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Abstract

Type 1 diabetes (T1D) is a complex autoimmune disease characterized by an absolute

deficiency of insulin. It affects more than 20 million people worldwide and imposes

an enormous financial burden on patients. The underlying pathogenic mechanisms of

T1D are still obscure, but it is widely accepted that both genetics and the environ-

ment play an important role in its onset and development. Previous studies have

identified more than 60 susceptible loci associated with T1D, explaining approxi-

mately 80%-85% of the heritability. However, most identified variants confer only

small increases in risk, which restricts their potential clinical application. In addition,

there is still a so-called ‘missing heritability’ phenomenon. While the gap between

known heritability and true heritability in T1D is small compared with that in other

complex traits and disorders, further elucidation of T1D genetics has the potential to

bring novel insights into its aetiology and provide new therapeutic targets. Many

hypotheses have been proposed to explain the missing heritability, including variants

remaining to be found (variants with small effect sizes, rare variants and structural

variants) and interactions (gene–gene and gene–environment interactions; e.g. epige-

netic effects). In the following review, we introduce the possible sources of missing

heritability and discuss the existing related knowledge in the context of T1D.
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1 | INTRODUCTION

Currently, type 1 diabetes (T1D) is defined as an autoimmune-medi-

ated multifactorial disorder with a strong genetic component.1 Previ-

ous studies have identified more than 60 candidate loci for T1D.2,3

Different candidate genes are involved in different stages of T1D. For

instance, some alleles in HLA (human leukocyte antigen) and the

PTPN22 (protein tyrosine phosphatase, non-receptor type 22)

rs247701 locus are associated with autoimmunity, while variants in

CTLA-4 (cytotoxic T lymphocyte-associated protein 4), IFIH1

(interferon induced helicase C domain 1), SH2B3 (SH2B adaptor pro-

tein 3) and PTPN22 are related to the occurrence of multiple autoanti-

bodies.4 There are also considerable racial differences in T1D

genetics. A recent study indicated that approximately one-fifth of the

susceptible loci reported in Caucasians were non-polymorphic or had

a comparatively low frequency in the Chinese population, which might

explain the lower T1D incidence in China.3

Before the advent of the genome-wide association study (GWAS)

era, only a few genetic loci were known to be associated with T1D.

The HLA region was the first established risk locus for T1D and was
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identified by linkage studies.5 For many years, linkage studies have

been used for genetic mapping of Mendelian and biological traits with

familial segregation, and this method has been proven to have high

power to detect risk factors with large effect sizes or genetic diseases

with a known mode of inheritance. However, from an evolutionary

standpoint, risk variants with large effect sizes are prone to be rare in

the population because of negative selection. Therefore, the power of

linkage studies is comparatively restricted for complex diseases.

By contrast, association studies are more powerful for detecting

common alleles with comparatively small effect sizes.6 At first, associ-

ation studies focused on candidate genes, and several genes, including

INS (insulin),7 CTLA-4,8 PTPN229 and IL2RA (interleukin 2 receptor

α),10 were identified to be associated with an increased risk of T1D.

Clearly, the candidate gene approach investigates only the selected

loci and ignores the rest of the regions.

The development of the GWAS has dramatically improved the

pace and efficiency of identifying T1D loci. The GWAS approach rep-

resents tremendous improvements compared with candidate gene

study, in which the variant assay is confined to few functionally

related loci and the sample sizes are always smaller. A large number of

additional T1D loci have been discovered by GWAS because this

technology is able to test the variants in a hypothesis-free context.2

For instance, GWAS not only confirmed the previously discovered

T1D loci but also uncovered some novel variants, such as those near

the KIAA0350 gene11 and at UBASH3A (ubiquitin-associated and SH3

containing A).12 These studies have provided valuable insights into

the full elucidation of the genetic architecture of T1D.

