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In this paper, we do research on cross-corpus speech emotion recognition (SER), in which the training and testing speech signals
come from different speech corpus. &e mismatched feature distribution between the training and testing sets makes many classical
algorithms unable to achieve better results. To deal with this issue, a transfer learning and multi-loss dynamic adjustment (TLMLDA)
algorithm is initiatively proposed in this paper.&e proposed algorithm first builds a novel deep network model based on a deep auto-
encoder and fully connected layers to improve the representation ability of features. Subsequently, global domain and subdomain
adaptive algorithms are jointly adopted to implement features transfer. Finally, dynamic weighting factors are constructed to adjust the
contribution of different loss functions to prevent optimization offset of model training, which effectively improve the generalization
ability of the whole system. &e results of simulation experiments on Berlin, eNTERFACE, and CASIA speech corpora show that the
proposed algorithm can achieve excellent recognition results, and it is competitive with most of the state-of-the-art algorithms.

1. Introduction

Speech emotion recognition (SER) is an essential technical
foundation for human-computer interaction. Traditional re-
search on SER is often based on the same corpus for training
and testing and has achieved excellent recognition perfor-
mance. However, the feature distributions of the training and
testing data vary greatly in practical application scenarios. Due
to the different recording environments, personnel, gender,
age, and languages of different corpus, the distribution of
speech features from different corpus can be highly diverse,
which is a typical cross-corpus SER problem [1].&erefore, it is
a very important research to deal with the differences in feature
distributions for cross-corpus SER.

In the past decades, most of the speech emotion rec-
ognition algorithms were implemented under the setting
that the training and testing sets belong to the same corpus,
and researchers have achieved great success in this restricted
experimental setup. Early research was carried out based on
traditional machine learning methods, such as support
vector machines (SVM) [2], Gaussian mixture models
(GMM) [3], hidden Markov models (HMM) [4], K-Nearest

Neighbor (KNN) [5], and other methods for processing
speech features, and in recent years, with the development of
deep learning, convolutional neural networks (CNNs) [6],
recurrent neural networks (RNNs) [7], long short-term
memory (LSTM) [8], deep belief networks (DBNs) [9], auto-
encoders (AEs) [10], and other methods are applied to
speech feature extraction, and these data-driven deep
learning methods have obtained excellent performance
improvement in SER tasks. Notably, these methods are also
widely used in semantic sentiment analysis, with some
studies [11, 12] using CNNs and AE to learn text feature
representations, and these techniques, together with speech
sentiment recognition, have driven the development of af-
fective computing research.

As mentioned above, speech emotion recognition
methods have gained unprecedented progress under re-
stricted experimental conditions, based on which, the
generalization enhancement of speech emotion recognition
systems has gained more attention, which is the key to help
the promotion of speech emotion recognition systems to
real-world applications. Cross-corpus speech emotion rec-
ognition research has been conducted by setting the training
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and testing sets as different corpora to simulate the test data
and training data in practical applications. Early cross-
corpus SER research alleviates the problem of differences
between corpora by manufacturing different acoustic feature
sets and normalizing them for generalization. Existing re-
search methods mostly use deep learning methods to extract
domain invariant representations and reduce the differences
in feature distributions between training and test corpora
through metric learning methods to improve the model. To
further enhance the generalization of the speech emotion
recognition model, we first add noise to the original acoustic
features, which can help the network to extract robust
emotion features, and secondly, a fine-grained metric
learningmethod is used to alleviate the negative migration in
the global domain adaptation process, and the main con-
tributions of this work can be summarized as follows.

(i) An auto-encoder is designed to perform both
emotion classification and features reconstruction
tasks, extracting sentiment information from fea-
tures while preserving the discriminative properties
of the original features.

(ii) &e combination of global and subdomain adaptive
algorithms alleviates the negative transfer problem
caused by mismatching between different
subclasses.

(iii) Loss weights are optimized using a dynamic weight
adjustment algorithm, and additional hyper-
parameters are used to assign different initial
weights to multiple losses to better suit emotion
recognition tasks.

(iv) We conducted six sets of cross-corpus speech
emotion recognition experiments on three different
speech corpora with multilingual and different
cultural backgrounds, and the overall results were
better than the state-of-the-art algorithms.

