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a b s t r a c t

Emerging evidence suggests that due to the misuse of antibiotics, bacteriophage (phage) therapy has been 
recognized as one of the most promising strategies for treating human diseases infected by antibiotic- 
resistant bacteria. Identification of phage-host interactions (PHIs) can help to explore the mechanisms of 
bacterial response to phages and provide new insights into effective therapeutic approaches. Compared to 
conventional wet-lab experiments, computational models for predicting PHIs can not only save time and 
cost, but also be more efficient and economical. In this study, we developed a deep learning predictive 
framework called GSPHI to identify potential phage and target bacterium pairs through DNA and protein 
sequence information. More specifically, GSPHI first initialized the node representations of phages and 
target bacterial hosts via a natural language processing algorithm. Then a graph embedding algorithm 
structural deep network embedding (SDNE) was utilized to extract local and global information from the 
interaction network, and finally, a deep neural network (DNN) was applied to accurately detect the inter-
actions between phages and their bacterial hosts. In the drug-resistant bacteria dataset ESKAPE, GSPHI 
achieved a prediction accuracy of 86.65 % and AUC of 0.9208 under the 5-fold cross-validation technique, 
significantly better than other methods. In addition, case studies in Gram-positive and negative bacterial 
species demonstrated that GSPHI is competent in detecting potential Phage-host interactions. Taken to-
gether, these results indicate that GSPHI can provide reasonable candidate sensitive bacteria to phages for 
biological experiments. The webserver of the GSPHI predictor is freely available at http://120.77.11.78/ 
GSPHI/.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Available reports have suggested that bacterial infections may be 
rooted in the development and progression of various diseases [1], 
such as pneumonia [2], osteomyelitis [3], meningitis [4], en-
docarditis [5], and different types of cancers [6]. In addition, phage 
have been and continue to be the key to molecular biology since its 
origin [7]. The advent of antibiotics has allowed millions of patients 
with bacterial infections to be cured. However, due to the misuse of 
antibiotics, bacterial resistance continues to increase, which makes 
it more difficult to treat bacterial infections with antibiotics [8]. 
Moreover, this situation is exacerbated by the over-consumption and 
uncontrolled use of antibiotics. As the same time, bacteria can 

rapidly develop resistance to new antibiotics, which significantly 
reduces the effectiveness of antimicrobial drugs [9]. On the other 
hand, the high cost and long experimental circle make it difficult for 
companies to develop new antibiotics [10]. Therefore, development 
of novel approaches to promote resistance reversal and treat bac-
terial diseases is urgently needed [11].

Bacteriophages are the virus that specialises in infecting and 
killing bacterial cells [12]. Phages are reproduced by replication and 
proliferation, which produces many progeny phages and leads to 
bacterial cell lysis [13]. Additionally, phages can also replicate ex-
ponentially [14]. This summary of properties makes phages to be one 
of the most promising therapies for tackling the crisis of antibiotic 
resistance [15]. Identification of PHIs (phage-host interactions) 
serves to investigate whether phages can be used to treat bacterial 
infectious diseases or their symptoms [16]. However, traditional PHIs 
development experiments are often time-consuming, costly, and 
risky. Thus, some investigators attempt to develop computational 
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methods to predict PHIs, which can help to screen for target phages 
for synergistic treatment [17].

Ecological co-evolutionary processes produced phages and bac-
terial genomes and left their evolutionary information in the 
genomic sequences, so various computational approaches based on 
sequence information have been developed. For example, Ahlgren 
et al. [18] provided a computational tool called VirHostMatcher 
(VHM), which predicts PHIs by conducting a comprehensive eva-
luation of eleven oligonucleotide distance measures over various k- 
mers lengths. However, it is difficult to apply VHM to large data sets 
as it is too time-consuming. To deal with this problem, Galiez et al. 
[19] developed WIsH, which predicts the prokaryotic host based on 
the genome sequence of phages. Compared with VHM, WIsH models 
can reduce running times through the constructed Markov models. 
In addition, a number of machine learning based models have been 
adopted to identify PHIs [20], such as random forest (RF), logistic 
regression (LR), support vector machine (SVM), and naive Bayesian 
(NB). Furthermore, with the invention of PHP [21] and VIDHOP [22]
model, the PHIs prediction accuracy has been brought to a new level. 
The PHP model calculated the differences between viruses and 
target hosts in the K-mers frequencies for the purpose to generated a 
Gaussian model. Recently, Several studies demonstrated that the 
receptor-binding proteins in the bacterial cell walls or membranes 
have a pivotal role in the phage adsorption processes [23,24]. Thus, 
some researchers started to focus on predicting PHIs based on re-
ceptor protein sequences. For instance, Li et al. [25] produced a novel 
deep learning-based approach to predict the hosts of phages from 
their sequence data. Leite et al. [26] proposed a method that used 
the primary sequences of phages and host proteins. Specifically, they 
combined sequence information with some machine learning clas-
sifiers (i.e RF, SVM, NB, and LR) to improve the prediction outcomes 
for phage-host interactions.