The application of the GWAS approach is based on the ‘common

disease, common variant’ theory, assuming that common diseases at

least partially result from common variants. However, it has been indi-

cated that most common variants contribute a comparatively small

increase in the risk of disease and explain only a small portion of heri-

tability for human biological traits or complex diseases. For instance,

hundreds of independent variants have been identified to be associ-

ated with human height, an easy-to-measure biological trait with high

heritability.13 However, these loci explain only approximately less

than 50% of the phenotypic variance. In addition, more than 700 loci

with small effect sizes for type 2 diabetes (T2D) have been identified,

explaining 20% of the total heritability.14 In the context of T1D, the

identified loci can explain approximately 80% of the heritability.15

However, the high known heritability of T1D may be attributed to the

two major candidate genes of T1D, HLA class II genes and the INS

gene, which contribute approximately 50% and 10% risk to T1D

genetic susceptibility, respectively.16

2 | THE HERITABILITY OF T1D

Heritability refers to the scale of the phenotypic variance in a popula-

tion that is attributable to genetic effects and represents the extent to

which a trait or disease is genetically determined. The total pheno-

typic variance (VP) can be divided into the genetic component (VG)

and the environmental component (VE) in the traditional view, and the

broad sense of heritability is then defined as the ratio VG/VP. The esti-

mation of heritability is performed by analysing the empirical data of

observed and expected phenotypic resemblance between relatives.17

One classic design is to estimate the phenotypic resemblance

between monozygotic (MZ) and dizygotic (DZ) twins. Of note, con-

founding may cause bias in the estimated heritability. For instance,

the estimate of heritability will be biased upward if the resemblance

partly results from common environmental effects.

Previous studies have indicated that genetic factors play an

important role in T1D susceptibility. The mean prevalence of T1D in

siblings is 6%, compared with 0.4% in the general population. In addi-

tion, the concordance rates for T1D are more than 50% in MZ twins

and 6%-10% in DZ twins after long-term follow-up, emphasizing the

importance of genetic predisposition in T1D progression. T1D herita-

bility is estimated as more than 50%. Notably, heritability is the

genetic effect in a given environment (e.g. it would vary among differ-

ent populations). For instance, the additive genetic contribution of

T1D was estimated to be 72%-88% for populations of European ori-

gin according to twin studies.18,19 Another family study indicated that

the heritability estimate of T1D was 66.5% in East Asian

populations.20 The discrepancy might be attributed to the different

effects of environmental factors among various populations. Besides,

heritability estimate is largely based on childhood-onset T1D and,

given that concordance rates decline with age at onset, so the herita-

bility will decrease.21 The heritability estimates from different traits or

diseases depend strongly on their genetic architecture. For instance,

the estimated heritability is more than 50%13 for height and 30%-70%

for T2D.22

3 | THE MISSING HERITABILITY OF T1D

The majority of the heritability for T1D has been revealed. In fact, single

nucleotide polymorphism (SNP)-based heritability can explain 80%-85%

of the estimates of pedigree heritability.23 However, approximately

20% of heritability remains to be further identified, and this discrepancy

is always referred to as the missing heritability phenomenon. Given that

individual differences in disease susceptibility are largely attributed to

genetic factors, fully understanding the genetic component of T1D will

contribute to improved prevention, diagnosis and treatment of this dis-

ease. Many explanations for the potential sources of missing heritability

have been proposed, including large amounts of unmapped common

variants with smaller effect sizes, rare and low-frequency variants that

are poorly detected by existing genotyping arrays, structural variants

poorly captured by available arrays and limited power to detect gene–

gene interactions and gene–environment interactions (e.g. epigenetic

effects) (Figure 1).24

3.1 | Genetic variants with small effect sizes

The first theory is that the GWAS approach cannot capture variants

with small effect sizes. A very stringent threshold value is used to
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reduce the occurrence of false positives when carrying out the signifi-