&e rest of the paper is organized as follows: Section 2
provides an overview of related work on cross-corpus speech
emotion recognition. In Section 3, the implementation of the
proposed method is discussed in detail. Section 4 describes
the datasets and presents the details of our experimental
settings. &e experimental results and comparison of the
proposed method with different methods are also presented
in Section 4. Finally, in Section 5, we present the conclusions
of our work.

1.1. Related Work. Over the past few years, many machine
learning and deep learning techniques have been success-
fully applied to cross-corpus SER. Researchers who have
carried out research based on machine learning methods
have first searched for discriminative domain invariant
representations through feature reduction or regression
analysis and mitigated interdomain discrepancies using
domain adaptive techniques to achieve cross-corpus speech
emotion recognition. Zong et al. [13] proposed a Domain-
adaptive Least Squares Regression (DaLSR) model which
trains a least squares regression model by adding

regularization constraints to the objective function, to
mitigate differences between source and target domains. Liu
et al. [14] built a projection matrix to map the source and
target speech signals to a common subspace, so as to obtain
similar feature distributions and improve the generalization
of the classifier. Luo et al. [15] searched for a latent low-rank
feature space by incorporating the label information of the
training speech corpus into the nonnegative matrix fac-
torization, to minimize the marginal distribution and
conditional distribution differences between the two corpora
simultaneously. Song [16] used the nearest neighbor graph
algorithm to measure the similarity between different cor-
pora in the common subspace; then, the feature grouping
strategy is used to search the high transferable part of
emotional features based on [16]. Zhang and Song [17]
introduced a l1,2 -norm penalty in constructing a common
subspace to learn the common features of different corpora;
in addition, a new nearest neighbor graph algorithm was
used to measure the interdomain similarity. In [18], a linear
regression model was established to learn the domain in-
variant regression matrix, by modifying the maximummean
discrepancy (MMD), and both the marginal and conditional
probability distribution between domains were considered.
Recent research [19] has also used ensemble learning to
perform cross-corpus SER, using a multiple classifier voting
approach to classify emotions, achieving recognition results
beyond traditional machine learning methods.

Since machine learning and deep learning techniques
have shown strong feature learning capabilities in many
fields, such as image recognition [20, 21], smart city de-
velopment [22, 23], network security [24, 25], and recent
epidemic prevention and control [26, 27], various advanced
deep learning models have also been used in cross-corpus
SER. In [28], deep belief networks were used to achieve more
advanced performance than sparse auto-encoder and SVM
on five corpora of three languages. Zhang et al. [29] used a
convolution neural network to process speech features,
completed source corpus emotion classification, and created
f-similarity preservation loss to maintain label similarity
between source domain and target domain, which enhanced
the robustness of the system. An unsupervised domain
adaptation approach was used by Ahn et al. [30] to develop a
robust emotion recognitionmodel that learns class similarity
based on rare sample data in the source domain and adapts it
to the target domain. Chang et al. [31] minimized dis-
crepancy in maximally distorted samples by adjusting the
acoustic feature encoder and adversarial training, thus en-
hancing the semantic consistency in the source and target
domains. Das et al. [32] proposed a variational auto-encoder
with KL annealing and a semisupervised auto-encoder,
which achieved comparable classification accuracy as the
denoising auto-encoder and a more consistent latent em-
bedding distribution over datasets.

&e above traditional machine learning methods or deep
learning algorithms have achieved competitive performance
in cross-corpus speech emotion recognition tasks, but there
are still some limitations that need to be addressed. Most
methods only align feature distributions globally or locally,
and some ignore the need to adjust the weights of different
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losses during the training process although they take both
into account, which would decrease the generalization
ability of the features during transfer, and the proposed
multi-loss dynamic adjustment methods proposed in this
paper could be a good solution to these problems, and the
techniques used by related work as well as the corpus are
listed in Table 1.

2. Methods

&e general block diagram of the proposed model in this
paper is shown in Figure 1. In the flowchart of training
phase, the blue part represents the DAE and DNN structure.
&e yellow part indicates the joint MMD and local maxi-
mum mean discrepancy (LMMD) [33] for transfer learning.
&e orange part shows the multi-loss function dynamic
adjustment, which uses dynamic weighting factors to adjust
the importance of each loss function. In testing phase (below
part of Figure 1), the target domain sample emotion features
are processed by DAE and DNN, and subsequently, the
SoftMax classifier is used for emotion classification.

