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Abstract. In immunotherapy, the immune system is modulated 
in order to treat cancer. Traditional two dimensional in vitro 
models and in vivo animal models are insufficient to simulate 
the complex tumor microenvironment (TME) in the original 
tumor. As tumor immunotherapy involves the immune system, 
additional tumor mimic models, such as patient‑derived 
organoids, are required for the evaluation of the efficacy of 
immunotherapy. Furthermore, non‑tumor components and 
host tumor cells in the TME may interact to promote cancer 
incidence, progression, drug resistance and metastasis. It 
is possible to produce organoid models for lung cancer by 
retaining endogenous stromal components (e.g., multiple 
immune cell types), supplying cancer‑associated fibroblasts 
and exogenous immune cells, constructing tumor vasculature 
and adding other biological or chemical components that 
emulate the TME. Therefore, the lung cancer organoid culture 
platform may facilitate preclinical testing of immunotherapy 

drugs for lung cancer by mimicking immunotherapy responses. 
The present review summarizes current lung cancer organoid 
culture methods for TME modeling and discusses the use of 
lung cancer‑derived organoids for the detection of lung cancer 
immunotherapy and individualized cancer immunotherapy.
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1. Introduction

Lung cancer is the leading cause of cancer deaths. In the 
last decade, patients with lung cancer have demonstrated 
continuously improved overall survival rates, mainly due to 
the development of effective advanced treatment regimens 
and precision medicine in the field of oncology (1). Precision 
medicine can treat tumors by matching a patient's unique 
clinical and biological characteristics with an optimal 
treatment or combination of treatments, with the intent to 
maximize clinical benefit with minimal side effects and 
ultimately achieve an effective and long‑lasting impact on 
immune response and tumor cell escape (2‑4). Advances in 
immunotherapy have demonstrated that certain beneficial 
immune responses are triggered in patients with cancer. For 
example, in patients with non‑small cell lung cancer (NSCLC) 
who demonstrate overexpression of programmed cell death 
ligand‑1 (PD‑L1), treatment regimens using immune check‑
point inhibitors (ICIs) are currently one of the mainstays of 
immunotherapy (3,4). The detection of certain biomarkers, 
including tumor mutational burden (TMB) (5) and micro‑
satellite instability (MSI) (6), can improve the outcomes of 
checkpoint blockade‑based immunotherapy by identifying 
patients with the best response. Nonetheless, the majority of 
patients with relatively high MSIs or TMBs fail to respond 
to immunotherapy or will develop a mechanism for adaptive 
resistance (7). Therefore, there is an urgent need for advanced 
treatment sensitivity predictors that can guide therapeutic 
regimens and prevent the unnecessary exposure of patients 
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to ineffective treatments. Static biomarkers detected using 
genomic (8), transcriptome (8) or proteomic (9) analysis can 
support the selection of a suitable choice among treatment 
regimens. However, analysis of certain biomarkers, such as 
TMB and PD‑L1 expression (5) and the content of certain 
immune cells, such as CD8+ cells, fails to adequately capture 
inter‑ and intra‑tumor heterogeneity alongside the variation 
demonstrated between individuals (10). Compared with the 
aforementioned static tumor biomarkers, in vivo animal 
models can directly evaluate how immunotherapy may 
affect patient‑derived materials (PDMs), thereby providing 
a functional readout of tumor response to certain treatments. 
While murine models are a powerful tool for the investiga‑
tion of the efficacy of classical drugs, they are not applicable 
to all types of immunotherapy, as the murine immune system 
differs from the human immune system (11). Developing 
alternative models that can replicate human tumors and 
preserve the characteristics of the human immune system 
is therefore necessary to improve immunotherapy research. 
Currently, the interactions of cancer cells with their environ‑
ment have been successfully modeled using patient‑derived 
tumor xenografts (PDTX) and human cell lines. PDTX cost, 
productivity and comprehensive immuno‑compatibility 
are currently issues with this form of model (10,11). The 
construction of effective PDTX models is laborious, taking 
4‑8 months to develop. As a consequence, these models are 
not currently a feasible option for targeted cancer therapy 
research (12). In previous years, both tumor organoids and 
complex tumor‑immune organoids have been considered 
promising models which mimic the human TME and migra‑
tion, extravasation, and Angiogenesis) of the human immune 
system. In the present article, the current developments in 
lung cancer organoid (LCO) technology will be reviewed and 
its application in precision immunotherapy approaches will 
be discussed. Comparison of different types of lung cancer 
models were list in Table I.