cance tests. However, many real associations may be missed, espe-

cially if variants have small effect sizes but still contribute to

phenotype variability and disease susceptibility. Therefore, heritability

could be improved by incorporating genetic variants with small effect

sizes. For instance, it has been indicated that 45% of the variance in

human height can be explained by including all SNPs simultaneously,

compared with 5% of phenotypic variance when considering only the

SNPs that reach genome-wide significance.25 Several potential solu-

tions have been proposed to solve this issue. For instance, a method

was developed to assess the genomic heritability of quantitative traits

when fitting all SNPs simultaneously by using a linear mixed model,

and it has been indicated that a substantial proportion of variation in

liability is tagged by common SNPs for Crohn's disease (CD), bipolar

disorder and T1D.26 Furthermore, user-friendly software was devel-

oped to evaluate missing heritability by including all SNPs.27 In addi-

tion, a new method, called phenotype correlation–genotype

correlation (PCGC) regression, has been developed to estimate the

contribution of common variants, and researchers found that PCGC

regression improved the heritability explained by common variants

substantially for some common diseases, such as T1D.28 Additionally,

this hypothesis is supported by the fact that more new genetic vari-

ants are detected with increasing sample sizes. For T1D, with increas-

ing sample sizes, especially meta-analyses of T1D GWASs, an

increasing number of risk loci have been identified.

In fact, given that large numbers of low odds ratio variants associ-

ated with T1D have been identified, a polygenic risk score (PRS) that

aggregates the effects of SNPs based on their estimated effect sizes

has been developed to measure and quantify the heritable risk of dis-

eases.29,30 In contrast to GWAS with a very strict threshold value, the

PRS can be constructed by including larger numbers of SNPs with

more lenient signals.31 In practice, the PRS can be used for T1D

prediction.32,33 For example, a study to predict the progression of islet

autoimmunity and T1D in high-risk children indicated that the PRS

could serve as an independent predictor of disease development.33 In

addition, the PRS can aid in the discrimination between T1D and T2D.

It is becoming increasingly difficult to distinguish T1D and T2D with

the rising incidence of obesity. The Exeter group developed a T1D-

PRS, and this system plus autoantibodies showed highly discriminative

ability for T1D and T2D.34 It should be noted that cases were further

selected by age at onset of diabetes in a given population so the

effect may not apply to other populations when diagnosed at differ-

ent ages. Interestingly, the PRS may also contribute to the detection

of missing heritability. A recent GWAS on T1D patients with low

genetic risk scores identified 41 unreported loci, including two loci

with common variants and 39 loci with rare variants.35 The new strat-

egy highlights the importance of further grouping patients in the

exploration for heritability because T1D itself is a heterogeneous and

complex disease.

In addition, some researchers have suggested that genetic ele-

ments, such as the genome-encoded T-cell receptor (TCR), might be

ignored for technical reasons.36 The TCR is the cognate partner of

major histocompatibility complex (MHC) molecules, and the TCR

genotype has been implicated in autoimmune diseases such as multi-

ple sclerosis.37 T1D is a T-cell–mediated autoimmune disease. Never-

theless, the associations between the TCR haplotype and T1D are

understudied. It has been observed that genome-encoded TCRs play

an important role in T1D susceptibility in an MHC-dependent fashion

in non-obese diabetic (NOD) mice and in multiple strains of rats that

model T1D.36 For example, rats expressing a high-risk class II MHC

haplotype and TCR-Vβ13a simultaneously are highly susceptible to

T1D. However, in the absence of TCR-Vβ13a, rats with a high-risk

MHC manifest low penetrance of T1D. In addition, it has been indi-

cated that the depletion of Vβ13+ T cells could prevent the

F IGURE 1 The potential sources of missing heritability of type 1 diabetes. G-G interaction, gene–gene interaction; G-E interaction, gene–
environment interaction

PANG ET AL. 1903



development of T1D.38,39 Therefore, germline variants within TCR

regions may be viable candidates for T1D susceptibility and may

explain the missing heritability. However, the exact role of TCR in

human T1D needs further investigation.

