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� Innovation intensities for different green innovation techniques were measured.
� Policymakers have decisive role in advancing techniques at dominant design phase.
� Emerging technologies aim attaining synthetic natural gas and C5 sugars.
� Exploratory techniques focus on sewage sludge and connectivity to wastewater plants.
� Trending techniques point towards achieving a circular economy.
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A B S T R A C T

As efforts to achieve Net Zero are intensifying, there is a strong need to identify the technological positioning of
green process innovations that can support the green energy transition. A veritable contender to support these
efforts is the hydrothermal biomass processing technology. This process innovation comprises diverse techniques
that can convert biomass substrates into valuable low-carbon fuels. Coordination across all available conversion
approaches is encouraged to propel the application of those that consider the environmental and sustainability
impacts. We assessed the innovation intensity for different techniques under this green process innovation
through applying natural language processing and deployment of principal component analysis on patent data.
We positioned our techniques within four distinctive groups (intense, dormant, emerging, and exploratory). In this
way, we tracked which hydrothermal technique currently dominates international applications and which ones
are gaining traction in the future.
1. Introduction

The impact of climate change on weather and air quality are widely
experienced by communities across the globe. It is well understood that
the release of greenhouse gases plays an important role in these adver-
sities. Redressing to sustainable resource utilization as soon as possible
was formally agreed upon by 196 state representatives in the 2015 Paris
Agreement. In June 2021, the leaders of the Group of Seven reiterated
their commitment to the Paris Agreement and led a technology-driven
transition away from fossil fuels toward Net Zero (G7, 2021). At the
COP26 in Glasgow, the commitment to reach ~1.5 �C was reportedly
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‘kept alive’ and still considered a long-term goal. The collection of such
efforts to diversify the global economy from consumption of fossil fuels
toward renewable energy is widely known as the green energy transition.

Renewable energy sources are primarily categorized into hydroelec-
tric, wind, solar, and biomass. Meeting the Paris agreement's demand
requires a nine-fold increase, likely to be completed by wind and solar
energy (Baruch-Mordo et al., 2019). The production expansion of these
two renewable energy sources worries climate activists because it can
devastate the environment by changing landscapes and threatening en-
dangered species (Kiesecker et al., 2019). Currently, less than half of the
power production in Europe is from renewable sources. Biomass accounts
(R.C. Lim).
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for 60% of the renewable energy source (Camia et al., 2021). The pre-
dictions are that renewable energy in Europe will reach 70 % by 2030
(Goldman and Group, 2022). In the US, renewable energy production is
lower than the energy produced from fossil fuels and gas, approximately
12%. However, the energy generated from biomass is significant, sup-
plying the American market with slightly less than half of its renewable
energy consumption (EIA, 2021).

The benefit of biomass-derived energy over the others stands out
through its ability to use the waste from various industries, thus
contributing to a circular economy model. However, most biomass sub-
strates are heterogeneous and have an increased resistance to decom-
position. Hydrothermal biomass processing can transform biomass
substrates into valuable low-carbon fuels through liquefaction, gasifica-
tion, or carbonization. These methods can operate with different feed-
stock materials, catalysts additions, operating parameters, reaction me-
dium and conditions giving rise to a broad set of techniques (Mathanker
et al., 2021; Okolie et al., 2019; Sharma et al., 2020). The main incentive
for researching hydrothermal biomass processing conversion is its ability
to process mixed dry and wet feedstocks simultaneously. Water is used as
a reactant and has a positive impact on the environment. At high pres-
sures and temperatures, water reaches a subcritical or supercritical state,
depending on the process conditions. In this way, it substitutes the toxic
and environmentally harmful chemicals utilized in other conversion
processes.

Despite the benefits, the acceleration of the green energy transition
through this form of renewable energy is anticipated to affect other
economic sectors dependent on biomass as a rawmaterial. Large biomass
feedstocks, which are required to produce energy, strain the supply chain
by increasing resource demand, challenging the economic viability
(Gielen et al., 2019). Investigations on the indirect environmental impact
were attempted, with inconclusive results (Ingrao et al., 2019). For this
reason, hydrothermal processing technologies that can use multiple or
local feedstock sources would be sustainable.