2. Lung organoids and LCOs

Organoids are multicellular spheroids originally derived 
from healthy organ tissue with the aim of reconstructing 
and miniaturizing the multicellular architecture of the 
organ (13). Organoids are three dimensional (3D) struc‑
tures which can be cultured in embedded 3D matrices to 
imitate original tissues (14‑16). In 2008, Eiraku et al (17) 
reported the production of one self‑organized formation of 
apico‑basally polarized cortical tissues from embryonic stem 
cells using an efficient 3D aggregation culture, the cortical 
neurons were both functional and transplantable. In 2009, the 
creation of organoids from mouse intestinal stem cells was 
first described by Sato et al (18) and this work served as the 
basis for subsequent organoid cultivation techniques in other 
murine and human epithelial tissues. Organoids have the 
capacity to self‑organize and can be produced from human 
stem cells to simulate disease progression or tissue homeo‑
stasis, or from pluripotent embryonic stem cells or induced 
pluripotent stem cells to imitate embryonic development. 

Lung organoids. To evaluate the application of organoids 
in lung diseases, numerous studies first explored the use of 

lung organoids. Lung organoids have the potential to aid 
in the development of advanced treatments for a number 
of lung diseases, such as lung cancer (19,20), idiopathic 
pulmonary fibrosis (21), cystic fibrosis (22) and asthma (23). 
Notably, in vitro organoid models for human distal pulmo‑
nary infectious diseases, such as coronavirus disease 2019, 
have also previously been established (24). Since organoids 
are derived from cells with progenitor potential, adult lung 
epithelial stem or progenitor cells, including basal cells, 
alveolar type II cells and airway secretory cells can be used 
as the required primary cell source to establish lung organ‑
oids (25). Rock et al (26) cultured airway basal cells in a 
3D air‑liquid interface system and reported that basal cells 
could differentiate into tracheal spheroids in the absence of 
mesenchymal stem cells (MSCs). The differentiation of lung 
progenitor cells into airway and alveolar structures can be 
promoted when co‑cultured with MSCs (27,28). Moreover, 
the ability to alter human pluripotent stem cells (hPSCs) 
using the CRISPR‑Cas9 system enables researchers to 
modify and investigate human genes linked to lung organoid 
development and disease, is an additional benefit of this type 
of organoid model (21).

In a previous study, certain techniques used for creating 
human or mouse lung‑derived organoids failed to achieve the 
long‑term goal of constructing single lung organoids derived 
from lung basal cells cultured in culture for 2 weeks shows 
abnormal differentiation occurs) (25). However, with develop‑
ment of lung organoid culture technology, this may no longer be 
a limitation in the future. Sachs et al (29) previously described 
the conditions required for long‑term lung organoid culture. 
In the aforementioned study, human lung‑derived organoids 
were passaged every 2 weeks for >1 year, maintaining similar 
proportions of basal, rod, multiciliated and secretory cells. 
Furthermore, hPSC‑derived lung organoids can be cultivated 
for up to 170 days (28). Notably, Salahudeen et al (24) reported 
distal human lung progenitors as organoids derived clonally 
from single adult human alveolar epithelial type II (AT2) or 
KRT5+ basal cells) for the long‑term growth of human distal 
airway and alveolar organoids.

LCOs. Similar to organs, tumors are composed of numerous 
cell types with the addition of cancer cells (5). The clonal 
heterogeneity and mutational status of donor tumors can be 
substantially retained in organoids (30). The development 
of patient‑derived tumor organoid (PDTO) cultures presents 
a novel form of in vitro model to effectively mimic human 
tumors (31). To date, tumor tissues of certain types of cancer 
have been successfully cultured into PDTOs, most of which 
are derived from epithelial carcinoma (32), including lung 
adenocarcinoma. LCOs are 3D structures derived from 
processed lung tumor tissue that contain different cell types 
and grow in a standardized manner (33). Numerous lung 
cell types, including stromal cells, as well as cancer cells at 
various stages of disease, can be cultured in lung cancer cell 
lines derived from patient tumor tissue (34). Furthermore, 
cancer cells at the most advanced stage of disease can be 
modeled by short‑term cultured cells (PDX/PDO), which 
may serve as a genetic depiction of the primary tumor (33). 
Although certain types of patient‑derived lung cell lines can 
be cultured in monolayers, the original 3D organ architecture 
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and heterogeneity of a cancerous organ cannot be retained in a 
monolayer differentiated environment. The cooperative inter‑
play of numerous cell types that are dispersed and arranged 
in a 3D structure is necessary for human organs to operate 
in a disease‑free state. Originating from healthy organs, lung 
tumors are a complex cell community. The intricate extracel‑
lular matrix and tumor microenvironment (TME) also aid in 
the formation of tumors (35).