3.2 | Rare genetic variants

It has been suggested that rare genetic variants contribute to the

missing heritability of common complex diseases. At present, there is

considerable debate over the nature of genetic contributions to sus-

ceptibility to common diseases. In contrast to the traditional ‘common

disease, common variant’ model, the ‘common disease, rare variant’
hypothesis argues that abundant rare genetic variants with compara-

tively high penetrance play a major role in the increased risk of com-

mon diseases.40 The population genetics theory suggested that

strongly deleterious variants were rapidly removed from the general

population by negative selection, while mildly deleterious variants

could remain present but at low frequencies.41,42 Population genetics

studies have shown that most genetic variants with large functional

effect sizes are prone to be rare and private, except for a small pro-

portion of variants with large effect sizes that were common among

different populations.43,44 Indeed, recent deep-sequencing studies

have shown that rare and low-frequency genetic variants account for

a surprisingly high proportion of the variants in different

populations.45-47 In fact, some researchers believe that both common

variants (minor allele frequency [MAF] > 5%) with low penetrance

(small effect size) and rare variants (MAF < 1%) with high penetrance

(large effect size) contribute to common complex diseases in the

whole population.40

Rare genetic variants do not occur frequently enough to be cap-

tured by the GWAS approach,48 and their effect sizes are not large

enough to be detected by linkage analysis in family studies. Therefore,

the identification of rare genetic variants is challenging for traditional

sequencing technologies. However, the rapid development of next-

generation DNA sequencing tools has markedly enhanced the ability

to detect rare variants. In addition, population biobanks have

increased the power to detect disease associations because of the

accessibility of massive population cohorts. For example, a recent

study performed whole-exome sequencing of the combined data from

the UK Biobank and FinnGen to assess associations of multiple phe-

notypes with protein-coding variants and identified abundant novel

disease associations, most notably in rare and low-frequency spec-

tra.49 It has been indicated that rare variants could explain a substan-

tial proportion of the missing heritability for human physiological

traits and disease susceptibility. For instance, researchers performed

whole-genome sequencing (WGS) in pulmonary arterial hypertension,

and the proportion of cases explained by genetics increased to 23.5%

from the previously established 19.9% by including identified rare var-

iants.50 In addition, recent research has implied that rare variants,

especially those in regions of low linkage disequilibrium, are an impor-

tant source of the missing heritability of height and body mass

index.13 However, some contradictory results were obtained. Studies

on T2D and associated quantitative traits reflecting glycaemic control

did not detect rare variants,51 which is in agreement with previous

findings where whole-genome and whole-exome sequencing did not

identify any rare variants related to T2D in a large case-control

study.52

Some studies have investigated the role of rare and low-fre-

quency genetic variants in the context of T1D.23 Nejentsev et al. iden-

tified four rare variants by resequencing the exons and splice sites of

10 T1D candidate genes.53 These four rare variants were located on

IFIH1 and were predicted to lower the risk of T1D by altering the

structure and expression. The identification of four rare variants

within IFIH1 pinpoints causal genes in genetic regions previously dis-

covered by GWAS. Ge et al. identified rare deleterious variants in

PTPN22 by deeply sequencing protein-coding genes located in 49 ini-

tially reported T1D risk loci among multiple-affected sibships of Euro-

pean ancestry.54 A major challenge in identifying rare variants is the

limited resolution of traditional DNA sequencing technologies. WGS

plus imputation can enhance the ability to detect rare variants. For

instance, Forgetta et al. identified 27 independent variants, among

which three were novel with a MAF less than 5%, by undertaking

deep imputation of genotyped data followed by GWAS testing.55 This

finding indicates that the identification of rare variants also leads to

the discovery of T1D risk genes. In addition, a recently developed

deep learning method for HLA imputation improves the accuracy of

the identification of low-frequency and rare variants within MHC

regions, which harbour extremely complex sequence variations and

haplotypes.56 In conclusion, rare variants explain at least a proportion

of the missing heritability of T1D. In addition, given that rare variants

tend to be population specific and that existing studies focus on Euro-

pean people, future studies should pay more attention to other ethnic

populations.