2.1. Network Model. In the cross-corpus SER, the source
domain samples features are XS � [xS

1, · · · , xS
ns

] ∈ Rd×nS , the
labels of the source domain samples are
YS � [y1, · · · , ynS

] ∈ RC×nS , and the target domain samples
features are XT � [xT

1 , · · · , xT
nT

] ∈ Rd×nT , where nS and nT

denote the number of samples in the source and target
domains, respectively, d denotes the dimensionality of the
emotion features of each speech sample, and C represents
the number of emotion classes.

In order to obtain emotion features with strong repre-
sentation, DAE is used to compress redundant information
on features. Noise obeying normal distribution (with mean 0
and variance 1) is added to the source domain samples
features and target domain samples. &en, noise features are
input into the DAE. &e features loss function of DAE
consists of the reconstructed loss functionLS of XS and the
reconstructed loss functionLT of XT, which are denoted in
the following equation:
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where xS
i and xT

i are the samples after DAE reconstruction.
As DNN is a nonlinear network structure, which can be

approximated by complex functions and has a strong ability
to learn the essential characteristics of data sets from a few
sample sets, the encoded output of DAE is fed into the DNN
network for processing to finally obtain the low-dimensional
emotional features, which are XS

′ � [x′S1, · · · , x′SnS
] ∈ Rd′×nS

and XT
′ � [x′T1 , · · · , x′TnT

] ∈ Rd′×nT . &e source domain

sample XS
′ is predicted using the SoftMax classifier to obtain

the probability value YS, and then YS is cross-entropy cal-
culated with the source domain true label YS to obtain the
source domain classification loss Ly.
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2.2. Feature Transfer. &e MMD algorithm can be used to
implement feature migration to reduce the difference
between the source and target domains. In the low-di-
mensional emotional space of XS

′ and XT
′, the loss

function of MMD is denoted in the following equation:
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whereΗ is the reproducing kernel Hilbert space (RKHS) and
δ(·) is the Gaussian kernel mapping function that maps the
samples to the RKHS.

Considering the impact of subdomain mismatch,
TLMLDA adopts LMMD to adjust the feature distri-
bution of the emotion subdomain. LMMD divides the
entire feature space into separate subdomain spaces
according to emotion classes and adjusts the feature
distribution between the source and target domains in
the subdomain space. &e loss function of LMMD is
shown in the following equation:
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where μS
i,c and μT

i,c are the weights of each sample belonging
to one of the classes’ emotion C in XS

′ and XT
′, respectively.

&e weights μi,c of the samples X′ are calculated as μi,c � /.
It is worth noting that the labels YC

S of the source domain
samples are known, while the target domain samples do not
have label information and YC

T cannot be calculated directly.
Here, the labels YC

T of the target domain samples XT
′ are

predicted by SoftMax.

2.3.Multi-LossOptimizationTraining. TLMLDA transforms
multiple loss functions into an overall loss function by
weighted summation as

minLsum � 
i

wiLi, (5)

where i ∈ S, T, y, MMD, LMMD , and wi > 0 is the
weighting factor of the loss function. &ere are great dif-
ferences in the training speed of the five loss functions of
TLMLDA, so the model has difficulty in obtaining the global
optimal solution. To balance the optimization progress of
each loss function, TLMLDA, motived by [34], constructs a
dynamic weighting factor wi to adjust the importance of the
five loss functions. &e dynamic weighting factor is
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wi �
αi × Li

LS XS, XS(  + LT XT, XT(  + Ly YS,YS(  + LMMD XS
′ ,XT
′(  + LLMMD XS

′ ,XT
′( 

, (6)

where αi > 0 is a fixed hyperparameter, to strengthen the
contribution of different losses in the overall loss according
to experience. Li represents the value of loss functions LS,
LT, Ly, LMMD, and LLMMD.

In the process of training, the TLMLDA model uses
gradient descent algorithm, and a set of loss function values
is generated at the end of each training. &en, the loss

function values are used to update the wi in Equation (5) to
achieve dynamic adjustment of the loss weights.