3. LCO culture technology for immunotherapy research

Certain LCO culture methods have been used to model 
suitable TMEs for the testing of immunotherapy, including 
reconstructive methods. Reconstructive methods involve the 
culture of organoids composed solely of epithelial cells in 
submerged Matrigel (36). Then, exogenous immune cells and 
various stromal cells are added for the investigation of immu‑
notherapy and TME that rely on this method (33). Holistic 
approaches, such as microfluidic 3D culture and air‑liquid 
interface (ALI), have also been used to model TMEs suitable 
for immunotherapy research. This can involve production of 
aggregates of 3D spheroids, in suspension or implanted in 3D 
matrices (Fig. 1) (34). Notably, ALI can be applied through 
explant culture, which can be used to preserve tissue struc‑
tures. With these techniques, small fragments of native TME 
and tumor tissue are preserved as a complete unit (35).

Submerged Matrigel culture. The submerged Matrigel 
technique is used to culture tumor cells isolated from tumor 
biopsies in tissue culture media mixed with 3D Matrigel in 
domed or flat gels (36‑38). This technique requires growth 
factor supplementation and the use of small‑molecule inhibi‑
tors, such as Y27632 and Rho‑associated kinase, or activators, 
such as smoothened agonist (SAG), the use of which may differ 
between laboratories (39,40). Small‑molecule activators and 
inhibitors can promote or block multiple biological responses, 
which is helpful to maintain organoid growth and phenotype. 
For instance, a previous study by Huo et al (41) used common 
media formulations such as DMEM/F12, HEPES, peni‑
cillin‑streptomycin and Glutamax, with N‑acetyl‑L‑cysteine 
and B‑27 supplements for the maintenance of certain 

properties (genetic markers such as EGFR)/protein markers 
(e.g., TTF‑1, p63, cytokeratin 5)) of lung cancer cells derived 
from stem cells or patients. A number of small molecule acti‑
vators or inhibitors, including A83‑01, CHIR 99021, Noggin, 
Y‑27632 and SAG were also added to the culture medium. 
With this tailor‑made ‘cocktail’, which also included certain 
growth factors such as epidermal growth factor (EGF), 
fibroblast growth factor (FGF) 4 and FGF10, the successful 
organoid culture period exceeded 3 months (19). By contrast, 
another previous study produced a simpler organoid culture 
medium with fewer components (18). This medium consisted 
of EGF, βFGF, Y‑27632, N2 and B‑27 supplements and basic 
cell culture components such as penicillin‑streptomycin and 
DMEM/F12. In the aforementioned study, organoids derived 
from lung tumors could be effectively cultured for >6 months. 
However, the addition of media components is only part of the 
reason for the success of organoid cultures. 

During LCO culture, issues with healthy epithelial cell 
overgrowth have been documented (40). The genetic instability 
and high mortality rate of cancer cells may be one reason why 
healthy lung cells display a growth advantage during organoid 
culture compared with cancer cells (42). Another reason 
may be a large amount of stem cells in the medium formula‑
tion (43). Bleijs et al (32)supplemented growth medium with a 
variety of small‑molecule signal regulators and growth factors, 
including A83‑01, Noggin, SB 202190, R‑spondin, Y‑27632, 
FGF7 and FGF10 and also added Nutlin‑3α to induce the 
senescence or apoptosis of TP53 wild‑type cells, which can 
slow the increased proliferation rate observed in healthy 
epithelial cells. Utilizing the Nutlin‑3a selection method, the 
aforementioned study enlarged the selected LCOS carrying 
p53 mutations and produced pure LCOs derived from several 
tumor tissues belonging to different histological subtypes 
(mucinous/acinar/lepidic). However, the effective incubation 
time of these organoids was not detailed in the study. 

The aim of the aforementioned organoid culture strategies 
is to construct pure LCOs while largely inhibiting the growth 
of healthy lung cells. Other culture techniques, including ALI, 
have also used these supplements (44). It should be noted that 
the traditional method of submerged Matrigel enriches only 
epithelial cancer cells but does not maintain components 

Table I. Advantages and disadvantages of certain types of lung cancer models.