Clarity concerning the operation methods, the environmental impact,
and raw material utilization requires an in-depth analysis of multiple
sources of innovation and technology status corroborated by a wide
range of stakeholders. Therefore, the question we aim to address in this
study is: which hydrothermal biomass technique is gaining traction that could
facilitate the process of the green energy transition?

A well-known theory implies that technology follows a cyclic move-
ment divided into four phases: an era of ferment, a dominant design, an
era of incremental change, and technological discontinuity. The domi-
nant design is the peak of a technique. It gains its supremacy over the
other phases through direct investment guided by policymakers and
regulators (Anderson and Tushman, 1990; Kalthaus, 2020). Innovation in
hydrothermal biomass can be found in various formats and can be used to
disclose the status of the technology. Indicators of innovation includes
patents, among others, such as R&D expenditure, human resources,
collaborative networks, surveys, or new product releases. Patent statistics
have been increasingly used to extract innovation patterns and conduct
technology forecasting studies (Dziallas and Blind, 2019; Wang and
Zhao, 2021). Therefore, patents represent a meaningful way to gain in-
sights on technological change and provide an output of innovation
measurements.

Nevertheless, not every patent document can be considered as input
into deriving this measurement form. There are many reasons behind a
patent filing, ranging from copyright protection, investment attraction,
an increase in company valuation, or an expressive hint of launching a
new product to the market. The cost associated with the application
under multiple jurisdictions can be correlated with the indication of high
interest and potentially significant investment in the field. Thereby,
patents filed under the Patent Cooperation Treaty (PCT) have an
increased chance of commercialization. An analysis of patent filings
covering international patent families for low-carbon energy showed that
the green energy overtook the fossil fuels in the early 2000s. A rapid
expansion was recorded until 2010, with a further accelerated trend until
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2013, followed by a slight drop and steady growth until 2019 (IEA,
2021). The PCT applications in renewable technologies followed the
same trend as international patent families for low-carbon energy. Re-
ported patent publications hit the highest number in 2012, at 4500 filings
from 830 in 2002, and stabilized to an average of 3000 published patents
per year until 2019 (Nurton, 2020).

Our study will focus on highly specific patent data filed under the PCT
related to hydrothermal and biomass. We deploy a methodology based
on traditional methods such as NLP algorithms to collate relevant inputs
from the patent claims section. Claims are the source of legal protection
against infringements and allow the owner the exploitation for a limited
period of time. In this way, we access the most valuable technical in-
formation. We then apply the principal component analysis (PCA) algo-
rithm to measure the innovation intensity for different techniques. We
articulate the innovation intensity of different techniques by using the
International Patent Classification (IPC) system, a hierarchical arrange-
ment centered on language-independent symbols (WIPO, 2019). We
transform the loading distance of the first two principal components
(PCs) from the PCA into magnitude of component loadings. Implement-
ing this algorithm aimed to gain insights into the data, which can help
funnel the techniques capable of answering the research question. We
provide background information concerning patent analytics in Section
2, then we describe the methodology in Section 3 and present the results
and discussion in Section 4.

2. Background for patent data analytics

The available tools vary, ranging from commercial subscription ser-
vices (e.g., Azure, Hana, Sisense, Neural Designer) to open source pro-
jects (Python and R libraries) (Saini et al., 2020). Technologies can be
explored, and the trends can be predicted through various natural lan-
guage processing (NLP) techniques and algorithm combinations.
Depending on the scope of study, some sections of the patent are pro-
cessed, while others are disregarded.

Patent bibliometric and semantic data was used as input and methods
involving citations (Wang et al., 2020), patent data vectoring (Aharonson
and Schilling, 2016), networks (Choi and Hwang, 2014), keyword
occurrence frequency (Yoon and Magee, 2018) were used to track
knowledge flows across time and regions, reveal a company patent
portfolio, conduct technological trend analysis and build topographic
maps for uncovering new technological opportunities. Technological
trends (Chanchetti et al., 2016) and emerging technology elements
(Moehrle and Caferoglu, 2019) were forecasted by using patent infor-
mation sections such as titles, abstracts and IPC codes. NLP methods such
as tokenization, part-of-speech tagging, and syntactic parsing were used
to build features for analysis and interpretation from patent claims sec-
tion (Han et al., 2017).