3.3 | Structural variants

Structural variants (SVs), especially copy number variants (CNVs), have

been proposed as a potential source of missing heritability in complex

diseases because previous association studies ignored them because

of the insufficient coverage of SNP genotyping arrays. In fact, SVs,

and CNVs in particular, encompass more nucleotides in the genome

than SNPs and represent an important form of variation. The mutation

rate to generate new CNVs is 100 to 1000 times the rate of DNA

base-pair changes, and these variations have a substantial effect on

phenotypic variance.57 Therefore, it is plausible that SVs are important

contributors to human diversity and disease susceptibility. SVs refer

to long-length sequence or position changes in the genome, such as

insertions, deletions, inversions, microsatellites and CNVs. The alter-

ations of SVs predominantly reside in non-coding regions and do not

directly lead to changes in protein composition.58 However, it has

been indicated that SVs can modulate gene expression by affecting

regulatory elements.59 In the context of T1D, a variable number of

tandem repeats (VNTRs) 596 bp upstream of the translational start

site of the INS gene was found to be associated with T1D.60 VNTRs
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can influence the negative selection of insulin-specific autoimmune T

lymphocytes in the thymus, thus affecting immune tolerance by regu-

lating insulin mRNA transcription.16

Some studies have been performed to evaluate the contributions

of SVs to complex traits and disease susceptibility.61-63 CNVs, which

are larger than 1 kb in genomic regions and manifest as a variable

number of copies in the population,64 have gained attention as detec-

tion methods have improved.61,65 In 2010, the Welcome Trust Case

Control Consortium performed a large GWAS to assess the associa-

tion between CNVs and eight common diseases, including T1D,

among 16 000 cases and 3000 shared controls by using a purpose-

designed array. The results indicated that the majority of common

CNVs were strongly correlated with SNPs genotyped by the HapMap

project, and the authors concluded it was improbable that common

CNVs accounted for much of the heritability of complex diseases.66

However, the contributions of CNVs might be underevaluated

because of ignorance of allele dosage when analysing SNP-chip

data.67,68 Another study explored the association between CNVs that

were in low linkage disequilibrium with SNPs and T1D by using a cus-

tom comparative genomic hybridization array specifically designed to

array untagged CNV loci, and did not identify novel T1D associa-

tions.69 Therefore, it is improbable that untagged CNVs contribute

substantially to T1D heritability. Although common CNVs might fail to

explain the missing heritability of T1D, a study suggested that rare

CNVs could increase the burden of susceptibility to T1D.70 Future

association studies of rare CNVs in large datasets could enable the

identification of specific regions, thus providing insights into T1D

pathogenesis.

There are still some challenges for SV studies. For instance, given

the variable nature and repeat structure, many SVs remain poorly

characterized by existing sequencing platforms.71,72 In addition, previ-

ous studies mostly focus on genomic elements that are large, and

small variable regions remain under investigation.72,73

3.4 | Gene–gene interactions

Another theory to explain the missing heritability is the presence of

gene–gene interactions, also called epistasis.74 The term ‘epistasis’
was first used to describe a masking effect of one variant by another

variant at a separate locus. This concept has been developed into any

statistical departure from the simple additive combination of two loci

on a specific outcome scale.75 In a genetic association study, if the

effect of one variant is altered or masked by another variant at a dif-

ferent locus, the power to elucidate the initial variant is probably

reduced, and the detection of the combined effects of two variants

will be impeded by their interaction.76 Furthermore, the situation will

become more complicated if more than two loci are involved.76 Nota-

bly, epistasis refers to statistical interactions instead of biological and

mechanical interactions where direct physical or chemical reactions

take place between different factors.77 Although the value of the

identification of epistasis cannot lead to the elucidation of the under-

lying pathogenic mechanisms of complex diseases, it will improve

power for the detection of genetic effects behind the phenotypes.76

For instance, in the analysis of real data for T1D, improved evidence

for linkage at a single locus was present when considering the interac-

tion with another locus.78,79

It has been increasingly recognized that genetic interactions

might account for a substantial proportion of the missing heritability.

For instance, approximately 140 candidate loci of CD can explain

approximately 14% of the heritability of the disease.80 Inspiringly, it

can explain almost 80% of the missing heritability when taking into

account genetic interactions.74 The estimation of heritability is based

on the premise that there are no interactions among the disease-caus-

ing variants. Therefore, the missing heritability may not only result

from the yet-to-be identified variants but also from the ignored

genetic interactions.81 However, other research has also suggested

that the additive effects of genetic factors could explain a large pro-

portion of continuous traits, while epistatic effects play only a com-

paratively small role.82 This phenomenon might be caused by most

genetic factors contributing to the quantitative traits collectively, and

each factor plays only a small role, making the effect additive. In com-

plex diseases, there are always a small number of major loci that can

interact with each other through epistasis, thus explaining the missing

heritability.83

Some studies have investigated gene–gene interactions in T1D.