Model type Advantages Disadvantages

Cell lines Easy to obtain. Easy to cultivate. Low cost.  Heterogeneity exists between laboratories. 
 Widely available. Long‑term cultures are prone to genetic drift 
  and loss of key features of the primary tumor.
Patient‑derived xenograft tumor Preserves the genome and phenotype of Expensive and time‑consuming. Cannot be
 patient's tumor tissue. passaged. Lacks the patient native tumor 
  microenvironment.
Patient‑derived organoid model Preserves the genome and phenotype of the Lack of standardized culture methods. 
 patient's tumor tissue. Simulates the original Long‑term culture is difficult.
 tumor microenvironment. Saves time 
 compared with the patient‑derived xenograft 
 tumor model.
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(lymphocyte/tumor‑associated macrophages) (17). Therefore, 
co‑culture of patient‑derived organoids (PDOs) with exog‑
enous immune cells is necessary for temporal modeling in 
these methodologies. A pure tumor organoid was produced by 
Dijkstra et al (45) using Nutlin‑3a, a mouse double minute 2 
homolog inhibitor, to culture NSCLC organoids with p53 muta‑
tions, which was compared with patient autologous peripheral 
blood mononuclear cells (PBMCs) in Geltrex basement 
membrane. PBMCs were co‑cultured with colorectal cancer 
cell and induced tumor‑reactive CD8+ population expansion 
and showed specific anti‑tumor responsiveness in the TME. A 
previous study by Takahashi et al (46) also used this method 
to culture LCOs called ‘Fukushima’ organoids and assess 
the efficacy of lung cancer immunotherapy by simulating the 
complex interaction between immune cells and malignant 
cells. However, the TME of the cultivated organoid is still 
relatively monolithic, which is a drawback of this strategy, 
but this problem can be solved by producing a comprehensive 
model of native TME.

Microfluidic 3D culture. In a microfluidic 3D device, a 
patient‑ or murine‑derived organotypic tumor spheroid 
(PDOTS/MDOTS) is cultivated in collagen gel (type IV colla‑
genase and HEPES) (47). In PDOTS/MDOTS cultures, tumor 
tissue specimens are obtained from patients and separated 

enzymatically and mechanically (48). This process ultimately 
yields a heterogeneous mixture of spheroids, single cells and 
macroscopic tumor fragments. Next, this mixture is filtered via 
100 and 40 mm aperture filters in order to retain 40‑100 mm 
diameter spheres. These spheres are then combined with 
collagen gel, pelleted in ultra‑low attachment plates and seeded 
into the middle of regional microfluidic device. The medium 
is injected into the medium channels flanking the central 
channel to nurture the spheroids. In addition, Jung et al (49) 
developed an all‑in‑one microfluidic system that continuously 
flows medicated medium through the system to deliver nutri‑
ents and oxygen to LCOs and can also deliver drugs to LCOs 
for drug susceptibility testing. The aforementioned study also 
reported that after induction using cisplatin and etoposide, 
cells in the peripheral region of LCOs died, while cells in 
the core region continued to survive for 72 h. This suggested 
that the core region of LCOs contained chemo‑resistant cells, 
which indicated that this system could aid in predicting the 
chemotherapy response of lung cancer cells and could be 
used to choose the most effective treatment plan. Notably, in 
this approach, spheroids preserve the cellular diversity and 
complexity of native cancer tissues, such as autologous bone 
marrow cell populations (dendritic cells, myeloid‑derived 
suppressor cells, monocytes and tumor‑associated macro‑
phages), lymphocytes (T and B cells) and non‑reconstituted 

Figure 1. Lung cancer organoid culture technology for immunotherapy research. 
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cancer cells (50). By adding exogenous T cells to the media 
channels, Kitajima et al (51) evaluated T cell infiltration into 
LCOs and LCO interactions and crosstalk with immune cells 
in these devices.