Despite these encouraging results, there are still some chal-
lenges. First, a massive number of experimentally identified PHIs 
pairs are collected in public domain databases [27], but only a few 
pairs are non-redundant that can be used to train the prediction 
models. This limitation makes it difficult to develop high-perfor-
mance prediction tools. Secondly, most existing approaches only 
used the DNA sequence of phages or the protein sequence of hosts, 
and few studies have combined these impact factors together [28]. 
Thirdly, most of these machine learning models lack sufficient ex-
planations for the mechanism of PHIs. Graph embedding algorithms 
have recently attracted growing attention in cell biology, and 
bioinformatics. Some attempts have been made to utilize such 
techniques to tackle different tasks. As a typical model for graph 
neural networks, Structural Deep Network Embedding (SDNE) ap-
plied the deep learning algorithms to learn network topological 
features. For example, Yi et al.: [29] collected nine biological mac-
romolecule associations between diseases, miRNAs, drugs, proteins, 
and lncRNA to build a complex network. Then they used the SDNE 
algorithm to fully consider the topological information of these 
nodes. Meanwhile, some researchers developed deep neural net-
work (DNN) to increase the interpretability of the predictive model. 
Advancements in these techniques have allowed us to provide fur-
ther improvements of prediction accuracy.

In this work, we propose a novel PHIs prediction framework 
named GSPHI, based on a graph embedding technique SDNE and 
sequence fusion feature to deal with the questions of PHIs predic-
tion. To be specific, we first constructed a phage-host interactions 
graph to summarize the connections between phages and bacteria. 
Nodes in the graph represent the phages and target hosts, and the 
links indicate their interactions. Then a graph neural network, SDNE, 
is used to capture the behavior features from their interaction links. 
Meanwhile, the natural language processing algorithm, word2vec, is 
applied to encode the tail protein and DNA sequence of phages and 
receptor‑binding proteins of hosts to extract the attribute 

information. Finally, GSPHI integrate the behavior information with 
attribute information as a fusion matrix, and then implemented the 
prediction task using a deep neural network (DNN). Comparison 
results with the state-of-art machine learning classifiers and graph 
embedding methods demonstrated the high efficiency of our model. 
Case studies on three highly virulent pathogenic bacteria further 
justify the usefulness of the proposed model. The results of these 
comprehensive computational experiments indicate that GSPHI is 
very suitable for predicting phage-host interactions.

2. Methods and materials

2.1. Construction of a PHIs database focused on clinically relevant 
pathogens

The tail protein of phages and receptor‑binding protein (RBP) on 
the host surface determined whether the phage can adsorb on the 
host. Meanwhile, an essential function of phages DNA is to instruct 
the synthesis of their endogenous counterparts (tail protein). Hence, 
we took these three factors into account when we constructed the 
prediction model. According to this principle, we collected 1170 RBP 
sequences with the DNA and proteins information related to the tail 
structure of the target phages from three different public databases, 
including UniProtKB [30], UniRef [31] and MillardLab (http:// 
millardlab.org). This dataset is dominated by ESKAPE (Enterococcus 
faecium, Acineto-bacter baumannii, Pseudomonas aeruginosa, Staphy-
lococcus aureus, Klebsiella pneumoniae, and Enterobacter species) pa-
thogens, and supplemented with Escherichia coli, Salmonella enterica 
and Clostridium difficile. In clinics, these pathogenic bacteria are all 
highly invasive. The frequent misuse and overuse of antibiotics 
caused the lack of specific bacterial targeting ability for these bac-
teria. Identical sequences were removed in order to reduce compu-
tational load. Through this way, we finally collected 1232 phage-host 
interaction pairs consisting of nine bacterial species.

