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Immunotherapy has become an indispensable part of the comprehensive treatment of
hepatocellular carcinoma (HCC). Immunotherapy has proven effective in patients with
early HCC, advanced HCC, or HCC recurrence after liver transplantation. Clinically, the
most commonly used immunotherapy is immune checkpoint inhibition using monoclonal
antibodies, such as CTLA-4 and PD-1. However, it cannot fundamentally solve the
problems of a weakened immune system and inactivation of immune cells involved in
killing tumor cells. T cells can express tumor antigen-recognizing T cell receptors (TCRs) or
chimeric antigen receptors (CARs) on the cell surface through gene editing to improve the
specificity and responsiveness of immune cells. According to previous studies, TCR-T cell
therapy is significantly better than CAR-T cell therapy in the treatment of solid tumors and
is one of the most promising immune cell therapies for solid tumors so far. However, its
application in the treatment of HCC is still being researched. Technological advancements
in induction and redifferentiation of induced pluripotent stem cells (iPSCs) allow us to use T
cells to induce T cell-derived iPSCs (T-iPSCs) and then differentiate them into TCR-T cells.
This has allowed a convenient strategy to study HCC models and explore optimal
treatment strategies. This review gives an overview of the major advances in the
development of protocols to generate neoantigen-specific TCR-T cells from T-iPSCs.
We will also discuss their potential and challenges in the treatment of HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common type
of cancer worldwide and the third leading cause of cancer-related
death, with approximately 50% of HCC cases occurring in China
(1). Localized stage HCC has a five-year relative survival rate in
near 31% of patients with HCC, in all races (2). About 70% of
HCC cases are diagnosed at the advanced stage (3, 4), which
requires systemic treatment. Surgical treatment is considered the
most comprehensive treatment for HCC. Non-surgical
treatments mostly include local treatments such as
transcatheter hepatic arterial chemoembolization (TACE),
radiofrequency ablation (RFA), and percutaneous ethanol
injection (PEI). For mid-late stage HCC, molecular targeting
drugs such as Sorafenib are currently the most commonly used
treatment (Figure 1).

While earlier studies were focused on the tumor parenchyma,
currently, the research focus has shifted to the tumor stroma and
tumor microenvironment. The microenvironment of solid
tumor usually contains a large number of stroma and
immunosuppressive cells, making it difficult for the immune
cells to attack the tumor; the hypoxic environment and
nutritional deficiency also hinder the proliferation and survival
of T cells (5). Thus, the immune system is unable to clear the
tumor. Adoptive cell therapy (ACT) might be able to overcome
these challenges. It improves the patient’s immune environment,
reactivating and proliferating the non-functional immune cells,
allowing them to kill the tumor cells in the patient’s body.
Frontiers in Immunology | www.frontiersin.org 2
Tumor immunotherapy has attracted much attention because
of its ability to enhance the body’s autoimmunity to kill tumors.
In addition to adoptive cell therapy, immune-based therapies for
HCC have been used in clinical applications or are undergoing
clinical trials. Immune-based therapies include methods such as
immune checkpoint inhibitors, inhibitory cytokine blockers,
oncolytic viruses, and genetic vaccines (6). Studies have shown
that after administration of tremelimumab, an antibody targeting
CTLA-4, combined with radiofrequency ablation to treat
advanced liver cancer, led to a significant increase in CD8+ T
cells in the cancer tissue of patients, significantly prolonging the
progression-free survival period (7). Monoclonal antibodies that
target immune checkpoints have achieved remarkable
therapeutic results in different types of tumors, but it also has
several challenges, for example, controlling immune-related
adverse reactions and applying combination therapy strategies.
Moreover, this type of immunotherapy is time-consuming and
slow in onset. Further research is needed to design and optimize
such immunotherapeutic treatment strategies.