ALI culture. The ALI culture method relies on a set of inner 
and outer disks, with the inner disk being made of two 
layers (52). First, a collagen gel matrix is added to the inner 
disk to prepare the bottom layer (53). After obtaining primary 
tissue samples, samples are immediately placed into ice‑cold 
culture medium for further preparation (53). Next, the tissue 
is rinsed, physically broken down into small pieces, then 
incubated and mixed into collagen gel. This mixture is then 
poured onto the underlying gel matrix of the inner dish, to 
produce the top layer inside the inner dish (53). The gel in 
the inner dish is allowed to harden by being placed into the 
outer dish and moved to a 37˚C incubator (53). The culture 
medium is subsequently poured into the outer disk, where it 
can permeate into the inner disk via the porous membrane. 
Tissues and organs may efficiently receive oxygen from the 
top layer as the culture is directly exposed to the air (53‑55). 
In contrast to submerged Matrigel cultures, ALI enables the 
development of larger multicellular fragments that maintain 
original tissue structure, such as resection‑sourced cancer 
cells co‑cultured with non‑reconstituted immune cells and 
indigenous stroma (56). According to a previously published 
study by Finnberg et al (57), endogenous CD45+ immune cells 
of human colorectal organoids and LCOs can persist for up to 
10 days using the ALI culture technique, despite a significant 
reduction in the number of CD3+ cells. Additionally, the PDO 
cultured with ALI can retain native tumor genetic changes in 
addition to the TME's complex cellular components and struc‑
tural organization (44). Compared with submerged Matrigel 
cultures, ALI's characteristics make this technique an appro‑
priate TME model (58). The ALI technique was utilized to 
develop PDOs from several types of surgically removed 
tumors, including lung cancer (44). Cultures retain tumor 
epithelium and its stromal microenvironment for 30 days along 
with fibroblasts and immune cells, such as tumor‑associated 

T helper cells, B cells, cytotoxic T lymphocytes, natural killer 
(NK) cells, NK T cells and macrophages. Furthermore, the 
T cell receptor (TCR) heterogeneity present in the initial 
tumor is retained in these cultures (59). 

ALI‑cultured organoids derived from murine or human 
tumors are notably different in many aspects. The doubling 
times and serial passaging of cell line‑derived murine organoids 
are rapid and reproducible (60). Comparatively, the growth and 
reproduction rates of PDOs are highly variable and are associ‑
ated with the initial conditions present during tumor biopsy, 
such as sampling condition, preservation duration, tumor 
viability, pre‑ or post‑treatment and tumor histology grade 
(high or low) (61). Thus, in the culture plate where organoids 
are grown, necrotic tissue is various proportions of the organ‑
oids. In immunogenic murine‑derived organotypic tumor 
spheroid (MDOTS), cytotoxic responses as well as activation 
and expansion of tumor infiltrating lymphocytes (TILs) are 
fixed, but a very different picture exists in human PDOs, given 
the patient‑intrinsic differences, and many well‑documented 
tumors and immune components are resistant to checkpoint 
inhibition to various extents. Immunity declined and fibroblast 
stroma in murine‑ and human‑derived organoids deteriorated 
during a 1 year period. Though anti‑CD3/anti‑CD28 or IL‑2 
supplementation can slow TIL loss, further optimization is 
required to preserve TIL above the current 60 day limit (40).

4. LCO application in immunotherapy

An optimal ex vivo model is needed for immunotherapy 
screening and research to accurately reproduce the hetero‑
geneity of original TMEs. PDO is considered to have great 
potential because it saves time and represents the patient's 
stage and treatment history. This section will discuss the 
immunotherapeutic application of organoids (Fig. 2).

Immune checkpoint inhibitors. In the field of lung cancer 
treatment, particularly for NSCLC, a transformation occurred 
following the identification of immunological checkpoints 
and the discovery of ICIs, work which was recognized with 

Figure 2. Application of LCOs in immunotherapy. LCO, lung cancer organoid.
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a Nobel Prize (62). Among several types of tumors that are 
known to use immune checkpoints to evade the host immune 
system, cytotoxic T lymphocyte antigen‑4 (CTLA‑4) and 
programmed cell death protein‑1 (PD‑1)/PD‑L1 are the most 
widely clinically used (63). Once these pathways are inhibited, 
cytotoxic T‑cell priming and antitumor activity can occur. 
Successful breakthroughs with ICIs in the immunothera‑
peutic treatment of NSCLC include PD‑1 inhibitors, such as 
nivolumab (64) and pembrolizumab (65), PD‑L1 inhibitors 
durvalumab (66) and atezolizumab (67) and the CTLA‑4 
inhibitor ipilimumab (68). Compared with the increased appli‑
cation of ICIs in the treatment of NSCLC, the frequency of the 
use of this type of treatment in small cell lung cancer (SCLC) 
remains low (69). Over the past 30 years, first‑line therapy 
that combines platinum‑based chemotherapy with a PD‑L1 
inhibitor (atezolizumab or durvalumab) has been the sole 
advancement in the treatment of extensive‑stage SCLC (70). 
However, though ICIs have achieved unprecedented success 
in clinical trial sites in the treatment of lung cancer, breast 
cancer, ovarian cancer and other fields, the in vivo mechanisms 
of action and possible drug resistance factors are still unclear. 
First, ICI‑based treatment does not provide long‑term benefits 
for ~70% of patients with advanced NSCLC and ~80% of 
patients with SCLC (71). Secondly, efforts are currently 
underway to identify a suitable biomarker of the ICI response. 
Finally, SCLC is difficult to treat and the addition of existing 
ICIs to therapeutic modalities has seen limited success due to 
the immunosuppressive TME (59). In order to overcome these 
obstacles and combat the propensity for SCLC to persist, new 
strategies for harnessing the potential of the immune system 
must be developed.

