High-Grade Malignant
Glioma (NCT00730613)

Phase 1
(n=3)

Brain and
CNS
tumors

IC Autologous IL13
(E13Y)-zetakine/
HSV-TK CD8+
CTL (70)

None City of
Hope
Medical
Center

2/3 patients:
positive
response
(71)

Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant
Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+
Cytolytic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and
HyTK and to be Resistant to Glucocorticoids, in Combination With
Interleukin-2 (NCT01082926)

Phase 1
(n=6)

Stage III,
IV
malignant
glioma

IT Allogeneic IL13
(E13Y)- zetakine/
HSV-TK CD8+
CTL

IL-2 City of
Hope
Medical
Center

No reported
results
A
pril 2022 | Volu
me 13 | A
CNS, central nervous system; CTL, cytotoxic T lymphocytes; HSV-TK, HSV-1 thymidine kinase selection-suicide domain; IC, intracavitary; IO, immune-oncology; IT, intratumoral; ROA,
route of administration.
TABLE 1 | Ongoing IL-13Ra2-targeted CAR T cell therapy clinical trials (from clinicaltrials.gov).

Study Title
(Clinical Trial Identifier)

Study
Phase

(#
patients)

Target Tumor ROA CAR T Cell
(Reference)

IO
Combination

Sponsor Results
(Reference)

Genetically Modified T-cells in Treating
Patients With Recurrent or Refractory
Malignant Glioma (NCT02208362)

Phase 1
(n=92)

Refractory or
recurrent HGG

IT,
IC or
ICV

Autologous IL13BBz TCM-
enriched T cells: IL13 (E13Y)
zetakine/optimized hinge/
41BB/truncated CD19 (67)

None City of Hope
Medical Center

1 patient:
regression of all
intracranial and
spinal tumors for
7.5 months (68)

IL13Ra2-CAR T Cells With or Without
Nivolumab and Ipilimumab in Treating
Patients With GBM (NCT04003649)

Phase 1
(n=60)

Resectable,
recurrent GBM

ITV/
ITC

Autologous IL13BBz TCM-
enriched T cells: IL13 (E13Y)
zetakine/optimized hinge/
41BB/truncated CD19 (67)

Ipilimumab,
nivolumab

City of Hope
Medical Center

No reported results

Gene Modified Immune Cells (IL13Ralpha2
CAR T Cells) After Conditioning Regimen for
the Treatment of Stage IIIC or IV Melanoma
(NCT04119024)

Phase 1
(n=24)

Stage IIIC or IV
Melanoma

IV Autologous IL13BBz TCM-
enriched T cells: IL13 (E13Y)
zetakine/optimized hinge/
41BB/truncated CD19 (67)

IL-2 UCLA Jonsson
Comprehensive
Cancer Center

No reported results

CAR T Cells After Lymphodepletion for the
Treatment of IL13Ra2 Positive Recurrent or
Refractory Brain Tumors in Children
(NCT04510051)

Phase 1
(n=18)

Brain neoplasm ICV Autologous IL13BBz TCM-
enriched T cells: IL13 (E13Y)
zetakine/optimized hinge/
41BB/truncated CD19 (67)

None City of Hope
Medical Center

No reported results

Brain Tumor-Specific Immune Cells
(IL13Ralpha2-CAR T Cells) for the
Treatment of Leptomeningeal Glioblastoma,
Ependymoma, or Medulloblastoma
(NCT04661384)

Phase 1
(n=30)

Leptomeningeal
metastases

ICV Autologous IL13BBz TCM-
enriched T cells: IL13 (E13Y)
zetakine/optimized hinge/
41BB/truncated CD19 (67)

None City of Hope
Medical Center

No reported results

CART-EGFR-IL13Ra2 in EGFR Amplified
Recurrent GBM (NCT05168423)

Phase 1
(n=18)

EGFR-amplified
recurrent GBM
(IDH wildtype)

IV Autologous T cells co-
expressing two CARs
targeting cryptic EGFR
epitope 806 and IL-13Rɑ2

None University of
Pennsylvania

No reported results

Personalized Chimeric Antigen Receptor T
Cell Immunotherapy for Patients With
Recurrent Malignant Gliomas
(NCT03423992)

N/A
(n=100)

Glioma IV Autologous CAR T cells
(CAR not specified)

