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Abs trac t .  We recently have demonstrated that EGF 
receptor (EGFR)-induced cell motility requires recep- 
tor kinase activity and autophosphorylation (P. Chen, 
K. Gupta, and A. Wells. 1994. J. Cell Biol. 
124:547-555). This suggests that the immediate down- 
stream effector molecule contains a src homology-2 
domain. Phospholipase C3, (PLC3,) is among the can- 
didate transducers of this signal because of its poten- 
tial roles in modulating cytoskeletal dynamics. We uti- 
lized signaling-restricted EGFR mutants expressed in 
receptor devoid NR6 cells to determine if PLC activa- 
tion is necessary for EGFR-mediated cell movement. 

Exposure to EGF (25 nM) augmented PLC activity 
in all five EGFR mutant cell lines which also 
responded by increased cell movement. Basal phos- 
phoinositide turnover was not affected by EGF in the 
lines which do not present the enhanced motility re- 
sponse. The correlation between EGFR-mediated cell 
motility and PLC activity suggested, but did not 
prove, a causal link. A specific inhibitor of PLC, 
U73122 (1 #M) diminished both the EGF-induced mo- 
tility and PLC responses, while its inactive analogue 
U73343 had no effect on these responses. Both the 
PLC and motility responses were decreased by expres- 
sion of a dominant-negative PLC3~-I fragment in EGF- 

responsive infectant lines. Lastly, anti-sense oligonu- 
cleotides (20 #M) to PLC3,-1 reduced both responses 
in NR6 cells expressing wild-type EGFR. These 
findings strongly support PLC~/as the immediate post 
receptor effector in this motogenic pathway. 

We have demonstrated previously that EGFR- 
mediated cell motility and mitogenic signaling path- 
ways are separable. The point of divergence is 
undefined. All kinase-active EGFR mutants induced 
the mitogenic response while only those which are au- 
tophosphorylated induced PLC activity. U73122 did 
not affect EGF-induced thymidine incorporation in 
these motility-responsive infectant cell lines. In addi- 
tion, the dominant-negative PLC3,-1 fragment did not 
diminish EGF-induced thymidine incorporation. All 
kinase active EGFR stimulated mitogen-activated pro- 
tein (MAP) kinase activity, regardless of whether the 
receptors induced cell movement; this EGF-induced 
MAP kinase activity was not affected by U73122 at 
concentrations that depressed the motility response. 
Thus, the signaling pathways which lead to motility 
and cell proliferation diverge at the immediate post- 
receptor stage, and we suggest that this is accom- 
plished by differential activation of effector molecules. 

C 
ELL movement is essential for numerous normal bio- 
logical and physiological events such as wound heal- 
ing, fetal development, bone remodeling, angiogene- 

sis, and the inflammatory response. Aberrant cell movement, 
on the other hand, contributes to the pathogenesis of many 
diseases, such as atherosclerosis and tumor invasion and 
metastasis. Cell movement is modulated by signals from ex- 
tracellular environment. However, the intracellular signal 
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transduction pathways that lead to this biological response 
are not fully delineated. 

The epidermal growth factor receptor (EGFR)', upon 
ligand stimulation, elicits augmented cell movement (4, 6, 
11). This cellular response is separable from EGF-induced 
mitogenesis (11). Our previous study demonstrated that 
EGF-induced cell movement depends on functional tyrosine 
kinase activity and the presence of at least one autophos- 

1. Abbreviations usedin thispaper: EGFR, EGF receptor; IP, inositol phos- 
phate; MAP, mitogen-aetivated protein; MBP, myelin basic protein; PKC, 
protein kinase C; PLC, phospholipase C; SH2, src homology 2; WT, 
wild-type. 
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phorylatable tyrosine within the carboxy-terminal regula- 
tory region of the EGFR. Phospho-tyrosine motifs interact 
with src homology 2 (SH2) domains in effector molecules 
activating these second messengers (9, 30); these SH2 do- 
main interactions with phosphotyrosines display varying 
degrees of specificity according to the amino acids surround- 
ing the tyrosine (18, 26, 29, 36, 42, 43, 55). Multiple EGFR 
phospho-tyrosine motifs are capable of signaling cell move- 
ment, suggesting either a promiscuity in the interactions 
with SH2 domains or parallel intracellular pathways leading 
to cell movement (11). Thus, the search for the immediate 
downstream molecules that mediates the motility response 
has been pointed toward SH2 domain containing signal 
transducers. 

Pbospholipase C ~, (PLCT) is activated by the EGFR tyro- 
sine kinase after physical associating with the receptor via 
its SI-I2 domains (27). PLC,y activity and subsequent effector 
molecules can be linked to the motogenic machinery. PLC~, 
is capable of associating via its SH3 domain with actin fila- 
ments (3). PLC-y hydrolyzes PIP2 to produce IP3 and DAG. 
This hydrolysis releases profilin and gelsotin) actin-seques- 
tering and -severing proteins (2, 19). IP3 mobilizes intra- 
cellular calcium which also has been shown to modulate 
actin assembly (44). These findings provide a theoretic frame- 
work for the participation of PLC~, in the pathway leading 
to cell motility. Recent studies have demonstrated that PLC'y 
activity is required for chemotactic transmigration of cells 
through a collagen gel in response to PDGF-BB (8, 25). 
However, the cell property elicited by PLC-y activation (i.e., 
cell movement, enhanced gel proteolysis, etc.) is undefined. 

In this study, we utilize the EGFR-devoid NR6 fibroblast 
cell line (33) to investigate the link between EGF-induced 
cell movement and PLC~/activity. Various EGFR mutants 
were expressed in this cell background to avoid signaling 
from native EGFR (20, 52). The EGFR constructs varied in 
their ability to elicit a motogenic response upon activation 
(11). EGF-induction of PLC3, activity and cell movement 
correlated closely. A pharmacological agent which specifi- 
cally inhibits PLC activity abrogated induced cell move- 
ment, but had no effect on EGFR-mediated mitogenesis. 
Molecular inhibition of PLC,y activity by antisense oligonu- 
cleotides or a dominant-negative fragment (23) also dimin- 
ished the motility response. Lastly, in an attempt to map 
further downstream intermediaries, activation of mitogen- 
activated protein (MAP) kinase was found not to be sufficient 
to induce cell movement. 