3. Experiments Setup and Results Analysis

3.1. Data Preparation. We chose three public speech
emotion corpus as cross-corpus SER corpora, which
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Figure 1:&e TLMLDAmodel proposed in this paper.&e flowchart above shows the training phase, and the flowchart below is the testing
phase.
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include Berlin [35], eNTERFACE [36], and CASIA [37].
Berlin is one of the widely used corpora in SER research,
which contains anger, boredom, disgust, fear, happiness,
sadness, and neutral emotions of 10 actors and a total of
535 speech samples. &e eNTERFACE is a public audio-
visual emotional corpus; it contains anger, disgust, fear,
happiness, sadness, and surprise of 42 subjects from
different nationalities and a total of 1287 speech samples.
CASIA is a Chinese speech emotion corpus, which
consists of 6 emotions (anger, fear, happiness, neutrality,
sadness, and surprise) from 4 speakers with 1200 speech
samples.

&e experimental scheme is designed by selecting two
speech samples with the same emotional label from the
above three corpus, and one of the corpora is used as the
source domain, and another corpus is used as the target
domain. We designed six cross-corpus SER experimental
schemes, E⟶ B, B⟶ E, E⟶ C, C⟶ E, B⟶ C,
and C⟶ B, where B, E, and C are the abbreviations of
Berlin, eNTERFACE, and CASIA, respectively. We sum-
marize the speech sample labels and sizes used in these six
cross-corpus SER schemes in Table 2.

3.2. Experimental Setup. We adopted the feature set of
INTERSPEECH 2010 Paralinguistic Challenge [38], which
contains 1582 dimensional features. Firstly, the feature set
obtains 1428 dimensional features based on 34 low-level
descriptors (LLDs) using 21 statistical functions. Secondly,
based on the LLDs and Delta coefficients of the four pitch-
based, 19 statistical functions are applied to obtain 152-
dimensional features. In addition, the onset of pitch and
durations of utterances are included into the feature set.
Finally, the feature set obtained a total of 1582-dimensional
features. Speech feature sets are extracted by the open-source
openSMILE tool [39].

Under our experimental setup, speech features of source
and target domain samples are normalized before input
network training, where the range of each feature is scaled to
the interval [0, 1] through Min-Max normalization. For
DAE, the number of hidden layers is set to 6, and the sizes of
the hidden layer neuron nodes are fixed to 1200, 900, 500,

900, 1200, and 1582, respectively. &e activation function is
set as ELU function in encoder phase and Sigmoid function
in decoder phase. In addition, the batch normalization (BN)
layer and dropout layer are also added to each layer structure
of the DAE. For DNN, the number of hidden layers is set to
2, and the size of hidden layer neuron nodes of DNN is 600
and 256, respectively, and the activation function is set as
Sigmoid function.

In MMD and LMMD, the feature mapping function uses
multi-kernel Gaussian function, and the number of the
Gaussian kernel is fixed at 5.

In multi-loss optimization training, the fixed hyper-
parameter αi∈ S,T,y,MMD,LMMD{ } is {1, 1, 3, 1, 1}, {0.1, 0.1, 2, 1,
0.1}, {1, 1, 5, 2, 1}, {1, 1, 2, 1, 0.1}, {0.1, 0.1, 5, 1, 0.1}, and
{0.1,0.1,5,2,0.1}, respectively. Under the six experimental
schemes, the learning rate and batch size of TLMLDAmodel
were 0.00001 and 100, respectively. TLMLDA uses an Adam
optimizer and a SoftMax classifier, and the training epoch is
set to 500.

We set up four ablation models: (a) TLMLDA_w is
obtained by TLMLDA only deleting the fixed hyper-
parameter α in the dynamic weighting factor wi. (b)
TLMLDA_α is obtained by TLMLDA only using the fixed
hyperparameter α in the dynamic weighting factor wi. (c)
TLMLDA_L and TLMLDA_M are obtained by TLMLDA
only using LMMD and MMD, respectively.

In addition, some state-of-the-art cross-corpus SER
methods are used as comparison methods, domain adaptive
subspace learning (DoSL) [14], transfer sparse discriminant

Table 2: Emotional labels and samples sizes selected for six cross-
corpus SER schemes.