However, the results of genetic interaction of T1D-associated loci

sometimes conflict. For example, Bergholdt et al. reported a statistical

interaction between two genes, CBLB (casitas-B-lineage lymphoma b)

and CTLA-4, both of which are involved in T-cell activation in T1D,

and found that the rs3772534 G allele of CBLB was overtransmitted

to offspring with the G/G genotype of rs3087243 in CTLA-4.84 How-

ever, in a later study with a larger collection, there was no support for

the interaction between rs3772534 and rs3087243.85 Similarly, con-

tradictory results have been obtained concerning the interaction

between IL4R, IL4 and IL13.86,87 Given the inadequate sample sizes,

the positive reports are probably false because the false-discovery

rate would be high in underpowered studies. Other research has indi-

cate the interaction of different HLA class II haplotypes in T1D and

found that these interactions explain moderate but significant frac-

tions of phenotypic variance.88-90 In addition, evidence of a statistical

interaction between HLA class II and PTPN22 as well as CTLA-4 has

been shown in some sufficiently well-powered studies.91-93 In conclu-

sion, existing results indicated that gene–gene interactions could

explain a fraction of missing heritability in T1D. Future studies need

large sample sizes to enhance the power to detect more genetic inter-

actions in T1D.

3.5 | Gene–environment interactions

Gene–environment interactions have also been suggested as a possi-

ble explanation for the missing heritability of complex diseases (Fig-

ure 1).94,95 Although genetic factors represent the major determinant

of T1D risk, genetics alone cannot explain the dramatic changes in the

T1D epidemic. The incidence of T1D has increased considerably over
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the past 30 years.96 This rising trend can only be explained by

changes in environmental factors because genetics remain almost

stagnant over such a short time. Furthermore, the increasing inci-

dence of T1D accompanied by a lower percentage of high-risk geno-

types of HLA emphasizes an amplification of environmental

pressure.97 In addition, it has been indicated that the age of onset is

associated with distinct clinical profiles of T1D.98 An immigrant study

also indicated that the second generation of immigrants to Sweden, a

country with a high prevalence of T1D, shows an increased risk of

developing T1D.99 These studies have shown that environmental fac-

tors play an important role in T1D. In fact, it is often hypothesized

that genetic factors determine the predisposition for developing T1D,

while environmental factors provide the trigger for the onset of dis-

ease (Figure 2).100 Therefore, a better understanding of the environ-

mental determinants of T1D not only contributes to revealing the

underlying pathogenic mechanisms, but also provides novel targets to

prevent or delay the disease.