With respect to ACT, chimeric antigen receptor (CAR)-T cell
therapy and T cell receptor (TCR)-T cell therapy are most
commonly used. T cells express TCRs or CARs that recognize
tumor antigens on the cell surface through gene editing technology,
rendering T cells the specificity in their functions. Moreover,
compared with cumbersome screening to obtain tumor
infiltrating lymphocytes (TILs), the acquisition and preparation of
genetically engineered T cells is simpler (8). With the leukemia
treatment trial of CAR-T cell therapy conducted by the University
FIGURE 1 | The current treatments for liver cancer include hepatectomy, immunotherapy, transcatheter arterial chemoembolization (TACE), radiofrequency ablation
(RFA), percutaneous ethanol injection (PEI), targeted drug therapy (sorafenib/FOLFOX4), and liver transplantation (UCSF standard). According to the patient’s
condition, such as the degree of liver cirrhosis, liver function (child grade), number of tumors, size of tumors, and metastasis, clinicians select the appropriate
treatment plan or perform combination therapy.
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of Pennsylvania, it has begun to be widely used in the treatment of
tumors (9). The development of CAR-T cell therapy has achieved
clinical cures for certain types of tumors in the blood, like B-cell
leukemia and lymphoma. Although CAR-T cells have achieved
remarkable results in the treatment of certain types of leukemia,
their use in treating solid tumors faces several challenges. Therefore,
the successful application of TCR-T cell therapy in treating solid
tumors makes it one of the most promising immune cell therapy
methods for solid tumors, e.g., the use of NY-ESO-1 antigen-specific
TCR-T cells against some tumors like melanoma, synovial sarcoma,
multiple myeloma and disseminated neuroblastoma (10–13).

TCR-T cell therapy is widely used in tumor therapy because
of its wide range of therapeutic targets, high affinity, and high
specificity for tumor antigen. However, it also elicits adverse
effects, especially off-target effects and severe untargeted toxicity
(14–17). Induced pluripotent stem cells (iPSCs) emerged as a
viable tool to derive T cells owing to their plasticity, high
proliferative capacity, and no ethical restrictions. Therefore,
developing a model of neoantigen T cell-derived iPSCs (T-
iPSCs) is increasingly being considered in cancer precision
medicine, tumor immunotherapy and regenerative medicine,
to study their safety and efficacy in treating HCC. Several
studies are underway to develop protocols to generate
personalized and specific TCR-T cells using T-iPSCs. This
review will describe in detail the recent advances made in
developing TCR-T cells using T-iPSCs. We will also discuss
the potential applications and challenges of using neoantigen T
cells derived from T-iPSCs for the treatment of HCC.
IMPORTANCE OF NEOANTIGEN SPECIFIC
T CELLS DERIVED FROM T-iPSCs in the
Treatment of HCC

Traditional hepatectomy is effective in treating early HCC but
not for advanced HCC and metastatic cancer cells. Radiotherapy
and chemotherapy have poor selectivity for liver cancer, resulting
in damage of normal tissues while killing cancer cells. Although
targeted drugs such as sorafenib, donafenib, atezolizumab, and
bevacizumab are effective in treating HCC, they cannot suppress
the mutation and drug resistance that develops in tumor cells.
Extensive research has been carried out to develop drugs to treat
tumors. However, molecular-targeted drugs have their own
limitations due to drug resistance, side effects, lack of tumor
specificity, and unsustained tumor killing activity. Therefore,
some patients do not benefit from systemic treatment with
molecular-targeted drugs. This challenge can perhaps be
overcome by tumor immunotherapy and regenerative medicine.

Immunotherapy does not require surgery; immune cells can
be targeted to the tumor through direct injection or through
the peripheral. Most tumor patients are in a state of
immunosuppression. Therefore, immunotherapy is necessary,
to change the overall immune state of the patient or to change
the local immune microenvironment of the tumor.

In China, HCC cells usually have integrated HBV-DNA
fragments (18) and can therefore synthesize a peptide chain
Frontiers in Immunology | www.frontiersin.org 3
which can bind to major histocompatibility complex (MHC)
molecules, enabling it to be recognized by T cells. Hepatitis B
surface antigen (HbsAg) may be used as a potential target for
TCR-T cell therapy (19). TCR genes can specifically recognize
and kill HepG2 tumor cells in vitro through CD8+ T cells. They
can also eliminate HepG2 tumors in NSG mice (15). Hafezi et al.
showed that HBV-specific TCR-T cells have potential
applications in organ transplantation patients with recurring
HBV-HCC (20). These results indicate that TCR-T cell therapy
is efficient in the treatment of solid tumors such as HCC, and
adoptive cell transfer therapy of liver cancer might eventually
become the optimal solution in its comprehensive treatment.