Anti-PD-L1 Xuanwu
Hospital

(69)
(IL13Rɑ2 not
published)
CNS, central nervous system; CTL, cytotoxic T lymphocytes; GBM, glioblastoma; HGG, high grade glioma; IC, intracavitary; ICV, intracerebroventricular; IDH, isocitrate dehydrogenase 1;
IO, immune-oncology; ITC, intracranial intratumoral; ITV, intracranial intraventricular; IV, intravenous; ROA, route of administration; TCM, central memory T cells.
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mitigate antigen escape observed with unispecific IL13BBz CAR
T cells (68). Hegde et al. discovered that 96% of patient GBM
tumors expressed human epidermal growth factor 2 (HER2), IL-
13Ra2, or ephrin-A2 (EphA2) (77). Co-expression of HER2- and
IL-13Ra2-specific CARs enhanced T cell functionality against
autologous glioma cells. Compared with individual or pooled
monospecific CAR T cells, HER2/IL-13Ra2 CARs improved
tumor control and survival in a human orthotopic GBM model
(77). TanCAR, a CAR T cell containing a bispecific HER2-
binding scFv/mutated IL-13 heterodimer CAR, also improved
survival in a GBM model verses monospecific CAR T cells (78).
To further improve the efficacy of TanCAR T cells, Bielamowicz
et al. generated trivalent CAR T cells using a single universal
tricistronic transgene to co-express CARs specific for HER2, IL-
13Ra2, and EphA2 on patient T cells (UCAR T cells) (79). All
three CARs were successfully co-expressed and had antigen-
specific functionality. In a tumor model using patient GBM
xenografts and patient-matched T cells, UCAR T cells derived
from 2/2 patients decreased tumor burden and increased survival
versus univalent CAR T cells. Similar results were observed for
UCAR T cells derived from 1/2 patients when compared to
bivalent CAR T cells (79).
IL-13Ra2-TARGETED PEPTIDES AND
INHIBITORS OF IL-13Ra2 SIGNALING

Peptides targeting IL-13Ra2 can be used to block native ligand-
receptor interaction/signaling and/or deliver conjugated
therapeutic agents to the tumor microenvironment (TME).
Compared to antibodies, peptides display lower immunogenicity,
better tumoral diffusion due to low molecular weight, and are
easier and inexpensive to synthesize (80). Various techniques are
used to improve peptide stability in biological fluids and increase
accumulation in the tumor, including the use of D-amino acids
and PEGylation (80).

Using phage display technology, Pandaya et al. identified Pep-1L
peptide that binds specifically to IL-13Ra2 via a non-competitive
binding site for IL-13 (81). Intravenous Pep-1L accumulated in both
subcutaneous and orthotopic GBM tumors (81–83), indicating that
Pep-1L efficiently crosses the blood-brain-tumor barrier. Pep-1L
binding also induced IL-13Ra2 internalization (81, 84), making it
an attractive candidate to deliver cytotoxic agents to IL-13Ra2-
expressing tumors. Indeed, intracranial CED of a Pep-1L-alpha
particle emitter conjugate promoted GBM cytotoxicity and
increased overall survival in an orthotopic murine GBM model
(85). Similarly, Pep-1L-paclitaxel (chemotherapy) nanoparticle
conjugates reduced intracranial glioma growth and increased
overall survival (83).

Bartolome et al. used the recently elucidated structure of the IL-
13/IL-13Ra2 complex to engineer a 12-mer peptide (D1) that
specifically blocks the IL-13/IL-13Ra2 signaling axis (86). D1
peptide inhibited IL-13Ra2-mediated signaling to a greater extent
than IL-13Ra1 signaling. D1 also significantly reduced IL-13-
mediated binding, cell migration, and invasion of CRC and GBM
cell lines, and increased survival in xenograft models (86).
Frontiers in Immunology | www.frontiersin.org 5
Recent insights into the downstream signaling of IL-13Ra2
have also allowed for targeting of IL-13Ra2-mediated signaling
by small molecule inhibitors. Bartolome et al. identified protein
tyrosine phosphatase-1B (PTP1B) as a mediator of IL-13Ra2
signaling (87). PTP1B is overexpressed in many tumor types, and
high expression correlated with reduced overall survival of GBM,
CRC, and ovarian cancer patients. Use of the PTP1B inhibitor,
Claramine significantly reduced tumor burden, metastasis and
increased survival in mice with CRC and GBM xenografts (87).
IL-13Ra2-DIRECTED
MONOCLONAL ANTIBODIES

Many agents targeting IL-13Ra2 lack the selectivity to bind IL-
13Ra2 but not IL-13Ra1. Monoclonal antibodies (mAbs) bind
targets with high affinity/specificity and mediate efficacy via: i)
manipulation/inhibition of critical signaling pathways required
for the malignant phenotype; ii) initiation of antibody-
dependent cellular cytotoxicity (ADCC); iii) complement-
dependent cytotoxicity (CDC) by complement activation; and/
or iv) increased presentation of opsonized antigens by antigen
presenting cells (APC) (88, 89).