Materials and Methods 

Generation of NR6 Cells Expressing EGFR Constructs 
The construction of the EGFR and stable expression in NR6 cells were by 
standard methods, and have been described previously (11, 52). Briefly, 
wild-type (WT) EGFR is a full-length cDNA (46) derived from a placental 
cDNA library (53). M TM is the kinase-inactive counterpart in which 
methionine replaces lysine in the ATP-binding pocket (13). d973, c'991, 
and c'1000 represent EGFR in which stop codons are introduced just dis- 
tal to the amino acid number indicated. CI000F 992 was created from 
all000 by replacing the sole remaining autophosphorylation site at y~2 
with a phenylalanine (F 992) (10). The fusion mutants c'958f 9s8-996 and 
c958f II'~'-"~ link a minimal kinase-active EGFR (50) to the phospho- 
tyrosine motifs around yg~  and ytt4s, respectively, c'1186F3 represents a 
full-length EGFR in which the three major autophosphorylation sites 
(yt173, yii4s, and yi0¢,8) (17) have been negated by phenylalanine replace- 
ment. The EGFR are shown schematically in Table I. 

The constructs were expressed on NR6 cells, 3T3-derivatives which lack 
endogenous receptors (33). This was accomplished by retroviral-mediated 
transduction as previously described (51). Polyclonal lines were established 
by selection in G418 (GIBCO BRL, Gaithersburg, MD). The infectant cell 
lines presented high, but physiologic levels of receptors (50,000-250,000 
EGF-binding sites per cell) with similar dissociation constants (gd were 
0.2-0.7 nM); different EGFR levels within this range do not affect ligand- 
induced cell motility (11). All of the EGFR possessed kinase activity, except 
for M72t; the cells which presented the kinase-active EGFR all demon- 
strated a mitogenic response to EGE 

Cell Motility Assay 
EGF-induced migration was assessed by the ability of the cells to move into 
an acellular area as previously described (11, 14). Briefly, NR6 cells were 
plated on plastic and grown to confluence in MEMc~ with 7.5% FBS. After 
24 h of incubation in media with 1% dialyzed FBS, an area was denuded 
by a rubber policeman at the center of  the plate. The cells were then treated 
with or without 25 nM EGF and incubated at 37°C. Photographs were taken 
at 0 and 24 h and the relative distance traveled by the cells at the acellular 
front was determined. The EGF-induced migration was calculated as a per- 
cent of basal motility observed in the non-EGF-treated cells tested in paral- 
lel at each time point. Mitomycin-C (0.5 #g/ml) was present throughout the 
motility assays to avoid interference from the mitogenic response. 

PLC Activity Assays 
PLC activity was monitored by a functional assay in which the production 
of inositol phosphate species (IP) was measured (38, 39). NR6 cells ex- 
pressing mutant EGF receptors were grown to 'x,90% confluency, under the 
same conditions used in motility assays. Cells were labeled in serum free 
media containing 5 #Ci/ml [3H]myo-inositol for 12-14 h, after which the 
cells were washed twice with PBS to remove unincorporated label. LiCI (10 
mM) was introduced to inhibit IP hydrolysis by inositol phosphatases. After 
15 rain of LiCl incubation, saturation level of EGF (25 nM) was added and 
the incubation continued for another 30 rain. The reaction was terminated 
by removing the media and adding boiling water to the cells. Cell lysates 
were collected and boiled for 5 rain. The lysates were briefly centrifuged 
1o remove particulate material, and the soluble cytosolic fraction retained 
for analysis. 

Inositols and inositoi phosphates were separated on Dowex (AGI-X8 
100-200 mesh) anion-exchange mini column. Inositol was eluted with water 
and IP with 100 mM ammonium formate and 100 mM formic acid. The 
IP content was quantitated by scintillation counting and normalized against 
the protein content in the lysate determined by Bradford Protein Assay (Bio 
Rad Labs., Hercules, CA). The EGF-elicited PLC activity was expressed 
as percent of non-EGF-treated basal IP production to account for variations 
in labeling. 

A complete profile of the individual inositol phosphate species was 
generated by HPLC separation to confirm the anion-exchange chromatogra- 
phy (38). Split samples from the cell lysate were injected into a Partisil 10 
SAX anion-exchaoge analytical column (0.45 x 25 cm). Inositol was eluted 
with water for 10 min. Inositol phosphate species were eluted in the order 
of IP, IP2, and IP3 by a 5-min linear gradient of 0-10% 1 M ammonium 
formate, pH 3.8, followed by 20-rain of isocratic elution with 10% 1 M am- 
monium formate. Elution then continued with 25-min linear gradient of 
10-100% of 1 M ammonium formate followed by a 15-min isocratic 100% 
1 M ammonium formate. The flow rate was set at 1.2 ml/min and l-rain 
fractions were collected. 

PLC activity responsiveness after prolonged EGF treatment was deter- 
mined after 12 h of continuous exposure of cells to EGE After 12 h of incu- 
bation, 10 mM LiCI was added. After an additional 30-min incubation, 
cells were lysed and lysates were analyzed as described above. 

Thymidine Incorporation Assay 
EGF-induced mitogenesis was assessed by the incorporation of [3H]thymi- 
dine in the target cells. Cells were plated on plastic and grown to confluence 
in MEMc~ with 7.5% FBS. The ceils were then switched to media contain- 
ing 1% dialyzed FBS for 24 h. The ceils were subsequently treated with 
or without EGF (25 nM) and incubated at 37°C for 16 h. [3H]thymidine 
(5 #Ci/ml) was added and incubation continued for another 10 h. The cells 
were then washed with ice-cold PBS twice and incubated in 5 % trichloro- 
acetic acid at 4°C for 30 min. After two washes with PBS the cells were 
lysed in 0.2 N NaOH and the incorporated [3H]thymidine counted by scin- 
tillation counter. 
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Pharmacological PLC Inhibitors 
The pharmacological agents, U73122 (l~(6-((17b-3-methoxyestra-l,3,5(10)- 
trien-17-yl)amino)hexyt)-lH-pyrrole-2,5-dione) and its inactive congener, 
U73343 (1-(6-((17b-3-methoxyestra-1,3,500)-trien-17-yl)amino)hexyl)-2,5- 
pyrrolidine-dione), were added to the cells to inhibit PLC activity (7, 41). 
Both U73122 and U73343 (BIOMOL Res. Labs., Inc., Plymouth Meeting, 
PA) were dissolved in chloroform and dried under a nitrogen stream. The 
dried film was then dissolved in medium containing serum proteins to com- 
plex the drugs for intracellular delivery. 