The selection of TCR targets is a key challenge in TCR-T cell
therapy. Generally, there are two criteria for determining target
tumor antigens. First, if the antigen is only expressed in tumors;
second, if there are enough patients who can benefit from this
treatment. Thus, there are three tumor antigens that can be used
as suitable targets for TCR-transduced T cell therapy, including
cancer-testis antigens, oncogenic virus antigens, and
neoantigens. Tumors produce mutated peptides due to
accumulated somatic mutations. MHC molecules can bind to
such antigen peptides to form new antigens on the cell surface
(Figure 2). These neoantigens are usually unique to cancer cells
and individuals. Therefore, they are ideal targets for designing T
cell immunotherapy. Neoantigens may also become potential
targets for developing immunotherapy in patients with other
cancer types (19).
DEVELOPMENT OF TCR-T CELL
TARGETING NEOANTIGENS USING
T-iPSCs

The production of TCR-T cell targeting neoantigens requires
three steps: screening neoantigens, constructing T-iPSCs, and
inducing TCR-T cells.

Screening Neoantigens
According to existing literature, tumor rejection epitopes may be
derived from two classes of antigens. The first class is developed
from non-mutated proteins to which T cell tolerance is
incomplete because of their restricted tissue expression pattern.
The second class can be developed from peptides that are entirely
absent from the normal human genome, the so called
neoantigens (21). Neoantigens are derived from antigens
produced by the mutant protein, and antigens produced by the
integration of the tumorigenic virus into the human genome.
Neoantigens do not cause central immune tolerance and have
strong immunogenicity. There are two conditions for screening
neoantigens: first, a mutated protein needs to be processed and
then presented as a mutant peptide by MHC molecules; second,
T cells that can recognize this peptide-MHC complex should be
present (21).

All malignant tumors harbor non-synonymous mutations or
other genetic alterations (22). This makes it feasible to identify
mutant antigens by technical means. Immunogenic antigenic
May 2021 | Volume 12 | Article 690565
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peptides were identified using next-generation sequencing
technology in conjugation with bioinformatics, which
predicted epitope peptides binding mutated proteins to human
leukocyte antigen (HLA) with high affinity, and stimulated
lymphocytes to detect cytokines in vitro. Robbins et al.
developed a new screening approach involving mining whole-
exome sequence data to identify mutated proteins expressed in
the tumor of the patient. They then synthesized and evaluated
candidate mutated T cell epitopes that were identified using an
MHC-binding algorithm for being recognized by TILs. This
simplified approach for identifying mutated antigens
recognized by T cells avoids the need to laboriously develop
and screen cDNA libraries of tumors and may be easier for
practical application (23).

Based on whole-exome sequence, using non-synonymous
mutations, a tandem minigene (TMG) vector was designed and
synthesized, which was transcribed into multi-epitope RNA in vitro
and transferred to antigen-presenting cells. Subsequently, T cells
were stimulated by these antigen-presenting cells. This enables
identification of immunogenicity epitopes of RNA and specific
mutant epitopes of immunogenicity, as needed. Tran et al. used
whole-exome sequence which revealed 26 non-synonymous
mutations in a widely metastatic cholangiocarcinoma case. The
study used minigene approach wherein multiple minigenes were
synthesized in tandem to generate TMG constructs. These
constructs were then used as templates for the generation of in
vitro transcribed (IVT) RNA. Each of these IVT TMG RNAs was
then individually transfected into autologous antigen-presenting
cells, followed by coculture with TILs. The reactivity
predominated in the CD4+ T cell population, as demonstrated by
up-regulation of the activation markers OX40 and 4-BB. The study
successfully identified HLA-DQB1*0601 restrictive REBB2IP
neoantigen sequence NSKEETGHLENGN (24).

Using bioinformatics, multiple antigenic peptide fragments
were designed for hotspot mutations of high-frequency mutated
genes, and the optimal epitopes were screened in vitro, so as to
cover more patients with mutations of this gene site. Schumacher
et al. demonstrated that isocitrate dehydrogenase 1 (IDH1)
Frontiers in Immunology | www.frontiersin.org 4
(R132H) contains an immunogenic epitope suitable for
mutation-specific vaccination. Peptides encompassing the
mutated region are presented on MHC class II and they
induce mutation-specific CD4+ helper T cell-1 (TH1)
responses in gliomas (25). These methods can efficiently screen
neoantigens, thus laying the foundation for the subsequent
production of neoantigen specific TCR-T cells.