2.2. Overview of GSPHI

In this work, we proposed a deep learning framework named 
GSPHI, which can improve the performance of PHIs prediction by 
complementing multiple information. For a multi-perspective ana-
lysis, we combined the DNA and protein sequence information of the 
phage tail with the RBP sequence information of hosts. The whole 
model is illustrated in Fig. 1. Specifically, we first collected PHIs 
datasets about the lethal and highly drug-resistant bacteria. Then we 
used a novel graph embedding technique, SDNE, to extract behavior 
information from phage and host associations links (DNA-RBP and 
tail protein-RBP). The deep learning-based SDNE algorithm can ex-
tract both local and global information from heterogeneous PHIs 
networks. Meanwhile, we also applied the natural language pro-
cessing technique, word2vec, to encode the sequence of DNA, and 
proteins of phage tail, and RBP for extracting information on attri-
butes. In this way, abundant relationship of phages and hosts in 
kinds of bio-scale can be extracted. It is noteworthy that we devel-
oped a novel prediction model of GSPHI and constructed a hetero-
geneous interaction network to mine multimedia genetic 
relationships, which generates the topology-preserving representa-
tion of phages and hosts. In addition, large numbers of ablation 
experiments were performed to demonstrate the feasibility, ac-
ceptability, and effectiveness of the developed GSPHI.

2.3. Representing phage-host pairs with structural deep network 
embedding

In recent years, graph embedding techniques have received in-
creasing attention in bioinformatics [32–34]. Compared with the 
conventionally analysis method, which is based on density 
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calculation, degree statistic, and multivariate clustering approaches, 
the graph embedding algorithms can represent the comprehensive 
features of the networks by generating a low-dimensional vector. 
Some researchers have reported that the structural deep network 
embedding (SDNE) algorithm delivers a competitive high prediction 
performance [35]. Therefore, in this work, we applied the SDNE al-
gorithm to extract behaviour features of phage and hosts, and col-
lected network proximity from each node. Different from shallow 
neural networks, SDNE utilized the core of DNN to model the 
complex nonlinear relationship between node representations. Since 
SDNE can retain both first and second-order proximity, it also has 
ability to preserve both local features and global representations 
from the PHIs network simultaneously. The whole algorithm can be 
separated into two segments: the first part is to model the first- 
order proximity, which was constructed by the supervised Laplace 
matrix. The second part is to model the second-order proximity 
through an unsupervised deep autoencoder. Finally, the middle layer 
outputs of the deep autoencoder were used as the representation of 
the nodes in the network, which maps the gene expression sig-
natures to a low-rank feature space. The flow diagram of the SDNE 
algorithm is illustrated in Fig. 2. SDNE is composed of an encoder- 
decoder architecture, which has the same basic components as the 
deep autoencoder. The encoder part used R hidden layers to perform 
the non-linear transformations, which will map a low-dimensional 
representation xi to a low-rank space, and =y x Gi i i is used to de-
scribe the low-rank features. While the decoder cell is adopted to 
reconstruct the nodes representation, then the final vector is ex-
pressed as x̂i.

When SDNE applies the supervisory information to analyse the 
local structure of the interaction network, which was derived from 
the first-order proximity and the loss function is calculated by:

= =
= =

L G y y G y yst i j

n
i j i

R
j
R

i j

n
i j i j1 , 1 ,

( )
2

( )2
, 1 , 2
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where the low-rank vectors of node i and node j can be described as 
yi and yj, respectively. The objection function of Eq. (1) borrows the 
ideal of Laplacian Eigenmaps [36], the penalties will be incurred 
when similar vertices are mapped far apart in the embedding space.

The second-order proximity is the ability to identify how similar 
neighbour-hood structure of a pair of vertexes are, and the un-
supervised components develop to preserve the global network 
structures, and its objection function is denoted by:
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where B represents a ×N N matrix and denotes the Hadamard 
product between x x(ˆ )i and bi. If =b 1i j, , else = >b 1i j, , where is 
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1 2 . In 
addition, in order to avoid overfitting, L2 -regularization term was 
established to optimate the parameters, and it should be calcu-
lated by:
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Here, R represents the total number of hidden layers, Ur and U
r( )

denotes the weight matrices in the kth-layer. Finally, the SDNE al-
gorithm integrates formula (1)-(3), and it can be shown as:
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In this work, the SDNE algorithm was applied in the form of an 
adjacency matrix G to extract the behaviour information form the 
phage-host interaction network. Then we obtained a + ×p h( )
embedding matrix MD, and MDi is the row of MD, p and h correspond 

Fig. 1. The overview of GSPHI. (Ⅰ) shows the PHIs dataset collecting. (Ⅱ) shows the extraction of multiple information from PHIs network. (Ⅲ) denotes the training module, and the 
output scores represent the potential PHIs pairs.
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to the property embeddings of phages and hosts, respectively. 
Meanwhile, is a free parameter that represents the embedding 
dimension of each node.

