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Obtaining a quantitative understanding of the transmission dynamics of influ-

enza A is important for predicting healthcare demand and assessing the likely

impact of intervention measures. The pandemic of 2009 provides an ideal plat-

form for developing integrative analyses as it has been studied intensively, and

a wealth of data sources is available. Here, we analyse two complementary

datasets in a disease transmission framework: cross-sectional serological sur-

veys providing data on infection attack rates, and hospitalization data that

convey information on the timing and duration of the pandemic. We estimate

key epidemic determinants such as infection and hospitalization rates, and the

impact of a school holiday. In contrast to previous approaches, our novel mod-

elling of serological data with mixture distributions provides a probabilistic

classification of individual samples (susceptible, immune and infected), pro-

pagating classification uncertainties to the transmission model and enabling

serological classifications to be informed by hospitalization data. The analyses

show that high levels of immunity among persons 20 years and older provide

a consistent explanation of the skewed attack rates observed during the

pandemic and yield precise estimates of the probability of hospitalization

per infection (1–4 years: 0.00096 (95%CrI: 0.00078–0.0012); 5–19 years:

0.00036 (0.00031–0.0044); 20–64 years: 0.0015 (0.00091–0.0020); 65þ years:

0.0084 (0.0028–0.016)). The analyses suggest that in The Netherlands, the

school holiday period reduced the number of infectious contacts between

5- and 9-year-old children substantially (estimated reduction: 54%; 95%CrI:

29–82%), thereby delaying the unfolding of the pandemic in The Netherlands

by approximately a week.
1. Introduction
Worldwide, influenza A causes considerable morbidity and mortality in years

with high influenza activity [1,2]. Proper assessment of the epidemiological

dynamics is key for effective control. However, it is not uncommon that differ-

ent data sources yield conflicting information [3]. For instance, influenza-like

illness surveillance through networks of general practitioners showed increases

in incidence in many countries well before increases in seropositivity and virus

isolation rates, possibly because of increased public awareness. The advent of

modern statistical methods combined with explosive increases in computing

power has enabled systematic integration of different data sources in unifying

statistical frameworks, thereby providing proper weighting of the various

types of data.
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Figure 1. Overview of the serological data (bars) and fit of the model with
school holiday (lines). Panels show results for the various age groups.
Bars show the serological data aggregated in titre classes (,20, 20 – 40,
40 – 80, 80 – 160, 160 – 320 and 320 – 640). Black bars and black lines
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In this paper, we analyse the transmission dynamics of the

influenza pandemic of 2009 by linking a dynamic transmission

model to serological and hospitalization data in a Bayesian

inferential framework. The serological data provide infor-

mation on levels of immunity and infection attack rates, and

the hospitalization data give an indication of the timing

and severity of the epidemic in different age groups. The

model classifies persons in one of four stages of infection (sus-

ceptible, exposed, infectious and recovered) and describes

the transmission dynamics of influenza A in an age-structured

population [3–5]. In the model, contacts between persons of

different age are made at rates that are determined by observed

human contact patterns [6].

The serological data consists of two cross-sectional surveys

involving random samples from the Dutch population, one

performed just before and the other just after the pandemic

[7,8]. As in an earlier study, we model these data with mixture

models in which each sample has a certain probability of

belonging to a person who was susceptible, previously

exposed and immune, or recently infected [7]. This has a dis-

tinct advantage over the more rigid classification of persons

as being either susceptible, immune or infected as it takes

into account biological variation in antibody concentrations.

In the mixture modelling approach, there is no need to set a

specific threshold for classification, even though optimal

thresholds can be derived from the data [9]. Consequently,

not only do the serological data inform the hospitalization

data, but the hospitalization data also inform classification of

serological samples. In other words, probabilistic classifica-

tion of serological samples is determined by the information

contained in both the serological and hospitalization data.