These compounds were introduced at 1 #M into the media in the PLC 
activity assays at the same time LiCI was added. In the cell migration and 
[3H]thymidine incorporation assays, these compounds (1 #M) were intro- 
duced 15 rain before the addition of EGE EGF-induced PLC activity and 
cell migration responses were measured in parallel with the control 
non-EGF-treated cells. 

Cloning and Expression of Dominant-negative PLC'y4 
in NR6 Cells 
A dominant-negative PLC,y-1 gene fragment (designated as PLCz) which 
encodes the Z region SH2 and SH3 domains (amino acids 517-901) of this 
enzyme (23) was cloned from a human placenta eDNA library by standard 
PCR techniques. The oligonucleotide primers used were: 5' sense I517: 
CCTCTAGAATGATCTACTACTC'IVJAGGAGACC and 3' anti-sense stopgm: 
GC~AAGCTTCTACATGCTGATGGAGAAGACGAAG. These primers 
have XbaI and HindIII sites to allow subsequent cloning into the pXf vector 
for expression. Subcloning placed the PLCz fragment under the control of 
a SV40 early promoter present in the pXf vector (12). The pXf vector con- 
tains a DHFR gene transcribed from a second SV40 early promoter. 

The pXf/PLCz expression vector was transfected into selected NR6 in- 
fectant cell lines (c'1000, c'1086F3, and c'991) using the lipofectin reagent 
(GIBCO BRL). Ceils were selected in 400 mM methotrexate. Stable ex- 
pression of PLCz in these cell lines was demonstrated by western blotting 
with mixed monoclonal anti-PLC'y-1 antibodies (UBI; 05-163). The PLCz 
expressing cell lines were tested for PLC activity, cell movement, and 
thymidine incorporation as described above. 

Anti-sense PLC-t-10tigonucleotides 
Anti-sense PLC3, oligonucleotides were employed to down-regulate PLC3, 
expression. Oligonucleotide A1 (GGGGGTCCCGACGCCCGCCAT) was a 
21-mer anti-sense to the sequence encoding the first seven amino acids in 
the rat PLC~ sequence. Al-thio was the same sequence with the first and 
the last base containing a thio-linkage to prevent degradation. A2 
(GCTGTACATGAGGCTGCGGTA) was a 21-mer anti-sense to the se- 
quence encoding the amino acids 217-223 which was absolutely conserved 
across murine, rat and human species. S1 (CGGAGGAAGAAGAT- 
TGCCCTG), a 21-mer sense oligonucleotide, encoding amino acids 945- 
951 in the human PLC% was used as a control to demonstrate sequence 
specificity of any effects. The oligonucleotides were dissolved in medium 
and introduced at 20 #M during the final 8 h of the metabolic labeling in 
the PLC activity assays. In the cell migration assays, oligonucleotides (20 
#M) were introduced 8 h before the addition of EGF and remained present 
throughout the entire assay period. The effects of these oligonucleotides on 
EGF-induced PLC activity and cell migration responses were assessed in 
parallel with the control oligonuclcotides and nontreated ceils. 

Phospholipid extraction was used to determine the basal incorporation 
of [3H]myo-inositol in the presence of antisense oligonucleotides. After 
metabolic labeling with or without oligonucleotides as described above, 
cells were lysed in 1 mi of cold methanol. Chloroform (0.5 ml) containing 
0.63 mg/ml of butylated hydroxytoluene was added to the lysate. 188 #1 of 
1:2 chloroform/methanol were added, followed by 563 /zl of water. The 
lower chloroform layer containing phospholipids was collected. A 200-#1 
aliquot was air-dried and incorporated label measured by scintillation 
counting. The effects of antisense oligonucleotides were assessed in parallel 
with the nontreated control cells. 

MAP Kinase Assay 
MAP kinase activity was measured as the rate of phosphorylation of the 
MAP kinase-specific substrate myelin basic protein (MBP) by cell extract 
as previously described (1). Briefly, cells were plated on plastic and grown 
to confluence. After 5 rain of treatment with EGF (25 nM), cells were 
rinsed twice with ice-cold PBS and once with cold extraction buffer (50 mM 
/~-glycerophosphate, pH 7.3, L5 mM EGTA, 0.1 mM Na3VO4, I mM di- 

thiothreitol, 10 t~g/ml leupeptin, 10 #g/ml aprotinin, 2 #g/ml pepstatin A, 
and 1 mM benzamidine). Ceils were scraped into extraction buffer, 
homogenized for 20 s and centrifuged at 14,000 g for 5 min at 4°C. Superna- 
tants were collected as the cytosolic extracts. The cytosolic extracts were 
then mixed at room temperature with the assay buffer so the final concentra- 
tions of assay components were 50 mM/3-glycemphosphate, pH 7.3, 1.5 
mM EGTA, 0.1 mM Na3VO4, 1 mM dithiothreitol, 10 #M calmidazolium, 
2 #M PKI peptide, 10 mM MgCIz, 0.33 mg/ml MBP, 330 nM ATE and 
15 nM [32P]3,ATP. Reactions were terminated after 0, 2, 4, 6, and 10 min 
by spotting aliquots of the assay mixture onto PE81 phosphocellulose filter 
paper squares which were washed three times with 175 mM phosphoric 
acid, once with ethanol, once with ether, air dried, and counted. Initial 
studies revealed that the 10-min time period was in the linear range; MAP 
kinase activity was determined as the increase of MBP phosphorylation over 
time. The EGF-induced MAP kinase activity was determined by comparing 
the MAP kinase activity of EGF-treated cells to non-EGF-treated cells; the 
EGF-induced MAP kinase activity was calculated and expressed as the per- 
cent of activity seen in non-EGF-treated cells. 