2.4. Embedding the biomolecular sequence by Word2Vec

In models of natural language processing (NLP), the goal of word 
embedding techniques, such as Word2vec [37] and doc2ver [38] is to 
learn a projection that represents words and documents as high- 
dimensional features and maps them into a rich lower-dimensional 
space. In the Word2vec algorithm, there are two approaches for 
representing the context of words: the Continuous Skip-Gram Model 
(Skip-Gram) and the Continuous Bag-of-Words Model (CBOW). The 
Skip-Gram model can identify the context based on the current 
word, while the CBOW-based method predicts the current word 
based on the context. When the sample size is not very large, Skip- 
Gram is more efficient and accurate than CBOW based method. 
However, CBOW learns words faster and more frequently. In this 
work., considering the size of the sequence series in this work, we 
adopted the CBOW model to represent the attribute features of PHIs 
nodes.

The amino acid sequence of phages and hosts was encoded into a 
matrix by Word2vec to abstract attribute characteristics from the 
PHIs network. The k-mers (k consecutive amino acids) approach was 
used to regard DNA, proteins of the tail, and RBP sequences as a 
single word and each sequence were expressed by numerous k-mers. 
For instance, given an RBP sequence MSTITQFPS, the units of 4-mers 
are MSTI, STIT, TITQ, ITQF, TQFP and QFPS. To increase computational 
speed, we used the python package genism [39] to train a CBOW- 
based model for the purpose of learning the appearance pattern of k- 
mers. In this work, the biological sequences and k-mers refer to the 
sentences and word, respectively. DNA and protein sequences of 
phages and hosts were encoded as embedding vectors in 64 di-
mensions. Since previous research [40] had proved that 4-mer pro-
vided the largest AUC by 5-fold cross-validation, we set k to 4. The 
details of the Word2vec algorithm used in RBP sequences are shown 
in Fig. 3.

2.5. Deep neural network

Deep learning is one of the most active fields in machine 
learning. Artificial neural network (ANN) was inspired by neural 
networks in the brain and consists of multiple layers of inter-
connected computed units[41–43]. The ANN model was designed 
with three layers: input, hidden, and output layer. The number of 
hidden layers determines the depth of the neural network, and the 
width corresponds to the maximum number of neurons in the 
hidden layer. With the continued increase of computational power, it 
became possible to train networks with larger numbers of hidden 
layers. The ANN model consists of many layers structure (two or 
more hidden layers) is called deep neural network (DNN). The 
function of DNN is not only to learn the high-level features from the 
original data, but also good at describing the complex structure of 
the high dimensional data.

In terms of its structure, DNN appears as a multilayer stack of 
plain modules. The features are first received in an input layer and 
non-linear transformations are then performed between the mul-
tiple hidden layers. The mean gradient will be calculated to adjust 
the corresponding design weights before producing the final out-
puts. Additionally, all neurons of the first hidden layer were con-
nected to all neurons from the input layer, and all neurons of the last 
hidden layer were connected to the output layer. Then, a weighted 
sum of its input will be counted by the neurons and nonlinear ac-
tivation functions are used to evaluate its output. In this work, rec-
tified linear unit (ReLU) [44], tanh, and softmax [45] are employed as 
the activation functions. More specifically, the tanh function was 
used in input layer, while the activation function in the hidden layer 
and output layer were ReLU and softmax function, respectively. The 
binary cross entropy function was used as a loss function. Con-
currently, the dropout learning algorithm [46] and Adam optimizer 
[47] were also employed to avoid overfitting and accelerate training. 
The entire network is defined as follows:

= + =H W X b i n( ), 1, .,i
m

i i i1 1 1 1 1 (5) 

= + = … = … =H W H b j n j h m( ), 1, , ; 2, , ; 1, 2ij
m

ij i j ij1 ( 1) 1 (6) 

Fig. 2. The framework of SDNE algorithm. 
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where m expresses the individual network, and n represent the 
batch sizes of PHIs pairs that are used for network training. The 
depth of the fused network and two individual networks is re-
presented by h2 and h1. 1 and 2 represents the activation function 
ReLU and softmax for the hidden layer and output layer, respectively. 
X and H is the batch training input and output of corresponding 
layers. Variable W represents the weight matrices between the input 
layer, hidden layer, and output layer, and b is the bias term. In ad-
dition, the symbol is the concatenation operator, and y denotes the 
corresponding desired outputs.