T-iPSCs
Dedifferentiation of adult cells into stem cells was first proposed
by Japanese scholar professor Shinya Yamanaka in 2006. Their
team proposed that differentiated cells from mouse embryo or
adult fibroblasts can be reprogrammed into iPSCs by introducing
four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 (26). In
2007, Takahashi et al. found that iPSCs developed from adult
human dermal fibroblasts using Oct3/4, Sox2, c-Myc, and Klf4
(OSKM) were similar to human embryonic stem cells (ESCs) and
could differentiate into cell types of the three germ layers (27). In
2008, Park et al. developed a protocol using the four
transcription factors (Oct3/4, Sox2, c-Myc, and Klf4) to
develop iPSCs from reprogramming of human somatic cells.
They found that only Oct3/4 and Sox2 were necessary in such a
case, and NANOG and LIN28 can replace c-Myc and Klf4,
respectively. Adding human telomerase reverse transcriptase
(hTERT) and SV40 Large T antigen can improve the efficiency
of reprogramming the cells during the cultivation process. They
also pointed out that human iPSCs resemble ESCs not only in
morphology and gene expression but also in the capacity to form
teratomas in immune-deficient mice. The study also established
a method to yield patient-specific cells that may be cultured in
vitro (28). In 2009, Hamilton et al. used a lentiviral transduction
system induced by doxycycline and four transcription factors
(OSKM) to reprogram mouse embryonic fibroblasts into iPSCs
(29). Since then, iPSCs have been widely studied by several
researchers, which will pave way for research into treatment
methods for various diseases (30).

More than ten years after the advent of iPSCs, a variety of
methods for inducing iPSCs in vitro have been studied and
FIGURE 2 | Mature CD8+ T cells with a new antigen-specific TCR gene can recognize antigen targets and thus attack and kill tumor cells. TCR, T cell receptor;
HLA, human leukocyte antigen; MHC, major histocompatibility complex.
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improvements have been made to the original method. For
example, the use of ROCK inhibitors can improve the
efficiency and survival rate of human iPSCs (31). The use of
episomes and HDAC inhibitors can lead to efficient production
of iPSCs from peripheral blood (32). It was found that
reprogramming of adult fibroblasts and mouse embryos into
iPSCs using serum-containing media is often not as effective as
using serum-free media (33). Some studies have shown that
iPSCs can also be successfully developed without c-Myc, but it
results in low efficiency and delay in development of iPSCs (34,
35) (Figure 3).

The iPSCs induced by T cells are called T-iPSCs, which retain
the assembled “endogenous” TCR gene after nuclear
reprogramming. Notably, T cells differentiated from T-iPSCs
have the same arrangement pattern of TCR genes as original T
cells. This makes T-iPSCs an efficient raw material to be used for
the propagation of numerous T cells, all of which express
antigen-specific TCRs (36, 37).
Frontiers in Immunology | www.frontiersin.org 5
However, Minagawa et al. discovered that T cells had lost
their antigen specificity due to the following factors: (i) there is a
rearrangement of the TCR gene at the double positive (DP) stage
in the CD8ab+ T cells generated from human T-iPSCs. The
researchers used CRISPR technology to knock out the
recombinase gene (RAG2) in T-iPSC to prevent this. (ii)
During the treatment stage, they also found that the exogenous
and the endogenous TCR chains were paired in some T cells (38).
To solve this problem, a single viral vector encoding two TCR
chain genes can be used in the viral transfection stage, which will
reduce the probability of mismatch between the exogenous TCR
chain and the endogenous TCR chain (39). Other studies have
used siRNA to down-regulate endogenous CD3, or zinc finger
nuclease knockout technology to knock out endogenous TCR to
reduce the probability of mismatches (40, 41).

T cells used to induce T-iPSCs are mainly derived by isolating
autologous TILs from resected tumors of patients and obtaining
peripheral lymphocytes (42). The application of T-iPSC to
FIGURE 3 | Brief history of T cell-derived induced pluripotent stem cells (T-iPSCs). TCR, T Cell Receptor; iPSCs, induced pluripotent stem cells; CTLs, cytotoxic
T lymphocytes.
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generate a large number of tumor antigen-specific T cells solves
the problem of short lifespan of activated cytotoxic T
lymphocytes (CTLs) in traditional tumor immunotherapy.
Normal T cells induced by the antigen presenting cells in vitro
will be inactive in a short period, and therefore, cannot effectively
attack tumors (43).