The effects of U73122 on EGF-induced MAP kinase activity was as- 
sessed. 1/zM of U73122 was introduced to the cells 15 rain before the addi- 
tion of EGF and the EGF-induced MAP kinase activity was evaluated as 
above. 

Results 

EGF Induces PLC Activity Only in Cell Lines which 
Demonstrate EGF-enhanced Movement 
Previously, we demonstrated that EGF augments cell move- 
ment only in NR6 cells that express EGFR constructs which 
contain at least one autophosphorylatable tyrosine (11). Cell 
movement was determined by the ability of cells to move into 
a denuded area on a culture dish. To standardize the assays, 
the EGF-induced movement after 24 h of EGF exposure 
was calculated as a percent of basal motility observed in 
non-EGF-treated cells tested in parallel. NR6 cells express- 
ing EGFR constructs which undergo autophosphorylation 
(WT, c'1000, c958ff 8s-996, c958f a1~"54) demonstrated en- 
hanced movement in the presence of saturating concentra- 
tions of EGF (25 nM) (Table I); this is in agreement with our 
earlier report (11). An additional mutant dl186F3, a full- 
length receptor with the three major autophosphorylatable 
tyrosines (yl173, yH48 and y1068 [17]) replaced by phenylala- 
nines, was tested for EGF-induced motility. As would be 
predicted (11, 43), this construct underwent autophosphory- 
lation upon EGF stimulation, presumably at the remaining 
two minor pbospho-tyrosine motifs (centered on y992 and 
yt086 [43, 50]). The NR6 cells expressing this EGFR con- 
struct also demonstrated augmented cell movement in the 
presence of EGE The parental NR6 cells, devoid of endoge- 
nous receptors, and NR6 cells expressing non-antophos- 
phorylated receptors (d973, c991, c'1000F 992, and M TM) all 
failed to demonstrate increased movement in the presence of 
EGF (Table I) (11). 

These findings suggested that activation of the immediate 
downstream effector moleculein the signaling pathway lead- 
ing to enhanced cell movement involved SH2 domain inter- 
actions. EGFR must be autophosphorylated to be able to ac- 
tivate PLC3, (35, 48), a signaling molecule which has been 
implicated in altering cell motility (8, 19, 25). Therefore, we 
tested the various NR6 cell lines for EGF-induced PLC ac- 
tivity (Table I). PLC activity was assessed by the generation 
of [3H]inositol phosphates in cells metabolically labeled 
with [3H]myo-inositol. PLC~/ upon activation hydrolyzes 
PIP2 to generate IP3 and DAG; IP3 is rapidly converted to 
IP by either direct stepwise dephosphorylation or following 
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Table I. EGF-induced PLC7 Activity and Cell Migration in NR6 Cells Expressing EGFR Constructs 

conversion to IP4 and subsequent dephosphorylation. Ac- 
cumulation of IP in the presence of lithium, an inhibitor of 
inositol monophosphatase, is a good measure of phospho- 
inositide signaling (5, 39). Production of IPs was determined 
and quantified by anion exchange chromatography followed 
by scintillation counting. To account for experimental varia- 
tions in metabolic labeling and extractions, IPs production 
was calculated as cpm per 100 #g protein; the production in- 
duced by EGF was expressed as percent of IPs produced by 
non-EGF-treated cells tested in parallel. We observed a con- 
cordance between EGF induced cell movement and aug- 
merited PLC activity (Table I). The NR6 cells expressing 
autophosphorylatable EGFR all demonstrated ligand stimu- 
lation of PLC activity while the cell lines presenting non- 
autophosphorylated EGFR did not. 

HPLC separation of the inositol species confirmed that 
IP3 was generated from the labeled inositol pool (Fig. 1). 
As lithium exerts its most potent inhibition towards inositol 
monophosphatase, inositol monophosphate was the major 
species which accumulated after EGF treatment of respon- 
sive cell lines. The low level of IP3 observed is consistent 
with a brief <2-5  rain burst of IP3 formation (I(1, 4, 5)P3 
for the initial minute converting to I(1, 3, 4)P3 as the major 
species after that), followed by a prolonged lower level of 
IP3 generation (data not shown and reference 21). 

PLC Activation by EGF Is Demonstrable Even After 12 
Hours of Exposure 

NR6 cell movement in response to EGF is observed only af- 
ter 6-12 h of exposure (11). However, PLC activity was 
monitored during the initial 30 min of EGF stimulation to 
avoid interference from inositol turnover and recycling and 
depletion of [3H]-labeled inositol. Furthermore, as EGF 
exposure stimulates phospho-inositide metabolism (Table I, 
Fig. 1), EGF treatment may be expected to exacerbate the 
depletion of labeled inositol. However, it was critical to de- 
termine if IP3 production was increased throughout the 
migration assays. 