In order to target IL-13Ra2 but not IL-13Ra1, Balyasnikova
et al. characterized a novel antibody that blocks IL-13/IL-13Ra2
interaction (90). This mAb bound IL-13Ra2 in GBM tissue and
improved survival of mice with orthotopic human glioma
xenografts (90). Using a similar strategy, Jaen et al. generated a
D1 peptide-specific mAb that blocked IL-13/IL-13Ra2
-mediated signaling (91). Correlating with inhibition of IL-13-
mediated CRC cell migration and invasion in vitro, the D1-
specific mAb also reduced liver metastasis of CRC tumors and
improved survival (91).

Like peptides, mAbs can be conjugated to other therapeutic
agents. Biodistribution studies performed by Gupta et al.
demonstrated that intravenous IL-13Ra2 mAb led to a time-
dependent, selective accumulation of mAb in IL-13Ra2-
expressing tumors (91). Accumulation was not affected by
conjugation to auristatin, an antimitotic agent (92, 93). The mAb-
auristatin conjugate significantly reduced melanoma xenograft
growth in a dose-dependent manner, and 90% of mice underwent
complete tumor rejection at the highest dose (93). Interestingly,
conjugation of another IL-13Ra2 mAb to auristatin did not impact
growth of certain IL-13Ra2-expressing diffuse intrinsic pontine
glioma (DIPG) cell lines (94), suggesting selection of appropriate
drug conjugates is critical for efficacy in different tumor settings.
IL-13Ra2-TARGETED THERAPEUTIC
CANCER VACCINES

In contrast to passive therapeutic approaches like peptides or
mAb, therapeutic cancer vaccines can promote the development
of a diverse, long-term immune response against TAA.
Therapeutic cancer vaccines can consist of whole tumor cells,
tumor cell lysate or peptides/proteins mixed with an adjuvant,
April 2022 | Volume 13 | Article 878365
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viruses genetically-modified to express a TAA, or TAA-pulsed
APCs (95).

The most clinically advanced IL-13Ra2-directed vaccine studies
utilize peptide-pulsed dendritic cells (DCs). IL-13Ra2 peptide-
pulsed DCs induce T cell responses in recurrent glioma patients
(96–98). However, most recent clinical trials evaluate efficacy of DCs
pulsed with IL-13Ra2 antigen and other glioma-associated peptides.
Okada et al. evaluated DCs loaded with four peptides, including IL-
13Ra2, in combination with Poly-ICLC adjuvant (99). Nine of 22
patients achieved progression-free status lasting at least 12 months
(99). After showing favorable results in a Phase 1 trial (98), ICT-107,
an autologous DC vaccine with six synthetic GBM-associated
peptides including IL-13Ra2, was evaluated in a double-blinded,
randomized phase 2 clinical trial in newly diagnosed patients with
GBM. Overall, ICT-107 was well-tolerated and increased
progression-free survival by 2.2 months (100). A Phase 3 trial of
ICT-107 has been established (NCT02546102).

Vaccination with IL-13Ra2 DNA significantly reduced
murine syngeneic tumor growth through induction of T and B
cell responses (101, 102). Anti-tumor efficacy was enhanced with
IL-13Ra2 DNA priming plus a protein/adjuvant boost consisting
of the extracellular domain of IL-13Ra2 protein, CpG, and
incomplete Freund’s adjuvant (IFA) (103). Human studies
have not been initiated. Instead of using DNA vaccination,
Pollack et al. immunized children with newly diagnosed diffuse
brainstem and high-grade gliomas using three glioma-associated
antigens, including IL-13Ra2, in combination with Poly ICLC
adjuvant (104). Anti-glioma antigen immune responses to IL-
13Ra2 were observed in 10 of 13 evaluable patients. Two patients
had prolonged disease-free status after surgery (104).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Over the past 20 years, IL-13Ra2 has been confirmed as an
effective target for novel cancer therapies. We predict that
investigation of IL-13Ra2-targeted therapies will continue in
the clinic, with increased treatment of solid tumors outside of
gliomas. While transient improvements in patient outcomes
have been observed with IL-13Ra2-targeted monotherapies,
even in hard-to-treat tumors like GBM, the overall clinical
response has been underwhelming. Thus, combinatorial
approaches are likely necessary for the development of robust
IL-13Ra2-targeted anti-tumor responses.