Based on the high contact rates of children, we expect an

epidemic to peak first in children [5,6,10]. An unusual pattern

observed in the Dutch hospitalization data for the 2009 pan-

demic is that the epidemic peak in young children occurred

relatively late. This may have been caused by the one-week

holiday in weeks 43–44, a couple of weeks before the pandemic

peak. It is known that school holidays can considerably reduce

the number of contacts made by children, thereby reduc-

ing transmission [11,12]. We use the inferential framework

sketched above to estimate age-specific infection and hospital-

ization rates and to investigate to what extent the delayed peak

in young children can be explained by school holidays.

denote pre-pandemic data and pre-pandemic model fit, respectively. Blue
bars and lines show the post-pandemic data and post-pandemic model fit.
Note that no serological data are available in young children (1 – 4 years)
and that only pre-pandemic data are included in the oldest age group
(65þ years).
2. Material and methods
2.1. Serological data
In The Netherlands, two cross-sectional serological surveys were

conducted before and after the pandemic of 2009 [7]. In this

study, samples were tested by a haemagglutination inhibition test

(HI) to estimate age-specific infection attack rates. A structured

random subset of the samples was subsequently tested against a

panel of antigens using an antibody protein micro array (figure 1)

[8]. The protein micro array is a novel diagnostic assay to investigate

antibody responses to subunit 1 of the haemagglutinin surface

glycoprotein (HA1) [13–16]. Analyses show that the micro array

is more sensitive and more specific than HI in distinguishing

recent infection from prior exposure [8,13]. Infection attack rates

estimated with the micro array are similar to those estimated with

HI, but are more precise for a given sample size [8].

A total of 357 people were tested with the micro array; 167 in the

pre-pandemic study and 190 in the post-pandemic study. The age

of the participants ranged from 5 to 75 years. Data were stratified
according to the following age categories: 5–9, 10–19, 20–64 and

65þ years, following recommendations of the Consortium for the

Standardization of Influenza Seroepidemiology (consise.tghn.

org), with the exception that the age groups 20–44 and 45–64

years were aggregated. The samples in the pre-pandemic subset

were collected before 12 October 2009, i.e. well before the onset of

widespread influenza circulation [7,8,17]. The serological data are

available in the electronic supplementary material.

The post-pandemic survey was carried out several months

after the pandemic period; and from these data, we exclu-

ded people who were vaccinated against the pandemic virus [7].

Exclusion of persons from the post-pandemic survey who had a

pandemic vaccination also led to the exclusion of many persons

with a history of seasonal vaccinations [8]. Due the underrepre-

sentation of persons with a history of seasonal vaccination in the

consise.tghn.org
consise.tghn.org
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post-pandemic sample in the oldest age group (65þ years), this

subset of the data does not represent a random sample from the

population and was not included in the analyses [8]. As a result,

serological data in the oldest age group cannot directly be used

to estimate the attack rate. However, the pre-pandemic sample

of the oldest age group does represent a random sample of the

population and was used in the statistical analyses.
 ublishing.org
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2.2. Hospitalization data
During the pandemic, all hospitals in The Netherlands were

required to notify the municipal health services of hospital

admissions of patients with a laboratory-confirmed influenza A

infection. Our hospitalization data represent the total, nationwide

daily number of hospitalizations, i.e. the daily number summed

over all municipal health services [17]. We use the same age strati-

fication for the hospitalization data as for the serological data (5–9,

10–19, 20–64 and 65þ years), supplemented with children aged

1–4 years. Upon admittance to a hospital, persons were asked

when their symptoms had started. The number of hospitali-

zed influenza cases by day of symptom onset provides direct

information on the epidemic curve. A total of 1610 cases was avail-

able for analysis, distributed over the age categories as follows: 1–4

years: 267 cases; 5–9 years: 196 cases; 10–19 years: 225 cases;

20–64 years: 800 cases; and 65þ years: 122 cases. The average

time between onset of symptoms and admittance to the hospital

was 2.4 days.
2.3. Transmission model
The hospitalization and serological data are linked through a Sus-

ceptible–Exposed–Infectious–Removed transmission model [5],

thereby providing a natural weighting of the different types of

data. In the model, the exposed and infectious periods are mod-

elled using Erlang (gamma) distributions, yielding control over

variation in the exposed and infectious stages [5,18]. Specifically,

we include four exposed and four infectious stages, so that distri-

butions of time in the exposed and infectious classes have means

1/h and 1/g, and shape parameters nE ¼ nI ¼ 4, respectively.