EGF-augmented PLC activity was measured after 12 h 
of EGF stimulation (Fig. 2). After metabolic labeling of 
NR6 cells expressing WT EGFR, the cells were washed, 
incubated in media without [3H]myoinositol, and either 
treated or not with saturation concentrations of EGF (25 
nM). After a further 12-h incubation, LiC1 (10 raM) was 
added to prevent IP hydrolysis, and production of IP deter- 
mined. Cells which were not exposed to EGF during the 
12 h after labeling incubation, demonstrated significant in- 
duction of PLC activity in response to addition of EGF; the 
absolute amount of label recovered in the IP fraction was re- 
duced 15-20% in cells stimulated 12 h after labeling com- 
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Figure 1. EGF-induced inositol phosphate production profile in 
NR6 cells expressing WT EGF receptor. Cells were labeled 12- 
14 h with [3H]myo-inositol and then treated with or without EGF 
(25 nM) for 30 min in the presence of LiC1 (10 mM). Cytosolic 
extracts were obtained and fractionated by HPLC. Fractions were 
collected and the [3H]inositol phosphate contents quantified by 
scintillation counting. Relative amounts of individual inositol phos- 
phate contents are reported as the actual cpm from scintillation 
counting. Peaks were identified by known standards run in parallel. 
On Dowex mini-column chromatography the species collected are 
GPI, clP and IP. EGF treated (EGF) inositol phosphate production 
profile is depicted as solid line and no EGF treatment (no tx) as 
dashed line. GPI, glycerol phosphoinositol; clP, cyclic inositol 
phosphate; IP, inositol monophosphate; IP3, inositol trisphos- 
phate. This figure is of a representative analysis. 

pared to cells stimulated immediately after labeling with 
[3H]myoinositot. The WT-expressing NR6 cells which were 
exposed to EGF throughout the 12-h incubation produced 
[3H]IP at nearly twice the rate of unstimulated ceils. HPLC 
analyses revealed that IP3 was being generated at a higher 
rate in the EGF-exposed cells than in the non-treated cells 

(Fig. 2 b); the relative EGF-induction and species profile of  
IP3 accumulation was similar to that seen with the 30-min 
EGF exposure. 

Pharmacologic Agents Which Inhibit PLC Activity 
Also Decrease EGF-induced Cell Motility 

The correlation between EGF-induced PLC activity and cell 
motility suggested that PLC'y is the immediate downstream 
effector in the EGFR-mediated motogenic pathway. How- 
ever, this correlation may represent an epipbenomenon due 
to promiscuity of  phospho-tyrosine/SH2 domain interac- 
tions (11, 35, 42). A causal relationship between PLC3, and 
cell motility would be demonstrated if inhibition of PLC re- 
duced cell movement. 

Pharmacological agents can inhibit specific enzymes in 
complex biochemical pathways. U73122 has been shown to 
inhibit specifically PLC while its inactive analogue U73343 
does not affect this enzymatic activity (7, 41). EGF-induced 
PLC activity and cell motility were determined in the pres- 
ence of these agents (Fig. 3). In three cell lines expressing 
responsive EGFR constructs 0NT, c'1186F3, and c'1000), 
U73122 inhibited EGF-induction of both PLC activity and 
cell movement; the inactive analogue, U73343, had little 
affect on these responses. We noted only partial inhibition 
of both PLC and cell motility at the doses used (1 and 2 ~M); 
higher concentrations which fully blocked EGF-induction of  
PLC activity (>5 pM) resulted in cell toxicity over the 12- 
24 h required for the motility assays (data not shown). The 
effect of  U73122 on basal cell movement and IP production 
was negligible (<15% decrease) in these cell lines. 
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Figure 2. EGF-induced PLC activity in NR6 cells expressing WT EGF receptors. PLC activity was measured as the production of inositol 
phosphates by anion-exchange chromatography (A) or HPLC separation (B). Cells were labeled 12-14 h with [3H]myoinositol and then 
incubated in media without label for 12 h in the absence or presence of EGF (25 nM). Inositol phosphate production was measured for 
30 min; LiC1 (10 raM) was present only for 15 min before and during the 30-min measurement period. Relative amounts of inositol phos- 
phates productions are reported as the actual cpm per #g protein in cytosol extract in A or cpm in R (A) No EGF/no EGF, basal inositol 
phosphate production during the 30-rain incubation; no EGF/EGF, acute (30 rain) EGF-induced inositol phosphate production after 12 h 
after removal of label; EGF/EGF, inositol phosphate produced over 30-min assay period after 12 h of continuous exposure to 25 nM EGE 
Mean + SEM, n = 3, each experiment in triplicate; P < 0.01 between no EGF/no EGF and EGF/EGF. (B) The analysis shown was per- 
formed as described in Fig. 1. EGF treated (EGF) inositol phosphate production profile is depicted as solid line and no EGF treatment 
(no tx) as dashed line. GPI, glycerol phosphoinositol; clP, cyclic inositol phosphate; IP, inositol monophosphate; IP3, inositol 
trisphosphate. This figure is of a representative analysis. 
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Figure 3. Effects of the pharmacologic agents U73122 and U73343 
on EGF-induced (A) PLC activity and (B) cell movement in three 
NR6 cell lines. NR6 cells lines expressing WT, c'1186F3, and c'1000 
EGFR all demonstrated EGF-induced PLC activity and cell motil- 
ity responses. Cells were treated with EGF (25 nM) in the presence 
or absence of U73122 or U73343 (I #M) during the assay periods 
(30 min for PLC activity, 24 h for cell migration). The effects of 
U73122 and U73343 on the EGF-induced responses were calcu- 
lated as percent of the EGF-induced responses observed in the ab- 
sence of U73122 and U73343. R, EGF-induced PLC activity or 
cell migration in the absence of drug treatment; [], basal PLC ac- 
tivity or cell migration as percent of EGF-induced responses; m, 
EGF-induced response in the presence of the inactive congener 
U73343; [], EGF-induced response in the presence of U73122. 
Values are mean + SD; n = 3-6. 

A Dominant-negative PLC3,4 Fragment or 
Antisense Oligonucleotides Diminish EGF-induction 
of Both PLC Activity and Cell Motility 

Specific interruption of EGFR activation of PLC'y is re- 
quired to demonstrate a causal relation between induced 
PLC activity and cell motility. U73122 is not specific for the 
tyrosine kinase activated isoform of PLC, PLC3', and may 
also inhibit other phospholipases which are triggered by the 
EGFR (32). Therefore, we attempted to either block the acti- 
vation of PLC3, by interfering with its binding to EGFR or 
to down-regulate the level of PLC3, in the cell. 