Neoantigen Specific T-iPSCs
The unit of TCR-T executive function is the TCR-CD3 complex,
which belongs to the immune protein superfamily, a heterodimer
consisting of a- and b-chains. The peptide chain is divided into
three parts, the extracellular region, the cellular transmembrane
region, and the intracellular region. Moreover, neoantigen
specific TCR a- and b-chains are the major components of
TCR-T cells. A study identified neoantigen specific TCR a- and
b-chains and inserted them into T-iPSCs. After successfully
inducing the rearranged TCR gene into iPSC, in the
preselection stage, it was able to effectively produce cells which
expressed TCR on the surface (43). Compared with the ordinary
T-iPSCs, the TCR-iPSCs with the new antigen inserted in them
solved the problem of the heterogeneity of the generated T cells.
The TCR-iPSC clone produced is simple, fast, and high-
quality (44).

A study showed that using gene expression vectors, TCR a-
and b-chains transduced into human T lymphocytes could
mediate tumor regression. This has been applied by researchers
for clinical trials in humans, and no adverse events have been
observed so far (11, 17).

According to a previous study, the steps to generate
neoantigen specific TCR a chains and b chains are as follows:
Tumor reactive T cells derived from TILs and CTLs of peripheral
blood from patients and T cells by autologous antigen presenting
cells (APCs) are loaded with synthetic tandem minigene (TMG)
or peptides encoding mutated antigens. After that, the newly
acquired T cells are identified. Reactive T cells are identified
based on the expression of active molecules such as 4-1BB on
CD8+ T cells and OX-40 on CD4+ T cells, and then purified and
amplified using flow cytometry (24). A new method was
designed by Cohen at al. for the identification, isolation, and
utilization of neoantigen-specific T cells. They used neoepitope
MHC/peptide tetramers to combine T cells in the fresh tumor
digests and peripheral blood to obtain neoantigen-specific T cells
(45, 46). A small number of neoantigen-specific T cells were
successfully obtained using peptide-MHC polymerization
method, enabling peripheral blood mononuclear cell (PBMC)
to become a potential source of neoantigen epitope-specific TCR.
Then sequencing of TCR, obtain Neoantigen specific TCR a
chains and b chains.

Neoantigen Specific TCR-T Cells
The most critical step is to induce differentiation of neoantigen-
specific T-iPSC into mature TCR-T cells. These specific TCR-T
cells are monoclonal and highly accurate in cell targeting. Unlike
the exogenous TCR transfer technology to induce T cells from
hematopoietic stem cells and peripheral blood into tumor
antigen-specific T cells, the neoantigen-specific TCR-T cells do
not generate mismatched TCR, reducing unnecessary issues in
Frontiers in Immunology | www.frontiersin.org 6
screening and treatment (36). Generally, the induction of
lymphoid cells is achieved by constructing a thymic
microenvironment in which T cells proliferate. To generate T
cells from iPSCs, it needs to be induced into mesoderm, and
needs to perform hematopoietic functions (47). Common
methods are as follows:

Differentiated and developed CD3+ T cells (3–5) × 105 were
extracted from PBMC using magnetic beads, and T cells were
stimulated in T cell medium with leben-CD3/CD28 magnetic
beads and IL-2. The T cell culture medium contained 20 ng/ml
IL-2, 10 ng/ml IL-7, and 10 ng/ml IL-15. On the second day after
stimulation, oct3/4, SOX2, KLF4, and c-MYC transcription
factors packaged with sendai virus were transfected into T
cells. Rat embryonic fibroblasts were laid on the 8th day, and
the medium containing 5 ng/ml basic fibroblast growth factor (b-
FGF) human induced pluripotent stem cells was replaced 12 days
after culture. T-iPSCs were collected at 33–40 days.
Subsequently, in the presence of bone marrow mesenchymal
stem cells (C3H10T1/2), vascular endothelial growth factor
(VEGF), stem cell factor (SCF), and Tyrosine Kinase ligand 3
(FLT-3L). iPSCs differentiated into mesodermal CD34+
hematopoietic stem cells and hematopoietic progenitor cells.
Cells were transfected with OP9-DL1 FLT-3 and IL-7 culture
medium at day 14 to obtain T cell lineage (36).