In each of the five age groups, individuals make contact with

individuals in other age groups at rates that are proportional to a

mixing matrix C, which is specified by observed human contact

patterns [6]. As in earlier analyses, a proportionality parameter z
reflects the probability of transmission per contact. Hence, the

basic reproduction number in a susceptible population and

the reproduction number in a population with pre-existing

immunity are given by the spectral radiuses of zC and zCS,

respectively, where age-specific proportions that are initially

susceptible are collected in the matrix S [19].

Further, if we denote by Ra the relative frequencies of

removed individuals in age group a, and by Ea,j and Ia,j the rela-

tive frequencies of exposed and infectious individuals in age

group a of stage j (see below), then the model dynamics is

specified by the following differential equations:

dSa

dt
¼ �zSa

X
b

cabI�b ,

dEa,1

dt
¼ zSa

X
b

cabI�b�nEhEa,1,

dEa,j

dt
¼ nEhEa,j�1�nEhEa,j,

dIa,1

dt
¼ nEhEa,nE

�nIgIa,1,

dIa,j

dt
¼ nIgIa,j�1�nIgIa,j

and
dRa

dt
¼ nIgIa,nI

,

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2:1)
where the index a runs through all age groups, the index j runs

through all exposed and infectious stages except for the first

( j ¼ 2, . . . ,nE for dEi,j/dt, and j ¼ 2, . . . , nI for dIi,j/dt) and

I�b ¼
P

jIb,j is the total relative frequency of infectious individuals

in age group b. In line with empirical evidence, the average

lengths of the exposed and infectious periods are both set to

1.5 days [20]. In this manner, the generation time is 1/h þ 1/g

(nI þ 1)/2nI ¼ 2.4 days [21].

The fractions of immune persons at the start and end of the

pandemic are given by Ra(0) and Ra(1), and these quantities

are estimated in age groups with serological data (5–9, 10–19,

20–64 and 65þ years). No serological data are available in the

youngest age group (1–4 years). It is, however, plausible that

there was very little pre-existing immunity in this age group, so

we take R1– 4(0) ¼ 0. The fractions of immune persons at the start

and end of the pandemic feed into the mixture model (see below).

2.4. Hospitalizations likelihood
The hospitalization incidence data provide the timing of

symptoms onset for confirmed influenza A infections requiring

hospitalization. Making the reasonable assumption that the onset

of symptoms is close to the point at which people become infec-

tious [20], we can directly relate the incidence ia(t) ¼ nEhEa,nE
(t)

in age group a at time t to the hospitalization data. Alternative

assumptions, e.g. assuming that the onset of symptoms occurred

halfway through or at the end of the infectious period (i.e. assum-

ing ia(t) ¼ nEhIa,2(t) or ia(t) ¼ nEhIa,4(t)) result in a minor shift of

onset of symptoms and yield virtually identical results (not

shown). Assuming further that the expected number of hospitaliz-

ations is proportional to the numbers of infections, the expected

number of hospitalizations at time t in age group a is given by

ma(t) ¼ ca Na ia(t): (2:2)

where Na denotes the number of individuals in age group a, and ca

is the age-dependent probability of hospitalization per infection.

Thus, the log likelihood of the hospitalization data Ht,a is given by

‘hosp ¼
X

t

X
a

log [g(Ht,ajma(t))], (2:3)

where the indices t and i run through all observation periods (i.e.

weeks 41–51) and age groups (1–4, 5–9, 10–19, 20–64 and 65þ
years), and g(Ht,ajma(t)) is the probability density function of the

hospitalizations. Throughout, we assume that hospitalizations

are Poisson distributed.

2.5. Serology likelihood
The micro array data are fitted with a Gaussian mixture model that

consists of three normally distributed components for the log-

transformed serological data. The first and second components

correspond to samples with antibodies present in low and inter-

mediate concentrations, representing susceptible individuals and

individuals with pre-existing immunity, respectively. The third

component corresponds to samples with high antibody con-

centrations, consistent with recent A/2009 (H1N1) infection.

Motivated by biological considerations, we fit the distributions

of persons who were susceptible or had pre-existing immunity to

the pre-pandemic data, and all three distributions to the post-

pandemic data [7,8]. For each distribution, we estimate a mean

and standard deviation ui ¼ (mi, si). Densities of the distributions

are denoted by fi(x; ui) or simply f (x; ui).