The Z region of human PLC3,-1, covering the SH2-SH2- 
SH3 domains, was isolated by reverse transcriptase/PCR 
and cloned into a eukaryotic expression vector. PLCz was 
expressed in three selected infectant NR6 lines (c'1000, 
c'1186F3, and c'991), as determined by immunoblotting with 

Figure 4. Effects of over-expressing dominant negative PLCz on 
EGF-induced (A) PLC activity and (B) cell movement in three NR6 
cell lines. Solid bars depict PLC activity or cell migration in the 
absence of EGF treatment; hatched bars are EGF-induced re- 
sponses. Values are mean + SD; n > 3. 

a mixture of monoclonal antibodies (data not shown). PLC 
activity and cell movement were tested in these infectant sub- 
lines (Fig. 4). The presence of PLCz disrupted both EGF- 
induced responses in parallel. The infectant PLCz sublines 
demonstrated lower basal PLC activity than their respective 
infectant lines, but basal cell movement was unchanged. 
EGF-induction of these responses was blocked or severely 
diminished in the PLCz sublines. 

Anti-sense oligonucleotides down-regulated PLC'y activ- 
ity in the WT EGFR infectant cells (Fig. 5). The sense oli- 
gonucleotide control had no affect on EGF-induced cell 
responses. Two distinct anti-sense oligonucleotides were 
tested for the ability to decrease the EGF-induced PLC and 
motility responses. Accumulations of IPs were decreased by 
35-60% in these cells, and augmented cell movement by 
56-82 %; basal activities were relatively unaffected by these 
treatments. The slightly greater inhibition of cell movement 
compared to IP generation may be due to extended exposure 
to anti-sense down-regulation in the cell migration assay; the 
oligonucleotides were present for 8 h before addition of EGF 
and remained in the media throughout the 24-h motility as- 
say. As anti-sense down-regulation does not affect previously 
synthesized proteins, the extended exposure in the migration 
assay may result in a greater decrease in PLC activity during 
the measurement of this response. 

Induced Cell Motility Correlates with PLC Activity 

EGF-induction of PLC activity was compared to induction 
of cell movement (Fig. 6). NR6 cell lines which expressed 
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Figure 5. Effects of anti-sense PLC3' oligonucleotides on EGF- 
induced (.4) PLC activity and (B) cell movement in NR6 cells. NR6 
cell lines expressing WT EGFR were treated with EGF (25 nM) 
in the presence or absence anti-sense PLC~, oligonucleotide (20 
mM) during the assay periods (8 h preincubation for PLC activity, 
8 h before incubation plus subsequent 24-h assay period for cell 
migration). Oligonucleotide A1 was a 21-mer anti-sense to the se- 
quence encoding the first seven amino acids in the rat PLC3, se- 
quence. Al-thio was the same sequence with the first and the last 
base containing sulfur groups to prevent degradation. A2 was a 21- 
mer anti-sense to the sequence encoding the amino acids 217-223. 
A sense sequence S1, a 21-mer encoding amino acids 945-951, that 
was used as a control to demonstrate the inhibitory effects on PLC 
activity was sequence specific. The effects of these oligonucleotides 
on the EGF-induced responses were expressed as percent of the 
EGF-induced responses observed in the absence of EGF and oligo- 
nucleotide treatment. Solid bars depict PLC activity or cell migra- 
tion in the absence of EGF treatment; hatched bars are EGF- 
induced responses. Values are mean + SD; n > 3. 
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Figure 6. Correlation of EGF-induced PLC activity with cell 
migration responses. EGF-induced PLC activity and cell migration 
was calculated as percent of non-EGF-treated responses for each 
NR6 cell lines tested. O, cells lines expressing EGFR constructs 
that do not respond to EGF in migration and PLC activity; Y, cell 
lines expressing EGFR constructs that undergo autophosphoryla- 
tion upon EGF stimulation and demonstrate augmented PLC activ- 
ity and cell migration responses; U, responses demonstrated by the 
three EGF-responsive cell lines (Fig. 3) in the presence of U73122 
(1 #M); Z, responses demonstrated by the two EGF-responsive cell 
lines expressing dominant negative PLCz. Numbers denote cell 
lines expressing various mutant EGFR constructs (1, ~ 2, 
c'1186F3; 3, all000; 4, c'957Pss-9'~; 5, c'9581m~'-tls4; 6, M72t; 7, 
c'1000Fg'n; 8, c'973; and 9, c'991). Ala, Alb, Alc, and Als repre- 
sent WT EGFR expressing cells treated with anti-sense PLC~ oli- 
gonucleotides A1, Al-thio, A2, and S1, respectively. Values are the 
mean of the cumulative responses for each cell line tested; n = 3-12 
for individual responses in each cell line tested. R, 0.81; P < 0.001. 

correlated strongly (r, 0.81; P < 0.001), exhibiting a positive 
linear relationship. 

EGF-induced Mitogenesis Is Independent of the 
Inhibition of EGF-induced PLC Activity 

We have shown previously that EGF-induced motogenesis is 
separate from the mitogenic response (11)" all EGFR con- 

autophosphorylatable (Fig. 6, Y) and non-autophosphorylat- 
able (Fig. 6, O) EGFR represented the doubly responsive 
and doubly nonresponsive lines, respectively. U73122 treat- 
ment (Fig. 6, U) partially inhibited both parameters in the 
three responsive cell lines tested (Fig. 3). Diminution of 
PLC activity correlated with reduced cell motility in the in- 
fectant sublines expressing PLCz (Fig. 6, Z) and the WT 
EGFR line treated with the oligonucleotides (Fig. 6, A). 
EGF-induced PLC activity and cell motility was expressed 
as percent of basal (non-EGF-treated). The two responses 