2.6. Evaluation criteria

In this study, the 5-fold cross-validation (5-fold CV) was per-
formed to computationally measure the prediction performance of 
GSPHI. We first randomly divided the ESKAPE dataset into five 
subsets with equal sample sizes, and then four of them were adopted 
as the training set and the remaining one as the test set. The process 
is repeated 5 times until each subset has been used as a test set once 
and only once. Finally, the average and standard deviations of these 
results were taken as the prediction results of GSPHI. In the ex-
periment, accuracy (ACC.), sensitivity (Sen.), specificity (Spec.), pre-
cision (Prec.), and F1-score (F1) were adopted as assessment criteria 
for the predictive power of the GSPHI model. The details of their 
formulas are provided below:

= +
+ + +

ACC
TP TN

FP TP FN TN
.

(9) 
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+
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TP

FN TP
.
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=
+
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+
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+

F
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1
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where TP, FP, TN, and FN stand for true positive, false positive, true 
negative, and false negative, respectively. Meanwhile, we also plot 
the receiver operating characteristic (ROC) [48] and calculate the 
area under ROC curves (AUC value) [49] and PR (precision-recall) 
curves to demonstrate the performance of GSPHI.

3. Prediction result

3.1. Detailed descriptions of GSPHI model evaluation and performance

In the specific experiment, GSPHI employed the 5-fold-CV tech-
nique to generate the evaluation indicators on the ESKAPE data set, 
and the detailed experiment results are summarized in Table 1. We 
can see that the prosed model achieved an average prediction ac-
curacy of 86.65 %, and its standard deviation was 1.55 %. On the 
evaluation indicators of Sen., Spec., Prec., F1-score and AUC, GSPHI 
achieved results of 88.40 %, 84.91 %, 85.43 %, 86.88 % and 0.9208, and 
their standard deviations were 1.81 %, 1.96 %, 1.74 %, 1.53 % and 
0.0119, respectively. Fig. 4 presents the ROC and PR curves of the 5- 
fold CV generated by GSPHI on the ESKAPE data set.

3.2. Influence of different information on model performance

To assess the predictive ability and robustness of the GSPHI 
model, we performed experiments that only used the behaviour or 
attribute information. To be specific, we carried out ablation studies 

Fig. 3. Pipeline of the Word2vec model in 4-mer case. 

Table 1 
Results of 5-fold CV performed by GSPHI on ESKAPE dataset. 

5-fold ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 (%) AUC

Fold-1 87.83 90.47 85.19 85.93 88.14 0.9255
Fold-2 85.70 86.82 84.58 84.92 85.86 0.9130
Fold-3 85.09 86.21 83.98 84.33 85.26 0.9173
Fold-4 85.90 89.05 82.76 83.78 86.33 0.9095
Fold-5 88.74 89.45 88.03 88.20 88.82 0.9393
Average 86.65  ±  1.55 88.40  ±  1.81 84.91  ±  1.96 85.43  ±  1.74 86.88  ±  1.53 0.9208  ±  0.0119
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to investigate the contribution of these components. Hence, we 
designed the following eight variants of GSPHI, which help us to 
analyse the proposed approach from multiple perspectives. 

• DR-A is a variant that only used the attribute information of the 
DNA-RBP sequence.

• TR-A is a variant that only used the attribute information of the 
Tail-RBP sequence.

• DTR-A is a variant that combined the attribute information of the 
DR-A and TR-A.

• DR-B is a variant that only used the behaviour information of the 
DNA-RBP sequence.

• TR-B is a variant that only used the behaviour information of the 
Tail-RBP sequence.

• DTR-B is a variant that combined the behaviour information of 
the DR-B and TR-B.

• DR-AB is a variant that combined information of the DR-A and 
DR-B.

• TR-AB is a variant that combined the information of the TR-A and 
TR-B.