Age-specific mixing parameters are collected in vectors p and

q. Here, pa represents the fraction of the population in age group

a that has pre-existing immunity, and qa is the fraction in age

group a that has been infected. Hence, 1 2 pa and 1 2 pa 2 qa

are the corresponding pre- and post-pandemic fractions of sus-

ceptible persons in age group i. Further, we denote by gi the

age label of sample i, by npre and npost the number of samples



Table 1. Parameter estimates of the model that does not include the school holiday effect. Parameter estimates are represented by the medians of the
posterior distribution.

parameter age group (years) estimate (95% CrI)

fraction immune before the pandemic 1 – 4 0a

5 – 9 0.07 (0.00 – 0.23)

10 – 19 0.25 (0.16 – 0.37)

20 – 64 0.70 (0.61 – 0.76)

65þ 0.90 (0.76 – 0.95)

infection attack rate 1 – 4 0.22 (0.20 – 0.25)

5 – 9 0.48 (0.40 – 0.52)

10 – 19 0.31 (0.25 – 0.37)

20 – 64 0.05 (0.04 – 0.07)

65þ 0.01 (0.00 – 0.02)

basic reproduction number 1.9 (1.8 – 2.3)

reproduction number at the start of the pandemic 1.31 (1.29 – 1.33)

probability of hospitalization 1 – 4 0.0012 (0.0010 – 0.0014)

5 – 19 0.00040 (0.00034 – 0.00048)

20 – 64 0.0017 (0.0011 – 0.0022)

65þ 0.010 (0.0037 – 0.018)
aPre-pandemic immunity is assumed to be absent in young children (1 – 4 years).
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in the pre- and post-pandemic surveys, by dpre,i and dpost,i the

log2 antibody titres in the pre- and post-pandemic studies and

by wi the contribution of sample i to the population census

[7,8]. With these notational conventions, the log likelihood of

the pre-pandemic data is given by

‘pre(usus, uimm, p jdpre) ¼
Xnpre

i¼1

wi log ((1� pgi ) f (dpre,i ; usus)

þ pgi f(dpre,i ; uimm)): (2:4)

In similar fashion, the log likelihood of the post-pandemic data is

given by

‘post(usus, uimm, uinf, p, q jdpost)

¼
Xn post

i¼1

wi log ((1� pgi � qgi ) f(dpost,i ; usus)

þ pgi f(dpost,i ; uimm) þ qgi f (dpost,i ; uinf) ): (2:5)

Note that the fraction of persons with pre-existing immunity in

the pre-pandemic study equals the fraction of persons with pre-

existing immunity in the post-pandemic study. This assumption

is reasonable, given that there was only a short-time span between

the two studies (less than six months) making significant loss of

immunity unlikely. Combining the above, the log likelihood of

the serological data is given by ‘pre þ ‘post, and the total likelihood

of the joint hospitalization data and serological data is given by

‘hosp þ ‘pre þ ‘post.

The age-dependent weights of the three mixture distribu-

tions have an epidemiological interpretation, representing the

fractions of the population that were initially susceptible, had

pre-existing immunity and had been infected (equation (2.5)).

The weights are linked to the epidemic model via equation

(2.1) as follows. In the epidemic model, the fractions of suscepti-

ble and immune persons before the epidemic are given by Sa(0)

and Ra(0), the number of immune and infected persons at the end

of the pandemic is given by Ra(1), and the attack rate is given by

Ra(1) 2 Ra(0). In the mixture model, we thus take pa ¼ Ra(0) and
qa ¼ Ra(1) 2 Ra(0) (see the electronic supplementary material for

details).
2.6. School holiday
In The Netherlands, there is a week-long autumn school holiday,

which was planned in week 43 (estimated at 71% of the popu-

lation) or week 44 (29% of the population). We use those

estimates in the analyses with school holiday effect. The 5–9

and 10–19 year-old age groups consist largely of school-going

children. The number of contacts within these age groups are dis-

counted during the two weeks of school holiday by replacing the

elements cii in the contact matrix by vtricii þ (i 2 vt)cii. Here, vt

represents the fraction of children that have a holiday in week

t, and ri represents the contact reduction during the holiday.