Figure 7. Effect of U73122 on EGF-induced [3H]thymidine incor- 
poration in infectant NR6 cell lines. EGF-induced [3H]thymidine 
incorporation was determined for each cell line tested in the pres- 
ence or absence of U73122 (1 t~M). Equivalent numbers of cells 
(,,o100,000 cells) were tested. The incorporated [3H]thymidine is 
expressed as actual scintillation counts. B, basal incorporation 
with no treatment; [], EGF-stimulated incorporation (25 nM EGF); 
@, stimulated incorporation in the presence of U73122. Shown 
are mean + SD for three determinations. 
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structs which exhibited exo-kinase activity elicited mitogen- 
esis, low dose D-actinomycin blocked motility but did not 
affect EGF-induced mitogenesis, and mitomycin-C treat- 
ment abrogated proliferation but spared the ligand-induced 
motility. The point of divergence of these two EGFR- 
mediated signaling pathways is unknown. That augmented 
PLC activity was observed only in the cells expressing au- 
tophosphorylatable EGFR (Table I) suggested that the sepa- 
ration of the pathways may occur at the immediate postre- 
ceptor level. To further establish the divergence of signals, 
we assessed EGF-induced mitogenesis in the presence of 
U73122 (Fig. 7) and in infectant sublines expressing PLCz 
(Fig. 8). EGF-induced mitogenesis was determined by incor- 
poration of [3H]thymidine. At concentrations of U73122 (1 
#M) that inhibit EGF-induced PLC activity and cell motility, 
thymidine incorporation was not diminished regardless of 
the aUtophosphorylation status of the expressed EGFR. In 
the c'1000PLCz and c'l186F3PLCz sublines, pH]thymidine 
incorporation, if anything, was increased, not decreased. 
Thus, disruption of EGFR-mediated PLC~, activity and 
blockage of induced cell movement does not negatively affect 
the mitogenic response. 

Activation of  M A P  Kinase Is Not Sufficient to Elicit 
EGF-induced Cell Motility 

Activation of the MAP kinase cascade has been implicated 
in linking receptor tyrosine kinases to numerous biological 
responses including mitogenesis and differentiation (15, 28). 
EGFR-mediated signals activate MAP kinase; this activa- 
tion, however, can be accomplished by EGFR in which the 
five mapped autophosphorylation sites have been replaced 
by phenylalanines (16). We have shown that EGF-induced 
motility response requires phospho-tyrosine motifs in the 
receptor (11). These findings suggested that activation of 
MAP kinase pathway is not sufficient to elicit cell motility. 

To demonstrate that the MAP kinase activation is not 
sufficient for signaling cell movement, we determined the 
EGF-induced MAP kinase activity in NR6 cells express- 
ing both motogenic (WT and c'1000) and nonmotogenic 

Figure 8. Effect of expressing dominant negative PLCz on EGF- 
induced [3H]thymidine incorporation in infectant NR6 cell lines. 
EGF-induced [3H]thymidine incorporation in three mutant EGFR 
cell lines with or without the expression of PLCz. Equivalent num- 
bers of cells (,,o100,000 ceils) in each cell line were tested. The 
incorporated [3H]thymidine is expressed as actual scintillation 
counts. Solid bars depict basal incorporation with no treatment; 
hatched bars are EGF-stimulated incorporation (25 nM EGF). 
Shown are mean + SD for six determinations. 

(c'1000b "w2 and c'973) EGFR constructs. EGF-stimulated 
phosphorylation of MBP was similar in cells expressing WT 
and c973 EGFR constructs (Figs. 9 and 10). Augmented 
MAP kinase activity was mirrored by EGF-induced tyrosyl 
phosphorylation of p42 MAP kinase. These findings confirm 
that the ability to trigger MAP kinase by an EGFR lacking 
the carboxy-terminal region is intrinsic to the receptor. 
Thus, activation of MAP kinase pathway correlates with 
EGF-induced mitogenesis, but this activation is not sufficient 
to elicit enhanced motogenesis. 

Discussion 
We demonstrated previously that EGF-induced cell motility 
requires the presence of a phospho-tyrosine motif in the in- 
tracellular regulatory region of the EGFR (11). This suggests 
that the immediate downstream effector molecule in the 
motogenic pathway was activated by SH2 domain interac- 
tions. Numerous SH2-containing effector molecules interact 
with, and are activated by EGFR (9, 37, 40, 45, 49, 55). At 
least three of these pathways can be linked to cell motility. 
Activation of small GTP-binding proteins of the rho subfam- 
ily leads to formation of focal adhesions (34), which is con- 
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Figure 9. EGF-induced MAP kinase activity in infectant NR6 cell 
lines expressing mutant EGF receptors. MAP kinase activity in (A) 
WT, (B) c'973, (C) c'1000, and (D) c'1000F 992 was measured as 
phosphorylation of the MAP kinase specific substrate MBP by 
cytosolic extract and expressed as picomoles ATP incorporated/mg 
protein in cell extract. The effect of U73122 (1 #M) was also tested 
in parallel, o, basal activity observed in non-EGF-treated cells; 
e, activity observed with 25 nM EGF treatment; /x, activity ob- 
served in cells treated with U73122; i ,  EGF-induced activity ob- 
served in ceils treated with U73122. A-D are of representative 
analyses. 
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Figure 10. EGF-induced MAP kinase activity. Stimulation of MAP 
kinase activity was demonstrated by the increase in the rate of MBP 
phosphorylation. This is expressed as percent of the MAP kinase 
activity observed in non-EGF-treated cells. The effect of U73122 
(1/~M) treatment on EGF-induced MAP kinase activity also is ex- 
pressed as percent of basal MAP kinase activity, i ,  basal activity 
observed in non-EGF-treated ceils; z~, activity observed with 25 
nM, activity observed with 25 nM EGF treatment; @, EGF- 
induced MAP kinase activity in the presence of U73122. Values are 
mean + SD; n = 2-4 for each cell line tested. 

sistent with the conclusion that activation of GAP by the 
PDGF/3 receptor inhibits cell movement (25). Recent studies 
have demonstrated that phosphatidylinositol 3' kinase activa- 
tion is required for chemotaxis signaled via the PDGF/~ 
receptor (25, 54). A third signaling pathway which involves 
PLC3, may promote cell motility. PLC hydrolysis of PIP2 
releases actin-severing and -sequestering proteins which 
lead to the dissolution of stress fibers and focal adhesions, 
enabling a cell to move (2, 19, 44). In addition, activation 
of PLC-y has been shown to be required for (25, 54) or as- 
sociated with (8) PDGF/3 receptor-mediated chemotaxis. 
The specific intermediary effector molecules in the moto- 
genic pathway have not been investigated in other receptors 
with intrinsic tyrosine kinase activity. 