Tumor immunity arises from the synergy of active 
communication between peripheral and intratumoral compo‑
nents (72‑74). However, current in vivo systems are unable 
to break down the distinct contributions made by peripheral 
immune cells to intra‑tumor immunological responses, rather 
than immune cells that are inherent residents of the TME (75). 
The recognition of such local events is currently enabled by the 
basic mechanism of existing PDOs. It remains unclear whether 
anti‑PD‑1 antibodies can enlarge intratumorally depleted 
CD8+ T cells through acting on peripheral and tumor‑infil‑
trating populations (76) and also increase the proliferation of 
peripheral blood PD‑1+ CD8+ T cells (77,78). Therefore, PD‑1 
axis inhibition inside the TME is effective for the induction of 
growth and activation of TILs, as anti‑PD‑1 and anti‑PD‑L1 
can activate TILs in human and murine PDOs. According to a 
previous study reported by Neal et al (79), expanded clear cell 
renal cell carcinoma tumor infiltrating lymphocytes(ccRCC 
TIL) TCR clonotypes are enriched in depleted T cells, which 
may aid in the development of tumors.

A number of cancers, including renal cell carcinoma 
(RCC) (77), cutaneous squamous cell carcinoma (78), mela‑
noma (80), head and neck cancer (81) and NSCLC (82) have 
been effectively treated through the use of ICI targeting 
PD‑1/PD‑L1 and CTLA‑4. With the efforts of certain organi‑
zations, such as the Human Cancer Models Initiative, specific 
organoid biobanks for epithelial tissues from a variety of 
cancers are publicly accessible. However, the immunothera‑
peutic applications of these types of PDOs are limited by the 
absence of immune compartments (83). A previous study 

has been performed to address this issue. To evaluate T cell 
cytotoxicity and TIL‑to‑organoid migration, Kong et al (84) 
co‑cultured epithelial‑only organoids with autologous TILs 
in an immersed Matrigel matrix. The aforementioned study 
also reported that TIL function is restored following immune 
checkpoint blockade (ICB). However, as a recombinant 
approach, co‑culture of epithelial‑only PDO with foreign 
immune cells cannot accurately mimic the connections and 
cross‑talk that occur between various cell populations in the 
TME, particularly when immunomodulatory medications are 
applied. Tumor immune microenvironment (TIME) modeling 
can be utilized to overcome this problem using integrated 
culture techniques like 3D microfluidics and ALI culture 
methodologies (85). In short‑term 3D microfluidic cultures, 
organotypic spheroids can be used to maintain autologous 
bone marrow and lymphoid cells which are comparable to 
the original donor tumors and can mimic dynamic responses 
and resistance to ICBs, such as PD‑1 inhibition (47). Likewise, 
the donor tumor cytokine secretion profile can be matched in 
PDOTS/MDOTS (50). Thus, PDOTS/MDOTS analysis enables 
the cultivation of models that utilize ICB which are relevant 
to clinical settings. Neal et al (79) used the ALI approach to 
cultivate lung cancer patient‑derived organoids and implanted 
tumor epithelial cells together with autologous immune cells 
(T, B and NK cells and macrophages) into the organoids. The 
original tumor T cell receptor profile was retained by PDO 
TILs (TCR). PDOs successfully mimic ICB and induce tumor 
cytotoxicity through the expansion of antigen‑specific TIL 
activation, anti‑PD‑1 and/or anti‑PD‑L1. Additionally, there is 
a potential impact of the design and material of the device used 
in organoid cultivation on the effectiveness of immunotherapy, 
as observed previously in ICB research (86).

Adoptive cell transfer therapy. Recently, immune cell‑based 
treatment has been used as a potential immunotherapy strategy 
to combat lung cancer (87). Building on the success of previ‑
ously published oncology studies, the aforementioned study 
harnessed the innate ability of immune cells to destroy cancer 
cells and generate a robust immune response by bringing in 
additional cells to the TME. The genetic engineering of T or 
NK cells enables these cells to target certain antigens produced 
on lung cancer cells and reprogram the behavior of immune 
cells to enhance their function, increasing the specificity of 
immune detection of cancer cells.