The involvement of both genetic and environmental factors in

T1D is well established. However, most research has focused on iden-

tifying these factors in isolation. It has been indicated that inclusion of

gene–environment interactions can improve the statistical power to

identify gene-disease associations.101,102 In addition, for observational

studies aiming to elucidate adverse environmental factors, which are

not applicable to randomized controlled trials, demonstration of the

expected gene–environment interactions can provide evidence to fur-

ther validate a causal inference.94 Furthermore, identifying gene–envi-

ronment interactions will lead to an improved understanding of

biological interactions at the molecular level. There are two categories

of evidence for gene–environment interactions in various complex

diseases.103 The direct evidence is a statistical evaluation of gene–

environment interactions. For instance, both the NOD2 gene and ciga-

rette smoking are well-characterized risk factors for the pathogenesis

of CD. A case-only study investigated their relationship and found a

significant negative interaction.104 However, this finding needs to be

confirmed in epidemiological studies, and the potential mechanisms

warrant further investigation. In addition to direct evidence, there is

more indirect evidence for gene–environment interactions. An appar-

ent example is the epigenetics in disease risk. Epigenetics, which

mainly includes DNA methylation, histone modification and non-cod-

ing RNA, is defined as heritable changes in gene expression and thus

cell function, but without alteration of DNA sequences.105 Epige-

netics, which is malleable, can be impacted by environmental expo-

sures and is considered a bridge between heritable and environmental

factors (Figure 2).106 For instance, it has been shown that smoking

could alter DNA methylation at various loci.107 In addition, a recent

study indicated that the human microbiome could influence important

traits by interacting with human genotypes.108,109 However, the epi-

genetic contribution would be systematically missed by conventional

GWAS because epigenetic modifications do not alter genomic

sequences. Therefore, a new model of epigenetic inheritance, as a

supplement to Mendelian heredity, may explain the missing heritabil-

ity caused by the lack of detection in DNA sequence-based analysis.95

In addition, epigenome-wide association studies (EWASs) provide an

efficient approach to systematically assess epigenetic variation related

to traits or complex diseases. Furthermore, it has been indicated that

the missing heritability might be associated with stochastic effects

F IGURE 2 The pathogenesis of type 1 diabetes (T1D). Both genetic and environmental factors contribute to the onset and development of
T1D. Epigenetics serves as a bridge between these two factors. G-G interaction, gene–gene interaction
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that were involved in unstable genomes and environmental triggers

rather than the mutations in particular sets of genes.110 Genetically

identical organisms in the same controlled environment exhibit dis-

tinct phenotypes and this phenomenon may be attributed to stochas-

tic variations.111

Gene–environment interactions are associated with the onset

and development of T1D. A case-only study observed differences in

birth month distributions among individuals carrying various HLA-DQ

genotypes.112 Different birth seasons are associated with different

rates of viral infections and different levels of vitamin D.113 Therefore,

this study showed the influence of environmental factors on T1D risk

attributed to HLA alleles. Furthermore, an EWAS identified 132 differ-

entially methylated loci for T1D in monocytes among 15 pairs of MZ

twins.114 Later, the same group performed an EWAS across 406 365

CpGs in 52 MZ twins discordant for T1D and identified a substantial

enrichment of differentially variable CpG positions in patients with

T1D compared with their healthy co-twins and unrelated healthy indi-

viduals.115 In addition, it has been indicated that T1D risk variants

could alter susceptibility to viral infections, thus affecting autoimmune

responses.116 For instance, an in vitro study indicated that the T1D

risk allele HLA-DR4 was involved in the hyper-responsiveness of T

cells to Coxsackie B4 virus (CBV4) antigens, and multiple lines of evi-

dence have suggested that CBV4 is associated with the onset of

T1D.117 Therefore, it is plausible that the interactions of infection

with genes contribute to T1D risk and account for some missing heri-

tability. In conclusion, existing studies have indicated that gene–envi-

ronment interactions contribute to the pathogenesis of T1D and

might partially explain the lack of heritability. However, large-scale

gene–environment interaction research encounters significant practi-

cal and methodological challenges. For example, the unified measure-

ment of environmental exposures is difficult to achieve in different

studies.

4 | DISCUSSION

Identifying the genes that confer susceptibility to common diseases is

a major challenge for genetic epidemiology. However, over the past

several years, technological progress, especially the development of

the GWAS, has allowed further characterization of the genetic com-

ponents of common diseases. Based on the obtained GWAS data, the

heritability explained by SNPs is lower than the estimated heritability

using traditional epidemiological measures. This is the so-called miss-

ing heritability phenomenon. Several hypotheses have been put for-

ward to explicate the ‘dark matter’ of genomics, which mainly

includes the variants remaining to be found and gene–gene or gene–

environment interactions. Previous GWASs have identified more than

60 loci associated with T1D, which explain 80%-85% of the heritabil-

ity. However, complex diseases, including T1D, result from multiple

genetic and environmental factors that interact through extremely

complex networks. The objective of heritability measures is to quan-

tify the phenotypic variability explained by genetics and the environ-

ment. It is difficult to make this distinction. These interactions should

also be considered when exploring disease pathogenesis. These theo-

ries have achieved improved heritability to a certain degree in some

cases. However, given that this research area is still in its infancy, fur-

ther efforts are warranted to overcome numerous theoretical and

practical obstacles.