Schemes Corpus Emotional labels Size
E⟶ B eNTERFACE

Berlin
Anger, sad, fear, happy,

disgust
1072

B⟶ E 375
E⟶ C eNTERFACE

CASIA
Anger, sad, fear, happy,

surprise
1072

C⟶ E 1000
B⟶ C Berlin CASIA Anger, sad, fear, happy,

neutral
408

C⟶ B 1000

Table 1: A brief summary of related work.

References Year Methods Features Corpus
Zong et al. [13] 2016 Least squares regression INTERSPEECH 2009 Berlin, AFEW 4.0, eNTERFACE
Liu et al. [14] 2018 Feature selection + SVM INTERSPEECH 2009 Berlin, AFEW 4.0, eNTERFACE
Luo et al. [15] 2019 NMF+MMD Segmental features Berlin, CASIA, eNTERFACE, Estonian
Song [16] 2019 TLSL INTERSPEECH 2010 Berlin, FAU-AIBO, eNTERFACE
Zhang et al. [17] 2020 TSDSL INTERSPEECH 2010 Berlin, BAUM-1a, eNTERFACE
Zhang et al. [18] 2021 JDAR INTERSPEECH 2010 Berlin, CASIA, eNTERFACE
Zehra et al. [19] 2021 Ensemble learning Spectral and prosodic SAVEE, UrduRDU, EMO-DB, EMOVO
Latif et al. [28] 2018 DBNs eGeMAPS feature set FAU-AIBO, SAVEE IEMOCAP, EMO-DB, EMOVO

Zhang et al. [29] 2019 Deep metric learning Log Mel-frequency
filter-bank energy IEMOCAP, MSP-improv

Ahn et al. [30] 2021 Few-shot learning INTERSPEECH 2010 IEMOCAP, CREMA-D, MSP-IMPROV,
Berlin, Korean multimodal emotion dataset

Chang et al. [31] 2021 Adversarial learning INTERSPEECH 2010 IEMOCAP, MSP-improv, MSP-PODCAST
Sneha et al. [32] 2022 VAE with KL annealing eGeMAPS feature set IEMOCAP, SAVEE, Berlin, CaFE, URDU, AESD
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subspace learning (TSDSL) [17], joint distribution adaptive
regression (JDAR) [18], and deep belief network and back
propagation (DBN+BP) [28]. Meanwhile, PCA+ SVM was
selected as the benchmark method for comparison experi-
ments, and the support vector machine (SVM) classifier uses
linear kernel function and penalty coefficients searching in
{0.001,0.01,0.1,1,10}.

Finally, we report the accuracy of emotion recognition
by using the weighted average recall (WAR).WAR is defined
as the average of the test accuracy of all samples.

3.3. Ablation Experiments. &e recognition results of the
TLMLDA and four ablation experiments are illustrated in
Table 3.

&e results of TLMLDA are significantly better than
those of the ablation experimental methods. Compared with
TLMLDA_w and TLMLDA_α, the average WAR of
TLMLDA is improved by 6.21% and 6.54% in six cross-
corpus SER experimental schemes.&is is because TLMLDA
training uses both fixed hyperparameter and dynamic
weights, which prevent model training offset and disordered
feature transfer. As a result, TLMLDA has better perfor-
mance in cross-corpus SER.

Compared with TLMLDA_L and TLMLDA_M, TLMLDA
still has made significant improvements. &is is because
TLMLDA_L and TLMLDA_M only perform global domain
feature alignment or subdomain feature alignment, and some
information is missing. &erefore, the recognition results of
these two algorithms are inferior to those of TLMLDA.