Vizcard et al. showed that a 3D thymic culture system enables
the generation of a homogeneous antigen-specific T cell subset.
These T-cells generated a unique product which was named
iPSC-derived thymic emigrants (iTEs); they closely mimic naïve
T cells and exhibit potent anti-tumor activity. The study has
designed the 3D thymic culture method based on the traditional
fetal thymic organ culture (FTOC) system (48). Another study
proved that by co-cultivation of OP9-DL1/DL4 cells which
express the Notch ligand, TCR-iPSC inserted with neoantigens
can induce production of tumor-specific CD8+ T cells (49)
(Figure 4).
POTENTIAL AND CHALLENGES OF
TCR-T CELL INDUCED BY T-iPSCs
FOR THE TREATMENT OF HCC

Antigen Selection
Among the current TCR-T cell therapies, TCR-T cells with
cancer testis antigen (CT) as the target are the most commonly
used. CT is expressed in a variety of tumor tissues, but not in
normal tissues other than testis, placenta, and fetal ovaries.
Because of its unique expression, it has become an ideal target
antigen for tumor immunotherapy. The most used antigen target
is NY-ESO-1.

NY-ESO-1 is a tumor-sharing antigen screened from
esophageal cancer cDNA expression library using serological
analysis of recombinant cDNA library (50). The frequency of
expression of the antigen NY-ESO-1 in various tumors is
different, and so is the frequency of protein expression. The
descending order of protein expression in various tumors is:
neuroblastoma, synovial sarcoma, and malignant melanoma.
May 2021 | Volume 12 | Article 690565
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The NY-ESO-1 mRNA is highly expressed in prostate cancer,
bladder cancer, breast cancer, multiple myeloma, and
hepatocellular carcinoma, and has low expression in oral
squamous cell carcinoma and esophageal cancer (51–55). In
2011, it was first reported that TCR-T cell therapy targeting NY-
ESO-1 was effective in both melanoma and synovial sarcoma
(10). The use of lentivirus-mediated TCR-T cells is also effective
in the treatment of hematological malignancies like multiple
myeloma (17).

While TCR-T cell therapy has achieved success in other
cancers, it is at the clinical trial stage in liver cancer treatment.
Currently, there are 6 such clinical trials underway for the
treatment of HCC (https://www.clinicaltrials.gov) [Accessed
March 15, 2021] (refer to Table 1 for details).

Although adoptive immunotherapy is relatively new, tumor-
specific antigens have been studied for more than 50 years.
However, the prolonged research and high investment in this
Frontiers in Immunology | www.frontiersin.org 7
field have brought about very few results. In adoptive
immunotherapy there is always a need for suitable immune
attack targets (16).

In the past, TCR-T cell therapies targeted tumor-associated
antigens (TAAs), which are also expressed in normal cells.
Therefore, after treatment with genetically engineered T cells
targeting carcinoembryonic antigen (CEA), patients have
experienced severe transient colitis (56). Patients receiving
MART-1 and gp100 TCR treatment also showed toxicity in the
skin, eyes, and ears (57). TCR-T cells targeting MAGE-A12 also
produced severe neurotoxicity during the treatment process and
caused mortality in patients (58).

Although TAAs have many side effects in targeted therapy,
they have other advantages. In recent years, many studies have
confirmed that the immune system can detect TAAs, and thus,
the serum of patients with cancer contains the respective
antibodies (59). Therefore, the anti-TAA/TAA system is of
TABLE 1 | Recent clinical trials related to TCR-T cells for the treatment of HCC.

Clinical Trial NCT number Host/Country

Redirected HBV-specific T Cells in patients with HBV-related HCC (SAFE-T-
HBV) (SAFE-T-HBV)

NCT04745403 Singapore General Hospital, Singapore

TCR-redirected T cell infusion in subjects with recurrent HBV-related HCC post
liver transplantation

NCT02719782 The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou,
Guangdong, China

TCR-redirected T cell treatment in patients with recurrent HBV-related HCC post
liver transplantation

NCT04677088 The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,
Guangdong, China

TCR-redirected T cell infusions to prevent HCC recurrence post Liver
transplantation

NCT02686372 The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,
Guangdong, China

Autologous CAR-T/TCR-T cell immunotherapy for solid malignancies NCT03941626 Henan Provincial People’s Hospital, Zhengzhou, Henan, China
Autologous CAR-T/TCR-T cell immunotherapy for malignancies NCT03638206 The First Affiliated Hospital of Zhengzhou University, Zhengzhou,