Although the development of high-throughput sequencing tech-

nologies has enabled the identification of numerous genetic variants

or loci related to complex diseases, GWAS alone has provided limited

insights into the exact molecular mechanisms of disease development,

mainly because the overwhelming majority of these polygenic deter-

minants are located in non-coding portions of the genome, and the

functional sequences remain to be further confirmed. Thus, in the

post-GWAS era, functional annotation and mechanistic ascertainment

of these loci are the next major task. In addition, some new analytical

strategies in the post-GWAS era may contribute to the elucidation of

the missing heritability phenomenon. For example, previous studies

mostly focused on the genome but ignored other types of data

derived from the transcriptome or epigenome, which caused missing

links between genetic variation and phenotype. Alternative splicing

(AS), which allows a single gene to generate multiple RNA and protein

isoforms, can influence gene expression via a post-transcriptional reg-

ulatory mechanism. Transcriptome analysis indicated that AS changes

might contribute to the development of T1D.118 Integrative multi-

omics analysis may represent a novel approach to further understand

disease pathogenesis. For instance, a recent study combined two

approaches, large-scale GWAS and single-cell epigenomics, to trans-

late T1D risk variants into mechanistic insights, and the results

suggested that risk variants within multiple T1D signals overlapped

with exocrine-specific cis-regulatory elements in the pancreas,

supporting that the exocrine pancreas might play a role in the patho-

genesis of T1D.119

There is tremendous diversity in genetic architecture among dif-

ferent diseases or biological traits. For instance, infectious diseases

are always associated with variants with large effects,120,121 while

some complex phenotypes, such as cell counts of red blood cells,

height and levels of low-density lipoproteins, often result from the

joint action of multiple loci with small effects.122 In the context of dia-

betes, different genetic architectures were also presented because

T1D was largely determined by the HLA region, while T2D was

dependent upon the combined effect of many susceptible variants

with small effect sizes. Epistasis also plays an unequal role in different

circumstances. For instance, pervasive epistatic effects have been

reported in autoimmune conditions,123 but the small addictive effects

of genetic factors play a more important role in continuous traits.

Therefore, different strategies should be considered when exploring

missing heritability.

The relevant research concerning the missing heritability of T1D

is summarized above. However, other factors might also contribute to

the missing heritability of T1D. For instance, parent-of-origin effects,

which refer to the phenotypic effect of an allele depending on which

parent the allele is inherited from, have been documented in multiple

diseases, including T1D.124 Their contribution to heritability might be

overlooked because they were difficult to discover. In addition, most
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GWASs have been performed based on additive allelic models. How-

ever, the potential candidate genes could be missed because of reces-

sive effects. A recent GWAS meta-analysis using a recessive model

identified 51 loci associated with T2D, including five novel variants

unreported by previous additive analysis.125 Therefore, recessive

modelling may provide another way to detect new genetic

associations.

The known heritability of T1D is higher than that of other com-

mon complex diseases. Nevertheless, fully understanding the genetics

of T1D can further elucidate its underlying pathogenesis and better

predict or prevent the disease. It has been suggested that once indi-

viduals with T1D become symptomatic, the beta cell mass has already

reached 20%-30% of the normal amount,126 representing the very

late phase of the disease. Therefore, early recognition of individuals at

high risk for T1D would offer an opportunity to prevent or even

reverse T1D progression. Among the risk factors for T1D, genetics

has been considered to be of importance for the time-independent

characteristic. Therefore, genetic screening of children could distin-

guish individuals at high risk of T1D to some extent and be beneficial

for the development of primary prevention. In addition, there is an

asymptomatic phase characterized by the presence of islet autoanti-

bodies before the clinical manifestation of diabetes. Screening for

autoantibodies also represents an effective way to predict autoim-

mune progression. Thus, the use of genetic screening in combination

with autoantibody screening for children would improve the effective-

ness of identifying populations at high risk of T1D. Furthermore,

because T1D exhibits great heterogeneity among different patients,

finding the causes of the missing heritability in T1D is beneficial for

the development of individualized medicine.
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