Table 2 shows the result of the proposed model and its eight 
variants, and the detailed 5-fold CV results of these eight variants are 
summarized in Supplementary Table S1–S8. We found that the 
performance was lower when any module was removed, which 
implies that all the components are essential for the proposed 
model. The performance of TR-B shows the largest observed, with 
the ACC and AUC decreasing by 28.75% and 0.2693, respectively. The 
comparison results between DR-AB and DR-A showed that the ac-
cession of behaviour information can effectively improve prediction 
performance. Furthermore, the results of comparative analysis for 

the DR-AB and TR-AB variant showed that the features derived from 
DNA sequences were more useful than those derived from tail pro-
tein sequences. This scenario may attribute to the fact that the phage 
DNA directs the synthesis of its tail proteins.

3.3. Comparison of different machine learning-based classifiers

The deep neural network is a multi-layer feedforward neural net-
work, which was used in the GRASDENPHI model to accurately esti-
mate the phage-host interaction. In our experiments, to independently 
validate the influence of a neural network-based classifier module, we 
compare it with some different machine-learning based classifiers. In 
particular, the fusion features were generated by the behaviour, and 
attribute information was remained unchanged, and only replace the 
DNN module with some widely-used machine learning classifiers, in-
cluding support vector machine (SVM), K-nearest neighbour (KNN), 
random forest (RF) and Gradient Boosting Decision Tree (GBDT) algo-
rithms to build some conventional models to predict host-interacted 
phages. The results of these predictive performances were summarized 
in Table 3. For a more visual comparison of these experimental results, 
we used box plots (Fig. 5) to describe the superiority of the proposed 
model. As is observed from Fig. 5, GSPHI has yielded excellent results 
on ACC, Sen, F1, and AUC values. From these computational results, the 
proposed model represented the strongest competitiveness. The ex-
perimental result demonstrated that the DNN module adopted in 
GSPHI has a powerful tendency to determine whether phages have 
interacted with bacterial, which is favourable to improving overall 
predictive performance. The detailed 5-fold CV results for these ma-
chine learning classifiers were reported in Supplementary Material
(Tables of S9–S12).

Fig. 4. ROC and PR curves of 5-fold CV achieved by GSPHI on ESKAPE data set. 

Table 2 
Results of 5-fold CV performed by GSPHI on ESKAPE dataset. 

Method ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 (%) AUC

DR-A 80.48  ±  3.52 87.20  ±  3.67 73.77  ±  3.83 76.89  ±  3.22 81.72  ±  3.30 0.8444  ±  0.0344
TR-A 76.11  ±  4.21 85.26  ±  8.83 66.96  ±  6.66 72.20  ±  3.43 77.98  ±  4.61 0.8212  ±  0.0328
DTR-A 83.39  ±  1.54 87.14  ±  1.50 79.63  ±  2.19 81.08  ±  1.75 83.99  ±  1.42 0.8908  ±  0.0173
DR-B 81.78  ±  3.56 88.58  ±  4.70 74.98  ±  2.57 77.94  ±  2.63 82.91  ±  3.52 0.8890  ±  0.0279
TR-B 57.81  ±  1.63 52.06  ±  12.73 63.56  ±  10.51 59.16  ±  2.05 54.47  ±  7.94 0.6335  ±  0.0126
DTR-B 75.05  ±  0.86 83.04  ±  0.51 67.06  ±  1.84 71.61  ±  1.10 76.90  ±  0.61 0.8151  ±  0.0052
DR-AB 82.02  ±  3.74 88.83  ±  3.99 75.22  ±  3.99 78.21  ±  3.41 83.17  ±  3.53 0.8771  ±  0.0332
TR-AB 81.82  ±  3.32 88.74  ±  3.14 74.90  ±  3.62 77.96  ±  3.07 83.01  ±  3.07 0.8937  ±  0.0273
GSPHI 86.65  ±  1.55 88.40  ±  1.81 84.91  ±  1.96 85.43  ±  1.74 86.88  ±  1.53 0.9208  ±  0.0119
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3.4. Comparison with some different graph embedding methods

To further demonstrate the prediction power of SDNE algorithm, 
various graph embedding methods were compared. 

• Deepwalk [50]: Deepwalk is a deep learning method that vec-
torizes vertices in the graph and represents the potential re-
lationship of the vertices.

• Line [51]: Line algorithm is a novel algorithm for large-scale 
network computing and it is suitable for any type of network 
structure.

• Hope [52]: Hope algorithm obtains the embedding vector by 
factorizing the similarity matrix between nodes.

• Laplacian Eigenmaps (Lap) [53]: Lap is a geometric algorithm, 
which was proposed to embed data samples from a low-di-
mensional manifold in higher dimensional space.