We estimate separate contact reductions ri for the two age

groups 5–9 and 10–19 years.
2.7. Estimation
We considered two main scenarios, one without and the other

with the school holiday effect. The models have 16 and 18 par-

ameters to be estimated, respectively (see tables 1 and 2, and

the electronic supplementary material, tables S2 and S3). We

use a Bayesian framework to enable flexible incorporation of

prior information. The parameters specifying the fractions

infected and the fractions immune at the start of the epidemic

(Ra(0)), specifying the impact of the school holiday (ra) and deter-

mining the fraction of the population at the start of the pandemic

are constrained to the domain [0,1], and we use Jeffrey’s prior

distributions for these parameters. The parameters usus, uimm

and uinf are constrained to the domain [0, 1], and we assume

(improper) uniform prior distributions for these parameters.

The hospitalization probabilities (ca) are also constrained to the

domain [0, 1]. It is plausible that the ca should not deviate exces-

sively between adjacent age categories. Therefore, and using

information from preliminary analyses, ca is estimated jointly

for the age groups 5–9 and 10–19 years, while c1 – 4, c5 – 19 and



Table 2. Parameter estimates of the model that includes a potential reduction in transmission during the school holiday. Parameter estimates are represented
by the medians of the posterior distribution.

parameter age group (years) estimate (95% CrI)

fraction immune before the pandemic 1 – 4 0a

5 – 9 0.08 (0.00 – 0.24)

10 – 19 0.29 (0.20 – 0.41)

20 – 64 0.72 (0.63 – 0.78)

65þ 0.91 (0.75 – 0.95)

infection attack rate 1 – 4 0.28 (0.24 – 0.33)

5 – 9 0.53 (0.43 – 0.58)

10 – 19 0.34 (0.27 – 0.40)

20 – 64 0.05 (0.04 – 0.09)

65þ 0.01 (0.00 – 0.02)

reduction of transmission during school holiday 5 – 9 0.54 (0.29 – 0.82)

10 – 19 0.10 (0.00 – 0.29)

basic reproduction number 2.2 (2.0 – 2.6)

reproduction number at the start of the pandemic 1.42 (1.37 – 1.48)

probability of hospitalization 1 – 4 0.00096 (0.00078 – 0.0012)

5 – 19 0.00036 (0.00031 – 0.00044)

20 – 64 0.0015 (0.00091 – 0.0020)

65þ 0.0084 (0.0028 – 0.016)
aPre-pandemic immunity is assumed to be absent in young children (1 – 4 years).
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c20 – 64 are not allowed to deviate more than a factor of five from

each other. For the oldest age group, c65þ is not allowed to

deviate more than 10-fold from c20 – 64. In a sensitivity analysis,

we allow these deviations to be doubled to a 10- and 20-fold

maximal difference.

Estimates of the parameters are obtained in a Markov chain

Monte Carlo framework with a random-walk Metropolis algor-

ithm using Gaussian proposal distributions and with standard

deviations set to achieve acceptance ratios in the range 0.20 to

0.35 (see the electronic supplementary material). A 1/10 thinned

sample of 200 000 is obtained from the posterior distribution,

after a burn-in of 10 000 cycles. Inspection of convergence and

mixing is assessed visually. All programs are coded in R 3.1.
3. Results
Figures 1 and 2 give an overview of data and model fits, and par-

ameter estimates of the models with and without school holiday

effect are given in tables 1 and 2 and electronic supplementary

material, tables S2 and S3. Visual inspection of the hospitaliz-

ation data and model fits shows that both models adequately

describe hospitalizations over time in the different age groups,

with no systematic deviations of the predicted from the

observed hospitalizations, and no evidence of overdispersion

relative to the Poisson model (figure 2). A formal comparison

of the two models is made using the Bayes factor (BF), which

represents the relative strength of evidence for the model with

hospitalization data. To this end, marginal likelihoods are esti-

mated using the harmonic means of the posterior likelihood

values of the competing models, yielding stable log-likelihood

estimates of 21087.8 and 21096.5. Hence, the comparison indi-

cates that the model with holiday effect is strongly supported by
the data [22]. This is due mainly to the fact that the model with

holiday effect is able to capture the lagging number of hospi-

talizations in the ascending phase of the epidemic in 5- to

9-year-old children in weeks 43–44. The predicted contact

reduction among children in this age groups is 54% (95% CrI:

29–82%). We do not find a significant reduction among children

aged 10–19 years during the school holiday (median reduction

10%, 95% CrI: 0–29%). Incorporating the school holiday not

only improved the model fit in children, but also seemed to

improve the model fit for the other age groups.