To further evaluate the performance of TLMLDA, we use
the t-SNE method [40] to visualize the feature distributions
of six cross-corpus tasks after using TLMLDA and
TLMLDA_M. To better observe the effect of the domain
adaptation process, we also compare the feature distribution
maps obtained without using domain adaptation method,
that is, using only the source domain classification loss
(Only_cls), on the left side, as shown in Figure 2 and
Figures 2(a)–2(f ), the feature distribution maps from left
to right are obtained by Only_cls, TLMLDA_M, and
TLMLDA, respectively, and the source domain samples
are marked in gray. It can be noted that, in the leftmost
image, although the source domain can be well classified,
the model obtained by training only with the source
domain classification loss cannot discriminate the target
domain sample features well, and after performing
feature distribution alignment using MMD, it can im-
prove the discrimination of the target domain features,
but there are still some cases of class mismatching, and in

order to observe the effect of subdomain adaptation, the
target domain samples are performed based on the
predicted class coloring, and the performance of the
algorithm is evaluated by observing the proximity of the
target domain samples to the source domain samples.
&e visualization results reveal some important obser-
vations; as analyzed above, in the feature distribution
map obtained by executing TLMLDA_M, there is a se-
rious subdomain mismatch problem, several target
subdomains cannot be well aligned with the source
domain, and a large number of target domain samples are
confused in several category centers, leading to poor
classification results. In TLMLDA, the problem of sub-
domain sample mismatch is greatly alleviated, and the
low-resolution samples in the center of the feature dis-
tribution map are further migrated to the source domain.
&e visualization results show that the TLMLDA algo-
rithm can better complete the feature distribution
alignment process and learn better feature representa-
tions, which proves the effectiveness of the algorithm.

4. Comparison with Other Algorithms

&e recognition results of the TLMLDA, benchmark
method, and some state-of-the-art methods are illustrated in
Table 4.

First, it is clear from the results that TLMLDA obtains
the best overall performance among all methods in most
scenarios. Compared with several other methods, it can be
demonstrated that TLMLDA achieves significant improve-
ments in most tasks. In particular, the WAR in E⟶ B is
8.08%∼29.07% ahead of other algorithms. Compared with
the best baseline method DoSL, the average WAR improves
by 3.88%, and the WAR improves by 0.2%∼29.07% com-
pared with other algorithms in the five settings of E⟶ B,
B⟶ E, E⟶ C, B⟶ C, and C⟶ B. &ese results
indicate that TLMLDA improves the domain invariant
representation of features with more robust generalization
during cross-corpus speech emotion recognition.

Second, it can be observed that those algorithms (DoSL,
TSDSL, and JDAR) that used transfer learning method all
outperformed the no-transfer algorithms (PCA+ SVM,
DBN+BP), which validates the challenge of cross-corpus
speech recognition introduced in the previous section; that
is, if the source and target domains are from different
corpora, a model that is trained on the source domain and
performs well will have a dramatic degradation in perfor-
mance on the target domain, which proves that the different
distribution of data features in different corpora impairs the

Table 3: Experimental results of the use of ablation experiments.

Algorithm E⟶ B B⟶ E E⟶ C C⟶ E B⟶ C C⟶ B Average
TLMLDA_w 51.95 31.15 31.10 30.40 32.70 53.53 38.51
TLMLDA_α 46.62 34.33 31.60 30.67 32.70 53.13 38.18
TLMLDA_L 36.76 21.12 28.70 28.01 20.05 42.71 29.56
TLMLDA_M 54.08 38.28 34.90 29.23 32.70 54.33 40.58
TLMLDA 58.93 43.16 35.40 32.74 41.00 57.11 44.72
&e bold values are the highest recognition rate in each task to reflect the rationality of the TLMLDA model, because TLMLDA has obtained the best
performance compared with other ablation experimental models.
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Figure 2: Continued.
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generalizability of the model, and adding transfer learning
methods to the traditional speech emotion recognition
framework is an effective solution.

Finally, excluding baseline methods that do not use
transfer learning, it can be observed in Table 4 that TLMLDA
also achieves significant performance improvements com-
pared to transfer learning-based algorithms DoSL, TSDSL,
and JDAR. Compared with DoSL and TSDSL, which are
algorithms that consider only global transfer, TLMLDA
jointly considers the alignment of global and local feature
distributions, which can well maximize the interclass dis-
tance and minimize the intraclass distance to improve the
model generalization ability. Compared with JDAR, al-
though JDAR jointly considers the edge probability distri-
bution and conditional probability distribution between the
source and target domain corpora, both of which contribute
to model learning domain invariant representation, JDAR
does not dynamically adjust the weights between multiple
losses; when applied in practice and at different training
stages, marginal probability distributions and conditional
probability distributions may contribute differently to the
discrepancy in feature distributions; therefore, TLMLDA
with the addition of dynamically adjusted loss weights
obtains a superior performance.