Henan, China
HBV, Hepatitis B Virus; HCC, Hepatocellular Carcinoma; TCR, T Cell Receptor; CAR-T, Chimeric Antigen Receptor T-Cell; TCR-T, T cell receptor T-Cells.
FIGURE 4 | Preparation of new antigen-specific TCR-T cells. First, T cells with new antigen-specific TCR rearrangement gene were isolated from the body. Second,
after adding OCT3/4, Sox2, KLF4, and c-MYC, T cells were induced to T-iPSC. Third, in the presence of bone marrow mesenchymal stem cells (C3H10T1/2),
vascular endothelial growth factor (VEGF), stem cell factor (SCF), and tyrosine kinase ligand 3 (FLT-3L), T-iPSCs were differentiated into mesodermal CD34+
hematopoietic stem cells (HSCs) and hematopoietic progenitor cells. Cells were transfected to OP9-DL1 FLT-3 and IL-7 culture medium to obtain T cell lineage.
Thus, a large number of T cells will be used to recognize and kill tumor cells.
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great significance as an early cancer biomarker and for predicting
the prognosis of the disease. For example, when anti-TAAs are
added as a diagnostic marker combined with alpha-fetoprotein
(AFP), the sensitivity and specificity to diagnose HCC are
improved, compared with AFP alone (60). Wu et al. used
alpha-fetoprotein combined with tumor size and alkaline
phosphatase levels to invent a simpler and more efficient
prognostic scoring system for predicting overall survival (OS)
and disease-free survival (DFS) of patients with spontaneously
ruptured liver cancer (60). It was proved that the use of multiple
antigen microarrays to detect autoantibodies of TAAs can detect
and diagnose cancers (61). Wang et al. proposed that anti-TAA
autoantibodies may appear in the early stage of HCC, which can
be used as a serological marker for early screening of HCC, and it
also provides a new way for HCC detection in AFP-negative
patients (62).

There is a need for extensive studies on neoantigens as they can
safely target tumors to achieve curative effects, unlike other existing
methods. Additionally, it may also become a universal target antigen
for immunotherapy in patients with different types of tumors. After
adoptive cell therapy, a large number of tumor cells are destroyed in
a short time in some patients, which will lead to fatal clinical events
(63). In addition, T cells may kill all tumor or infected cells, such as
in case of liver cancer caused by HBV infection, leading to serious
organ function problems. This can be overcome by transferring
suicide genes into T cells or transiently expressing TCR gene
through mRNA electroporation (64).

Expression of TCR
There are several challenges that remain, with respect to TCR
expression, such as (i) to maximize the expression of TCR on the
cell surface; (ii) to reduce the mismatch between the introduced
TCR a- or b-chains and the endogenous TCR chains; (iii) to
enhance the binding of TCR molecules to CD3 molecules; and
(iv) to increase affinity between TCR and tumors (39). Studies
have shown that the provision of additional CD3molecules while
giving T cell TCR genes can promote T cell affinity and anti-
tumor activity in vivo (65). Besides, the liver is a special organ
which has many immune suppression mechanisms (66), and
may create obstacles in the future to immunotherapy for HCC.
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In addition, tumor immune evasion is also one of the factors
that affect TCR-T cell therapy. The loss of autoantigen, loss of
HLA molecules, and change of tumor antigen in the process
rendered the T cells unable to recognize cancer cells (67, 68).
The TCR-T cells derived from iPSCs are monoclonal. It was
found that CD8 + T cells express LAG-3 and PD-1 molecules,
leading to accelerated T cell depletion (69). Whether this
phenomenon will appear in T cells derived from iPSCs, thus
reducing its therapeutic effect remains to be seen. Issues with T
cell homing is also one of the factors affecting adoptive
immunotherapy. The nitration of CCL2 chemokines and the
change of glycosylation of T cell surface glycoprotein are the
factors that weaken T cell homing (70). Further, in some cases,
despite the large number of specific CD8+ T cells, the tumor
continues to grow (71). It may be due to inhibitory factors
expressed by tumors, such as IL-10 and TGF-b (72) (Table 2).

Quality Control
Currently, advancement in the current protocols used to produce
neoantigen T cells derived from T-iPSCs holds a great promise
for regenerative medicine and therapeutic applications.
Researchers have been able to produce functional neoantigen T
cells from iPSCs and patient-derived tissues (73, 74). Sometimes,
the quality of the patient’s T cell affects the production of T-iPSC,
which is often not ideal. A study had developed a single-cell
droplet microfluidic technology to screen functional TCR-T
cells, which can overcome this problem (75). In 2020, HLA
was used to transplant donor tissue or cells with the same HLA
alleles into HLA haplotype heterozygous patients, which reduced
the immune rejection reaction, thereby producing “off-the-shelf”
T cells used to treat patients (76). The knock-out of TCRs and/or
HLAs can help obtain universal TCR-T cells without MHC
restriction. Researchers have been able to expand and scale the
production of cells, and developed tools such as 3D thymic
culture for mass production of neoantigen T cell. Moreover,
development of 3D thymic organoids, coculture of multiple
cytokines, and transplantation into 3D thymic organoids have
improved the maturity and functionality of T cells. It is crucial to
resolve challenges associated with genomic instability and
TABLE 2 | Current challenges, reasons and possible solutions of TCR-T induced by T-iPSCs for the treatment of Hepatocellular Carcinoma.