To investigate the impact of the autumn school holiday on the

epidemic dynamics, we run the transmission model without

the school holiday effect with parameters taken from the pos-

terior distribution of the model with school holiday effect. The

ensemble dynamics is presented in figure 3. The school holiday

appears to have delayed the epidemic peak by approximately

one week. Specifically, the estimated delay is 6.9 days (95%CrI:

3.9–9.4) in 1- to 4-year-old children, 7.9 days (95%CrI:

4.9–10.4) in 5- and 9-year-old children, 3.0 days (95%CrI: 0.2–

6.2) in 10- and 19-year-old children, 5.4 days (95%CrI: 3.0–7.9)

in adults (20–64 years) and 5.5 days (95%CrI: 3.0–7.9) in the

elderly (65þ years). Further, our estimates indicate that the holi-

day period has lowered the epidemic peak by 27% (CrI. 17–35%).

Inspection of the immunity estimates reveal that a large pro-

portion of the adult population had pre-existing immunity and

that the high levels of immunity can explain the skewed attack

rates (tables 1 and 2). In fact, estimates of the levels of immunity

and infection attack rates are strongly correlated (figure 4). Our

model also provides estimates of the attack rate in young

children (1–4 years), even though no serological data are avail-

able for this age group. Specifically, for this age group, the

median posterior attack rate is 0.28 (95%CrI: 0.24–0.33).
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In the above analyses, the susceptible component of the

mixture distribution is located almost entirely below the

detection limit (20 U ml21; figure 1), and the immune com-

ponent has a high density at the detection limit. This

implies that samples with an antibody concentration just

above the detection limit have a high probability (99% or

more) to be classified as immune. We explore how the results

are affected if the component of pre-existing immunity is

forced to have most (at least 95%) of its weight above the

detection limit. The result is an increase in the mean and a

decrease in the variance of the immune component (elec-

tronic supplementary material, table S4). Estimates of pre-

existing immunity in adults remain high, but decrease from

72 to 52% (20–64 years) and from 91 to 84% (65þ years).

Likewise, estimates of the infection attack rates remain high

in children and very low in adults and the elderly. Estimates

of the school holiday effect are negligibly affected.

In a second sensitivity analysis, we allow the probability of

hospitalization to differ more between age groups (see Material

and methods for details, and the electronic supplementary
material, table S5, for full results). The main effect is an increase

in the estimated level of pre-existing immunity in the elderly

(65þ years), accompanied by a substantial increase in the prob-

ability of hospitalization from 0.0084 to 0.017 in this age group.

In the younger age groups, the probabilities of hospitaliza-

tion are marginally affected, indicating that the choice of

prior distributions has little impact on the posterior distri-

bution, and that the probability of hospitalization can be

identified by the data.

Finally, we analyse how our results compare to a traditional

approach in which fixed thresholds determine whether an indi-

vidual is classified as susceptible, immune or recently infected.

In the electronic supplementary material, tables S6 and S7,

we used threshold values of 20 and 40 U ml21 for distinguish-

ing susceptible from immune or infected persons. The most

conspicuous difference compared with our mixture model

analysis is that the estimates of pre-existing immunity are

lower and attack rate estimates are higher. Further, estimates

of the school holiday effect are consistently higher in the

analyses with thresholds than in the mixture model.
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4. Discussion
Building on earlier work [3], our analyses demonstrate how