We investigated the necessity of PLC'y activation in 
EGFR-mediated motogenesis. We examined a series of cell 
lines expressing genetically engineered EGFR for EGF- 
induced PLC activity. Activation of PLC~ by EGFR was 
determined by a functional assay because EGFR may phos- 
phorylate PLC3, without activating it (unpublished observa- 
tions), presumably by phosphorylation of non-activating 
tyrosines (24), and PLCq¢ may be activated non-enzy- 
matically by EGFR (22). Enhanced inositol phosphate 
production was observed only in the cell lines which demon- 
strate EGFR-mediated cell movement (Table I). EGF en- 
hanced PLC~, activity in all cell lines expressing autophos- 
phorylated EGFR, further demonstrating the promiscuity of 
SH2 domain interactions with EGFR phospho-tyrosine mo- 
tifs. EGF-induced cell movement was noted only in cells 
which also were responsive by PLC activity. This correlation 
between the biochemical and biologic responses suggested 
that PLC~ was the immediate downstream effector. 

Specific inhibition of PLC3, was required to demonstrate 
a causal relationship between this enzyme and cell motility. 
A specific inhibitor of phospholipase C activity, U73122, 
was employed to determine whether inhibition of PLC3, 
would also block induced cell movement. Concurrent ex- 
posure of the cells to EGF and U73122 diminished both PLC 
activity and cell movement. The drug had little effect on the 

basal rates of either parameter. This agent inhibits all PLC 
isoforms, and may have some activity towards other phos- 
pholipases (32). To diminish the activation of PLC-/ by 
EGFR, a dominant-negative PLC fragment, consisting of the 
Z region (23), was expressing in select infectant lines. EGF- 
induction of both PLC activity and cell motility was de- 
creased in these cells. As this fragment is postulated to exert 
its inhibitory effect by binding to receptor phospho-tyrosine 
motifs, it is possible that other, non-PLC3, SH2-mediated in- 
teractions also are interrupted. The U73122 data points to 
a phospholipase and the PLCz data indicate a SH2 domain 
containing molecule as being required for induced cell mo- 
tility; PLC3, is the only candidate which fulfills both 
parameters. However, to definitively identify PLC3, as a re- 
quired intermediary, we down-regulated this enzyme activity 
by anti-sense oligonucleotides. Cells expressing the WT 
EGFR were exposed to anti-sense oligonucleotides directed 
towards two distinct regions of PLC3,. This treatment par- 
tially abrogated both PLC activity and motility responses in 
parallel (Fig. 6). Thus, PLC~, is required for EGFR- 
mediated movement. These experiments place PLC'y di- 
rectly downstream of the EGFR. 

These findings do not imply that other pathways are not 
necessary for the full motility response. Kundra and col- 
leagues (25) present evidence that both PLC'y and PI-3' 
kinase are required for PDGF-BB-induced chemotaxis 
through a collagen matrix. However, chemotaxis in such an 
assay results from a number of cell phenotypes, of which cell 
movement is just one. Therefore, it is not certain that cell 
movement in itself requires other immediate effector mole- 
cules to be activated by the receptor. In addition, certain 
other signaling pathways may modulate the motility re- 
sponse. Activation of GAP (25) or protein kinase C (PKC) 
(unpublished observations) limit cell migration; presumably 
through modulation of net cell adhesiveness. To determine 
which other signaling pathways, if any, are required to in- 
duce cell movement will need similar analyses demonstrat- 
ing both positive and negative correlations. 

EGFR-mediated cell motility is separable from mitogene- 
sis (4, 11), but the level at which the signaling pathways di- 
verge is undefined. PLCq~ activation is not required for EGF- 
induced mitogenesis as EGFR constructs which do not acti- 
vate PLC~, can elicit the mitogenic response (16, 48, 52). We 
now show that inhibition of PLC3' activity by U73122 or 
PLCz does not lead to a reduction in the mitogenic response. 
In fact, in the PLC~-responsive lines, we note a slight but 
consistent increase in thymidine incorporation in the pres- 
ence of U73122 (Fig. 7) and in the cells expressing PLCz 
(Fig. 8). This may be due to abrogation of feedback inhibi- 
tion of EGFR signaling by PKC (53); a negative regulatory 
loop in which PLC3, or PLD (unpublished observations) 
generates diacylglycerol which then activates PKC. EGFR 
constructs which are resistant to PKC inhibition (53) are be- 
ing expressed on NR6 cells to test this postulate. Though 
these findings do not eliminate the possibility of redundant 
parallel pathways in signaling mitogenesis as seen with the 
PDGF receptor (47), they strongly support a divergence of 
the mitogenic and motogenic signaling pathways by differen- 
tial activation by the EGFR itself. 

We are attempting to define further downstream effector 
molecules in the motogenic pathway. Signaling through 
EGFR and related tyrosine kinases activates the MAP ki- 
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nase. This molecule occupies a central station in transducing 
signals from the extracellular milieu to the nucleus. In addi- 
tion, MAP kinase elicits numerous cellular responses with- 
out involving transcription (28, 31). We sought to deter- 
mine if activation of MAP kinase was sufficient to elicit cell 
motility. In the infectant NR6 cell line which expresses the 
nonmotogenic c'1000F 992 and c'973 EGFR, EGF exposure 
increased MAP kinase activity (assessed by MBP phosphor- 
ylation) equivalently to the increase seen in WT EGFR- 
expressing cells (Fig. 9). This finding is in agreement with 
published results using another non-autophosphorylated 
EGFR in 3T3 cells (16). We can not determine if MAP ki- 
nase is necessary for EGFR-mediated cell motility, either in 
a parallel pathway or as being permissive for cell movement, 
due to the lack of nontoxic inhibitors and suitably signaling- 
restricted EGFR constructs. However, activation of MAP ki- 
nase is not sufficient, in itself, to elicit the motogenic re- 
sponse. It is likely that MAP kinase is not involved directly 
in the EGFR-mediated motogenic signaling pathway, but 
rather in the mitogenic or other signaling pathways. 
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