Challenges Reasons Possible solutions

Security Off-target effects Find neoantigens
Targeted toxicity

TCR mismatch The introduced TCR chains match the endogenous TCR chains A single viral vector encoding two TCR chains
Gene knock-out

Tumor immune evasion Loss of autoantigen Find neoantigens
Loss of HLA molecules
Change of tumor antigen
Monoclonal TCR-T

T cell depletion LAG-3 and PD-1 overexpression Gene knock-out
Targeted drugs

Problems with T cell homing Nitration of CCL2 chemokines Regulating the expression of chemokines
T cell surface glycoprotein changed

Liver autoimmune suppression Regulatory myeloid populations maintain liver immune tolerance Improve the immune microenvironment
TCR, T Cell Receptor; TCR-T, T cell receptor T-Cells; HLA, human leukocyte antigen; LAG-3, Lymphocyte activation gene-3; PD-1, Programmed Death-1; CCL2, chemokine ligand 2.
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formation of teratomas after transplantation of iPSC-derived T
cells, in order to achieve its wide-scale clinical use in regenerative
medicine and cell therapy.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The immune system is an important line of defense for the body to
resist external intrusions, supervisors and stabilize the internal
environment. Antigen-antibody reactions are the essential means
for the immune system to perform its functions. Tumor antigens
play important roles in the occurrence and development of tumors
and inducing the body’s anti-tumor immune responses. Therefore,
whether in TCR-T cell therapy or other immunotherapies, finding,
identifying and analyzing tumor antigens is the core of tumor
immunology research. Among them, neoantigens are considered
the most promising tumor antigens. The personalized
immunotherapy model based on neoantigens generated by
tumor-specific mutations is the main development direction of
immunotherapy in solid tumors in the future.

In recent years, the rapid development of immunotherapy has
become a new hope for mankind to fight tumors. Academics are of
the opinion that the approach of using the immune system to attack
tumors will become a turning point in cancer treatment. TCR-T cell
therapy can be successfully applied to solid tumors, and has broad
scope in the future. However, several challenges associated with the
TCR-T cell therapy need to be resolved for its wider application.
Improvement in the induction and differentiation of T-iPSCs, TCR-
T cell production efficiency and quality, optimized TCR transfection
system, transfection efficiency, TCR affinity, and cell expression
levels can further improve T cell performance (72). In addition,
progress in tumor immunotherapy methods depends on suitable
immune targets, and the neoantigens generated by mutations
are very ideal specific antigens. In view of the complex
immunosuppressive microenvironment of tumors, neoantigen-
based immunotherapy with a reasonable combination of immune
checkpoint inhibitors and traditional tumor treatment modes such
as radiotherapy, chemotherapy, and monoclonal antibodies
targeting tumor antigens, can further increase the efficacy of
immunotherapy and exert a more synergistic anti-tumor effect.

The induction and redifferentiation technology of iPSCs has
gradually advanced, providing great convenience in the
establishment of HCC treatment models and application in
Frontiers in Immunology | www.frontiersin.org 9
HCC immunotherapy. The use of T-iPSCs to produce a large
number of highly individualized neoantigen specific TCR-T cells
that can be used for treatment will also achieve practical
application in the near future. Thymic organoids developed
from patient-derived tissue have been shown to faithfully
recapitulate the disease in vitro and could be a useful tool to
study disease pathogenesis and screening of novel therapeutic
drugs. However, currently, the high cost of preparation and
complicated operating procedures of TCR-T cell therapy
requires the need for further studies in the future to overcome
these challenges.

In conclusion, researchers have been able to generate suitable
neoantigen T cells derived from T-iPSCs to apply for clinical
application. The optimal combination of TCR-T cell therapy and
traditional HCC treatment methods also requires continuous
exploration and research, striving to improve the efficacy while
making it convenient for clinical application, so that more
patients can benefit from it in the near future.
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