Chemotherapy is considered standard of care in many
indications and works with an entirely different mechanism of
action compared to targeted therapies. We have combined
chemotherapy with IL-13Ra2-directed immunotoxin therapy.
When pancreatic tumor cell lines were treated with gemcitabine,
IL-13Ra2 was upregulated, resulting into increased IL13-PE-
mediated killing in vitro and improved survival of mice
implanted with pancreatic tumor xenografts (105). Similar
results were observed in oral squamous cell carcinoma
preclinical models (106). Thus, chemotherapy may synergize
or enhance antitumor effects through upregulation of IL-13Ra2
Frontiers in Immunology | www.frontiersin.org 6
in low expressing tumors or through additional mechanisms yet
to be elucidated. However, chemotherapy/IL-13Ra2-targeted
combinations may not be effective in certain indications. For
example, a correlation between temozolomide resistance and IL-
13Ra2 expression has been observed in GBM (31). Other
therapeutic approaches like use of histone deacetylase (HDAC)
inhibitors, which can cause over-expression of some tumor-
associated genes, may be a viable substitute for chemotherapy
combination in resistant tumors. Fujisawa et al. reported that
HDAC inhibition upregulated IL-13Ra2 and increased IL13-PE-
mediated responses in pancreatic tumor models (48).

While therapeutics like IL13-PE or IL-13Ra2-mAb-
chemotherapy conjugates are effective in reducing tumor burden
through direct cytotoxicity, combination with other IL-13Ra2-
targeted therapies such as cancer vaccines or CAR T cells may be
necessary to ensure long-term responses. Supporting this, IL-13Ra2
DNA vaccine/IL13-PE combination synergized to reduce murine
sarcoma and breast tumor growth via multiple immune
mechanisms, including direct tumor killing and increased T cell
tumor infiltration (102). As an alternative to using multiple IL-
13Ra2-targeted therapies, to address tumor antigen heterogeneity, it
may be better to combine agents that target distinct TAA. IL-13Ra2
expression declines during IL-13Ra2-targeted therapy (71), likely
due to selective killing of IL-13Ra2-expressing cells and
downregulation of IL-13Ra2 as a resistance mechanism to
mediate tumor escape. Utilizing therapies to target multiple TAA
may prevent antigen escape; however, targeting multiple TAA,
especially when using bi- or multi-specific molecules, may
increase on-target, off-tumor or off-target toxicities and/or lower
the maximal tolerated dose. Finally, the combination of IL13Ra2-
targeted therapies with checkpoint inhibitors may reduce
immunosuppression within the tumor microenvironment (TME)
and improve efficacy of IL-13Ra2-specific CAR T cells (107). One
recent study showed a positive correlation of IL-13Ra2 and the
immune regulatory protein VISTA in oral squamous cell carcinoma
(108). Other checkpoint inhibitors may also be upregulated in
tandem with IL-13Ra2.

In addition to identifying the combinations to improve
IL-13Ra2-targeted therapies, toxicities associated with
targeting IL-13Ra2 should be considered. While many
IL-13Ra2-targeted therapies are engineered to reduce cross-
reactivity with IL-13Ra1, some still display such cross-
reactivity. IL-13Ra1, unlike IL-13Ra2, is ubiquitously
expressed in humans. As such, there is a hypothetical risk of
IL-13Ra1-related off-target toxicities when using IL-13Ra2-
targeted therapies. To date, these toxicities have not been
observed in the clinic, but close monitoring of patients is
important. Most active clinical trials deliver IL-13Ra2-targeted
therapies locally in the brain, so it is possible that novel toxicities
may be observed with systemic or intracavital administration.

Importantly, the on-target, off-tumor effects of IL-13Ra2-
targeted therapies have not been widely investigated. Certain
immune cells express IL-13Ra2, including monocytes, myeloid-
derived suppressor cells (MDSC), and macrophages (6, 109–
111). After IL-13Ra2-targeted CAR T cell treatment, mice with
orthotopic murine gliomas have a transient reduction in MDSC
April 2022 | Volume 13 | Article 878365
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number in the tumor and spleen (76). IL13-PE treatment also
reduced the frequency of MDSC in the tumor and/or spleen of
mice bearing syngeneic HNSCC and breast tumors (102, 112). It
has not been elucidated whether reduction in MDSC prevalence
is due to direct killing of IL-13Ra2-expressing MDSC or
cytokine-mediated reprogramming of these cells to a different
phenotype. Both mechanisms are likely, as IL-13Ra2 signaling
has been linked to M2 polarization of human macrophages (6,
111). While IL-13Ra2-mediated MDSC depletion would likely
improve anti-tumor responses, reduction of other IL-13Ra2-
expressing immune cell populations, especially those that
mediate anti-tumor efficacy, may have negative effects. Thus,
immune expression of IL-13Ra2 within the TME or in tumor-
bearing subjects requires further elucidation.
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