For a fair comparison, all methods are test with the same data 
dimension and the same DNN structure. Table 4 lists the prediction 
result of these four powerful graph algorithms. From Table 4, it was 
shown that the performance of all these methods with different 
graph algorithms are lower than our method. To visually compare 
the performance of these methods, we also plotted their ROC and PR 

curves in Fig. 6. For the performance of two factorization-based 
methods (Lap and Hope), as the scores of ACC, Spec, and Prec, ob-
tained by Lap were better by 1.14 %, 5.76 %, and 2.63 % than those of 
Hope on ESKAPE dataset, respectively. However, despite these good 
prediction results performed by Lap algorithm, it was still 6.49 % 
lower than our method in terms of ACC values. The details results are 
reported in Supplementary Material (Tables 13–16), which suggested 
that our deep-learning based SDNE algorithm can improve the per-
formance of the model in this experiment.

3.5. Case study: A. baumannii, P. aeruginosa, and S. aureus

With the intention of further assessing whether GSPHI could 
exhibit accurate and robust performance, we conducted three case 
studies with Gram-positive and Gram-negative bacteria, including A. 
baumannii, P. aeruginosa, and S. aureus. Where A. baumannii and P. 
aeruginosa belong to the genus of Gram-negative bacteria, and they 
usually cause pneumonia, meningitis, peritonitis, endocarditis, as 
well as urinary tract and skin infections. While S. aureus refers the 
Gram-positive bacterium, which is responsible for about 25 % of food 
poisoning. Specially, we used the data of all known phage-host in-
teractions as training samples and the method of GSPHI to perform 
prediction. Then, we selected the top 20 phages in ascending order 

Table 3 
The performance of different classifiers under 5-fold CV performed on the ESKAPE dataset. 

Method ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 (%) AUC

SVM 83.19  ±  0.75 78.13  ±  1.63 88.24  ±  1.13 86.94  ±  1.00 82.29  ±  0.90 0.8975  ±  0.0095
KNN 73.65  ±  0.83 81.49  ±  2.21 65.81  ±  1.97 70.46  ±  0.88 75.55  ±  0.95 0.8304  ±  0.0051
RF 82.30  ±  1.10 75.65  ±  1.91 88.95  ±  1.02 87.25  ±  1.08 81.03  ±  1.31 0.8698  ±  0.0194
GBDT 80.69  ±  2.21 80.27  ±  1.55 81.11  ±  3.36 81.00  ±  2.83 80.62  ±  2.01 0.8942  ±  0.0173
GSPHI 86.65  ±  1.55 88.40  ±  1.81 84.91  ±  1.96 85.43  ±  1.74 86.88  ±  1.53 0.9208  ±  0.0119

7

Fig. 5. Box plots of comparison results from different classifier. The X-axis represents the adopted machine-learning classifiers. The Y-axis represents the different evaluation 
metrics.
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of probability for giving a detailed analysis. The detail results were 
shown in Tables 5–7. It was noted that 12, 13 and 11 out of the top 20 
phages were verified in published database. It is noteworthy that 
other interactions that are not verified by the current literature. 
However, we could not rule out the possibility that there are some 
interactions between them. These case studies confirmed that GSPHI 
is an excellent model for examining implicit phage-host interactions.

4. Discussion and conclusion

Designing phage therapies or understanding the co-evolution of 
host-virus is important for addressing the continued emergence of 
antibiotic resistance. The identification of phage hosts is extremely 
critical for exploring whether phage can be employed to treat bac-
terial diseases. In this study, we proposed a deep learning framework 
of GSPHI to predict potential PHIs. This model can construct feature 
descriptors by fusing DNA and protein sequence information of the 
target phage tail with the RBP sequence information of hosts. In 
addition, to build an accurate prediction model, this model also 
considers the behavior information of the PHIs network to fuse 
multiple attributes into a deep neural network to effectively pre-
dicting potential phage-host pairs. Experimental results indicated 
that GSPHI is superior to other existing methods. Meanwhile, ana-
lyses of three pathogenic bacteria-associated phages case studies 
verify the possibility of application in the future.

The great predictive performance of GSPHI is mainly credited to 
three factors: (i) GSPHI integrates various biological information 
including natural language features and the behavior information 
from the PHIs network. (ii) Perform the deep learning algorithm 
SDNE to integrate the local and global topological information of the 

Table 4 
comparison results with some widely used graph embedding methods. 