4.1. Time and Space Complexity of TLMLDA. In TLMLDA,
the features of an input batch first pass through the three
hidden layers of the encoder and then enter the three hidden
layers of the decoder to recover the original dimensions in
order to calculate the reconstruction loss; at the same time,
the features learned by the encoder are classified after the
fully connected layers, and the features in the source and
target domains enter both MMD and LMMD for alignment.
Since the reconstruction process and the computation of
reconstruction loss are executed in parallel with the fully
connected layers, the computation of MMD, LMMD, and
the time complexity should be taken as the larger compu-
tation between the two process. In auto-encoder and DNN,
the computation can be expressed as the input dimension of
the features multiplied by the output dimension, the di-
mension of the matrix computation performed inMMD and
LMMD is the batch size, and the computation of the re-
construction loss is the batch size multiplied by the original
feature dimension. In addition, the bias in the neural net-
work also needs to be considered when calculating the space
complexity, so the time and space complexity of TLMLDA
can be expressed as follows:

TIME ∼ O B 
3

i�1
Hiin

Hiout
+ max 

2

i�1
Fiin

Fiout
+ B

2
, 

3

i�1
Hiin

Hiout
+ F⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

SPACE ∼ O 
3

i�1
Hiin

+ 1 Hiout
+ 

2

i�1
Fiin

+ 1 Fiout

⎛⎝ ⎞⎠.

(7)

Table 4: Experimental results of the use of other algorithms.

Algorithm E⟶ B B⟶ E E⟶ C C⟶ E B⟶ C C⟶ B Average
PCA+ SVM 50.85 33.48 28.40 27.61 33.13 43.38 36.14
DoSL [14] 50.55 33.03 35.20 33.81 39.23 53.20 40.84
TSDSL [17] 47.41 35.44 32.50 33.25 37.40 56.74 40.46
JDAR [18] 48.74 38.14 30.30 28.43 38.60 49.58 38.97
DBN+BP [28] 29.86 32.21 24.20 31.02 35.80 49.59 33.78
TLMLDA 58.93 43.16 35.40 32.74 41.00 57.11 44.72
&e bold values are the highest recognition rate in each task to reflect the rationality of the TLMLDA model, because TLMLDA has obtained the best
performance compared with other ablation experimental models.

(f )

Figure 2:&e t-SNE visualization of feature distributions (left: Only_cls, mid: TLMLDA_M, and right: TLMLDA). (a) E⟶ B, (b) B⟶ E,
(c) E⟶ C, (d) C⟶ E, (e) B⟶ C, and (f) C⟶ B.
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In formulas (7), B is the batch size and also the matrix
dimension for MMD and LMMD calculations,
Hi in, Hi out, Fi in, Fi out represent the input dimension and
output dimension of hidden layer i and fully connected
layer i, respectively, and F denotes the original feature
dimension.

5. Conclusions

In this paper, we have proposed a TLMLDA model to deal
with the cross-corpus SER problem. Firstly, TLMLDA uses
the DAE network to compress redundant information, and
then the powerful nonlinear fitting ability of DNN is used
to further learn low-dimensional emotional features.
Secondly, TLMLDA measures the feature distribution
distances of the source and target domains from the global
and subdomain perspectives simultaneously. Lastly,
TLMLDA constructed a multi-loss dynamic adjustment
algorithm to train the model, which helps to improve the
model recognition ability. Based on experimental results, it
is clear that our proposed TLMLDA can effectively im-
prove the cross-corpus SER performance. Furthermore,
the proposed method has some limitations, such as the
computational power consumed in considering the global
and local alignment process. Despite the excess perfor-
mance of the devices now, developing a metric that can
accomplish both global and local alignment will be a great
boost to the practical application of SER. In addition, the
lack of a well-performing end-to-end speech emotion
recognition system is one of the current obstacles to the
implementation of SER applications. &erefore, our sub-
sequent work will focus on the optimization of transfer
learning algorithms and the development of end-to-end
speech emotion recognition, which will be valuable for
SER applications to achieve excellent performance in
various fields.
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