Most immune cell‑based lung cancer targeting studies have 
reported the use of chimeric antigen receptor (CAR)‑T cells, 
although a growing body of research is using the allogenic 
nature of NK cells to provide infused CAR‑T cells, which is a 
potentially safer alternative (NK cells have a limited life span 
in circulation and less produce memory cells) (88,89). Despite 
the success of cell‑based approaches to treat hematological 
malignancies, solid tumors, such as lung cancers, consistently 
demonstrate poor response rates to these treatments (90). This 
may be related to immune tolerance and TME heterogeneity 
in the presence of immune cells in adoptive cell transfer 
therapy. In lung cancer, the TME forms a complex barrier to 
immune cell activity, often leading to resistance to therapy. 
In the lung cancer TME, CAR‑T cells display poor ability 
to aggregate (91). In addition, unfavorable intra‑tumoral 
immunometabolic conditions (enhanced glycolysis and lactate 
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production, reduced mitochondrial respiration, and alterations 
in lipid and amino acid metabolism) can lead to the dysfunc‑
tion of infiltrating immune cells. CAR‑T cell dysfunction 
can involve fatigue, senescence or weakness (92). Systemic 
drug toxicity caused by CAR‑T cells is also a possibility (93). 
Adoptive cell transfer immunotherapy involves the collection 
of circulating lymphocytes or TILs and the selection or genetic 
engineering of high‑affinity TCRs that detect tumor antigens. 
These cells are subsequently activated and expanded in vitro 
before infusion into patients (94,95). CAR‑T cells produce 
synthetic TCRs that target certain antigens on the tumor cell 
surface and can overcome major histocompatibility complex 
(MHC) limitations such as polymorphism (96). Previous 
studies have reported that PDO is an effective platform to 
assess the cytotoxicity of T cells (TCR or CAR‑T cells) for 
specific tumors (97,98). PDO was utilized to assess the 
outcome of CAR‑T cell therapy combined with the apoptosis 
antagonist birinapant in a study by Michie et al (99). The 
aforementioned study reported that CAR‑T cells alone were 
insufficient, whereas a combination of birinapant and CAR‑T 
cells inhibits PDO development in a manner which relied on 
tumor necrosis factor. A preclinical model (luciferase‑based 
measurement), 3D PDO, was created by Schnalzger et al (100) 
to enable the identification of CAR‑mediated cytotoxicity 
in a natural TIME model. Additionally, the aforementioned 
study developed a procedure for confocal live‑cell imaging 
to dynamically monitor cytotoxic activity against individual 
organoids. In co‑cultures of NK cells with regular cancer 
organoids on colorectal cancer (CRC) or extracellular matrix 
layers, co‑cultures demonstrated durable effector‑target cell 
connections. Additionally, tumor antigen‑specific cytotoxicity 
of FRIZZLED or EGFRvIII receptor‑targeted NK‑92 cells 
engineered by CAR was monitored using CRC organoids. 
In conclusion, a framework was developed to analyze CAR 
effectiveness and tumor selectivity in an individualized 
manner (101). In addition, although epithelial‑only PDO is 
devoid of immunological and stromal components, it can 
be utilized to select T cells that are reactive to tumors (45). 
Tumor‑reactive lymphocyte enrichment, stimulation and 
efficacy assessments may be performed using this co‑culture 
method (45). To produce tumor‑reactive CD8+ communities, 
autologous circulating T cells (PBMCs) and CRC or NSCLC 
organoids were co‑cultured in medium containing IL‑2, 
anti‑CD28 and anti‑PD1. MHC‑dependent cytotoxicity and T 
cell‑mediated killing effects on autologous tumor organoids 
were observed after 2 weeks of co‑culture, along with an 
elevation in the production of IFNg and CD107a in CD8+ T 
cells. However, the survival of matching healthy organoids 
was unaffected by CD8+ T cells that could react to tumor 
cells. As a result, a previous study created a platform for 
developing tumor‑reactive T cells and testing the sensitivity 
and precision of autologous T cells to eradicate cancer cells 
at the individual level (102). In addition, it is possible to 
extract tumor‑reactive T cells from TILs and re‑infuse them 
into patients, which is a more targeted treatment than the use 
of non‑infiltrating lymphocytes (103).