Method ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 (%) AUC

Deepwalk 79.03  ±  1.96 85.23  ±  2.74 72.82  ±  2.36 75.83  ±  1.81 80.24  ±  1.93 0.8633  ±  0.0188
Line 81.89  ±  0.66 87.43  ±  0.99 76.35  ±  2.16 78.74  ±  1.34 82.84  ±  0.41 0.8890  ±  0.0054
Hope 79.02  ±  1.12 89.57  ±  2.22 68.48  ±  3.77 74.04  ±  1.86 81.03  ±  0.76 0.8684  ±  0.0021
Lap 80.16  ±  1.84 86.08  ±  0.87 74.24  ±  3.56 77.03  ±  2.48 81.29  ±  1.47 0.8690  ±  0.0185
GSPHI 86.65  ±  1.55 88.40  ±  1.81 84.91  ±  1.96 85.43  ±  1.74 86.88  ±  1.53 0.9208  ±  0.0119

Fig. 6. Comparison results of different graph embedding methods about ROC and PR curves. 

Table 5 
The top 20 interactions of Acinetobacter baumannii related phages. 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence

1 JX976549 Confirmed 11 JX297445 N.A.
2 KU935715 Confirmed 12 EU734174 N.A.
3 KM672662 Confirmed 13 MF033348 Confirmed
4 KJ473423 Confirmed 14 KC862301 N.A.
5 KT804908 Confirmed 15 HQ186308 Confirmed
6 LN610572 Confirmed 16 MF001356 N.A.
7 LN881736 N.A. 17 KJ628499 Confirmed
8 EF151185 N.A. 18 JQ965645 N.A.
9 MH042230 Confirmed 19 KT454805 N.A.

10 MF033347 Confirmed 20 HE806280 Confirmed

Table 6 
The top e20 interactions of Pseudomonas aeruginosa related phages. 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence

1 KT887559 Confirmed 11 KT184311 N.A.
2 MF158046 N.A. 12 HM035025 N.A.
3 MH688040 N.A. 13 KT372698 Confirmed
4 MH536736 Confirmed 14 KC862297 Confirmed
5 KU297675 Confirmed 15 KP994390 Confirmed
6 MK050846 N.A. 16 KX171209 Confirmed
7 FM887021 Confirmed 17 AJ505558 Confirmed
8 KF981730 N.A. 18 KM411959 Confirmed
9 KX171210 Confirmed 19 HG934469 N.A.

10 LN610575 Confirmed 20 AM265638 Confirmed

Table 7 
The top 20 interactions of Staphylococcus aureus related phages. 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence

1 KJ888149 Confirmed 11 KY794641 Confirmed
2 MH107769 Confirmed 12 DQ904452 N.A.
3 KY581279 Confirmed 13 HM137666 N.A.
4 KM606994 N.A. 14 JX080305 Confirmed
5 MH844529 Confirmed 15 KU867876 N.A.
6 MG656408 Confirmed 16 KF582788 N.A.
7 FR852584 Confirmed 17 AP011113 N.A.
8 AF406556 N.A. 18 KR902361 Confirmed
9 KR908644 Confirmed 19 KP687432 Confirmed

10 AF208841 N.A. 20 FJ839693 N.A.
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PHIs network. (iii) GSPHI adopts DNN as the classifier to identify the 
interactions between phages and target hosts, which can efficiently 
identify the possible phage-interacted bacteria from multiple se-
quence information.

However, despite these impressive results, the proposed model 
has still faced some limitations. First, this model extracts the attri-
bute and behavior features by natural language and deep learning 
algorithms. These features may not be interpretable and difficult for 
users to understand. Secondly, the samples that picked at random 
will bring some errors to the prediction results, as this may cause a 
little noise for these samples. In future work, we will attempt to 
incorporate sequence similarity information between phages and 
hosts to build a more accurate and robust model. Additionally, we 
would try to collect more biological attributes to construct a more 
comprehensive microbial information network that the proposed 
model can extract more expressive features of phages and bacteria. 
However, the complexity of the interaction network will increase 
with the increasing of biological data, and the redundancy and noise 
in functional information may become more severe, thus creating 
novel difficulties to the attribute fusion capabilities of the proposed 
model. To solve this problem, we would try to design an end-to-end 
network to provide comprehensively curated information in future 
work. As a complex network architecture that is designed to predict 
phage-host interactions, we hope that the proposed GSPHI model 
can provide new insights into the treatment of bacterial infectious 
diseases. The source code can be freely found from Github (https:// 
github.com/NWUJiePan/Code).
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