disease incidence and infection seroprevalence data can be com-

bined in a consistent manner to estimate infection attack rates,

levels of pre-existing immunity, the impact of school holidays

and probabilities of hospitalization. Our analyses improve on

previous approaches by using a mixture model for probabilistic

classification of serological samples. We believe that this rep-

resents a significant advance over traditional analyses that use

predefined fixed thresholds. In fact, there is usually consider-

able biological variation in antibody response data, leading to

classification uncertainties and making analyses using fixed

thresholds prone to uncontrollable misclassification (electronic

supplementary material, figures S6 and S7). In our mixture

model approach, classification uncertainties are propagated to

the epidemic model in a natural manner. Consequently, our

probabilistic classification of serological samples is determined

not only by serological information but also by the disease inci-

dence data. This is the reason why the precision of estimates of

the infection attack rates and levels of pre-existing immunity are

comparable in the mixture model and the models with fixed

thresholds; the lack of classification certainty in the mixture

model is compensated by better use of the hospitalization data.
Our results suggest that high levels of immunity in persons

older than 20 years, the lack of immunity in persons younger

than 10 years and the week-long autumn holiday had a substan-

tial impact on the epidemic in The Netherlands. A weighted

average over the estimated contact reduction in 5–9- and

10–19-year-old children (54 and 10%) yielded an estimated con-

tact reduction of 25% in 5- to 19-year-old children, which is

similar to the reduction reported by Cauchemez et al. [11] forchil-

dren in France. Our estimate is smaller than the reported

reduction of more than 50% in children during the Canadian

summer holiday [12]. Possible explanations for the relatively

small estimated reduction in 10- to 19-year-old children are that

they may be less dependent on school for social contacts and

that a small proportion of 10- to 19-year-old children no longer

attends school. The difference in the estimates in 5–9- versus

10–19-year-old children is of sufficient magnitude to suggest

that the largest reduction in transmission would be achieved

by closure of primary rather than secondary schools.

Parameter estimates in our analyses are informed by

(i) serological data, (ii) hospitalization data, and (iii) the trans-

mission model armed with age-specific contact patterns.

Estimates of the infection attack rates are largely (but not

exclusively) informed by the serological data. Particularly
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for the 5–9- and 10–19-year-old age groups, the post-

pandemic serological data are bimodally distributed, and

the distribution of infected persons is clearly identifiable

(figure 1). On the other hand, attack rates have to be in line

with the pandemic model and are restricted in particular by

the contact patterns. The result is that confidence intervals of

the attack rate estimates are smaller in our analyses than

when the attack rates are estimated using the serological data

alone (see below). This is especially true for the older age

groups in which the serological data per se provide little infor-

mation. Here, the information in the serological data for the

younger age groups is carried over to the older age groups

via the contact patterns specified by the epidemic model.

In a similar vein, estimates of the levels of pre-pandemic

immunity are largely informed by the serological data. In

fact, mixture model analyses without hospitalization data
are characterized by high estimated attack rates below the

age of 20 years (5–9 years: 65%; 10–19 years: 27%) and low

attack rates above 20 years (20–44 years: 5% ; 45–64 years:

approx. 0%), and levels of immunity that are low below 20

years (5–9 years: approx. 0%; 10–19 years: 37%) and high

above 20 years (20–44 years: 70% ; 45–64 years: 78%) [8].

The estimated attack rates and levels of immunity in our

analyses are qualitatively—and to a reasonable extent also

quantitatively—in agreement with attack rates and immunity

rates based on serological data alone. The main quantitative

difference is that estimates are more extreme when using ser-

ological data only, i.e. yielding higher attack rates in children

and higher immunity estimates in adults and elderly. In our

analyses, estimates are informed mainly by serological data,

but also constrained by the hospitalization data and by

contact patterns.

Our estimates and earlier estimates of the attack rate of

the 2009 pandemic in The Netherlands are highly skewed,

and range from up to 60% in young children (5–9 years)

down to 0–1% in elderly [7]. The 2009 pandemic virus is

structurally very similar to the 1918 H1N1 virus [23], and it

has been shown that people exposed to pre-1957 H1N1

viruses have a substantial degree of pre-existing immunity

to A/2009 H1N1-like viruses [24,25]. Our finding of high

levels of immunity combined with relatively high probability

of hospitalization after infection in older adults (approaching

1% in our main analyses) indicates that pre-existing immu-

nity played a crucial role keeping the overall public health

impact of the 2009 pandemic low [7].
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