Other immunotherapy applications. The cytotoxicity and 
infectivity of oncolytic viruses alone or in conjunction with 
chemotherapy can be studied using PDO (104). Oncolytic 

adenovirus demonstrated high replication selectivity in 
PDAC organoids in a study by Raimondi et al (104) but not 
in organoids from healthy pancreatic tissue. Additionally, 
patient‑specific responses were observed, which indi‑
cated that PDO was a useful in vitro tumor model for 
evaluating early oncolytic viral responses. The efficacy and 
specificity of antibody‑based immunotherapies can also be 
studied using tumor organoids. Previous studies focused 
on antibody‑based ICB treatment have utilized organoid 
models (42,50,105). Courau et al (106) reported that the infil‑
tration of activated/memory T and NK cells into organoids 
involves both the NK Group 2A‑Human Leukocyte Antigen 
E (NKG2A‑HLA‑E) and NKG2D‑Major Histocompatibility 
Complex Class I Chain‑Related Molecule A/B (MICA/B) 
pathways and these activated cells may subsequently destroy 
3D structures and kill cancer cells. The aforementioned 
study demonstrated that during co‑culture with autologous 
TIL, anti‑MICA/B antibodies and an antibody cocktail 
consisting of anti‑MICA/B and anti‑NKG2A might trigger 
immune‑mediated death in colorectal tumor organoids. 
Gonzalez‑Exposito et al (107) constructed eight PDOs, seven 
of which were derived from refractory metastatic CRC, 
while one was derived from untreated primary CRC tumor 
to study the mechanisms of resistance and sensitivity to 
cibisatamab, a compound which binds tumor cells and CD3 
Carcinoembryonic antigen (CEA) bispecific monoclonal 
antibody on T cells. In order to assess the efficacy of cibisa‑
tamab, co‑cultures of organoids and allogeneic CD8+ T cells 
were produced. This method demonstrated that CEA‑low 
PDO is resistant to cibisatamab whereas CEA‑high PDO is 
vulnerable to this treatment. CEA‑low cells support tumor 
cell proliferation and through the use of RNA sequencing, 
it was reported that CEA‑low cells demonstrate increased 
WNT/β‑catenin pathway activity (108). To increase the effi‑
cacy of this therapy, the aforementioned study proposed the 
use of a possible combination of cibisatamab with an inhibitor 
of the WNT/β‑catenin pathway.

5. Conclusion

The study of the dynamic interplay between the tumor and 
immune system using PDO has gained increasing attention 
over recent years. Moreover, advances in TME modeling 
could facilitate the testing of novel immunotherapies in 
preclinical settings. Organoid‑focused techniques have 
limitations when used to analyze the effects of TIME on 
the behavior of immunotherapy medications in cancer, due 
to the absence of stroma and a vascular network. Complex 
organoids can be created by co‑culturing source or progen‑
itor cells with cancer‑associated fibroblasts, mesodermal 
progenitor cells and immune cells to negate these constraints. 
Furthermore, the cancer‑immune cycle, composed of effector 
T cell initiation or activation, T cell trafficking or infiltra‑
tion into cancer tissue and T cell killing or recognition of 
cancer cells, may be mimicked through organoid co‑culture 
with additional immune cells sourced from lymph nodes or 
PBMCs. IL‑2, anti‑CD3 and anti‑CD28 antibodies are among 
the extra supplements that are advised for the long‑term 
protection of immune cells. The composition of the growth 
medium should also be adjusted such that it promotes the 
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development of all clones equally rather than favoring the 
growth of any particular colony. The modeling of native TME 
can be enhanced by the reproduction of mechanical stressors, 
such as physiological shear flow. The repeatability of drug 
screening findings can be enhanced by the use of scaffolds 
with a certain shape, cell quantity, regulated size, relative 
arrangement and customized composition of the various 
cell types inside the organoid. Animal models require more 
time to develop a research platform than organoid models, 
whereas effective human organoid cultures may be estab‑
lished in weeks or months while enabling high‑throughput 
screening and circumventing possible ethical implications. 
question. Thus, PDO can be utilized in precision medicine 
to provide reliable data about individual drug responses and 
mutation profiles (109). At present, researchers have begun to 
use LCO models to evaluate the efficacy of chemotherapy and 
targeted drug therapy in a real clinical scenario (110). Certain 
clinical studies, such as NCT03778814, NCT04951115 and 
NCT05332925, have been registered to explore the effect 
of PDO in different stages of lung cancer immunotherapy, 
so as to reduce the current treatment time spent in the 
clinical‑laboratory‑clinical cycle(mainly for the time of drug 
screening model construction). Immunotherapy may also be 
used for additional practical applications (tumor vaccine) in 
the future.
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