The latest developments in intellectual property analytics highlight
that most research focuses on artificial neural networks, backpropagation
learning methods, support vector machines, or conditional random fields
(Aristodemou and Tietze, 2018). Suominen et al. (2017) were able to
contrast companies' knowledge profiles by combining topic modeling
such as Latent Dirichlet Allocation (LDA) with network analysis. Zhu
et al. (2002) used PCA to produce conceptual indices to enhance infor-
mation retrieval and group related terms into conceptual clusters. In
another study, the PCA algorithm was used to generate key terms that
would represent the input for subsequent processing steps (Zhou et al.,
2019). Wu et al. (2016) combined three data mining techniques, namely
self-organizing maps (SOM), kernel principal component analysis
(KPCA), and support vector machine (SVM), to analyze patents and
predict their quality. SOM was used for clustering, and the results were
then used as input to KPCA to extract the main patent features from
patent documents. Subsequently, SVM was utilized to assess the classi-
fication quality of the patents.

Although substantial progress was achieved in this field, the methods
described so far do not measure the innovation intensity of different
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patented techniques. Clustering patents together will highlight the sim-
ilarity between documents; the use of titles, abstracts, and IPC codes
would only provide a brief overview of the techniques. The discovery of
emerging elements via semantic analysis does not indicate an industrial
transition, which is only used for improvement purposes. Understanding
company knowledge profiles is also beneficial, but it does not guarantee
that the technologies they patented are intensely researched. Methods
such as key term generation and classification quality assessment present
only a tiny fraction of the innovation areas and cannot be used in
assessing innovation intensity. As a progressive development, the
method presented in this article articulates the innovation intensity of
different techniques utilizing the magnitude of component loadings
derived from the PCA algorithm.

3. Methodology

Our methodology consisted of a step-by-step workflow (outlined in
Figure 1) to collate a patent dataset sample from the WIPO’s database,
PATENTSCOPE. The scope of the dataset was to capture high-impact
Figure 1. Details the processing workflow used to extract data for NLP analysis. The
the applicants’ names and builds the regional mapping.

3

patents that are more likely to contribute to the energy transition
rather than capture a high number of patents but with reduced relevance
and significance. Hence, a filter was applied to select patents published
under the PCT as applicants who filed PCT applications have the inten-
tion to commercialize the technique covered in multiple jurisdictions.
Furthermore, filtering for PCT applications ensured that we have only
selected one patent from a family of patents protecting a single invention,
as multiple patents are often filed to protect commercially valuable
patents in different jurisdictions. The search strategy, covering a broad
range with maximized precision, included the words hydrothermal and
biomass in the ‘Front-Page’ field, which is used to select patent filings for
the technological area of interest, i.e., hydrothermal biomass processing.
The word “processing”was not used as it is redundant given that it is well
understood that the word “hydrothermal” is an adverbial term for a
process. The resulted search string was "FP:(hydrothermal and biomass)
AND OF:(WO)" where “OF:(WO)” filters for PCT documents. The period
was defined between 2006 to 2020, where the initial year coincided with
the significant reform of the patent classification system implemented on
January 1, 2006.
green arrow path is used for PCA investigation. The blue arrow-sub path reveals
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Firstly, a total of 194 PCT documents were downloaded in ZIP format.
The IPC codes were also harvested from the HTML page located under the
PCT bibliographic data tab, during this step. The ZIP files contained the
TIFF images of the patent documents. The retrieved documents were
language checked, and several were discarded due to the use of lan-
guages other than English in the main body, indicating that not all PCT
documents are fully translated into English. The process resulted in a
dataset containing 108 PCT documents. Each of the TIFF images were
converted to text via optical character recognition. The bibliographic
metadata from the front pages containing the patent applicant, the filing
date, and the country of origin was extracted using NLP techniques. To
survey the applicant profiles, the metadata was then analyzed. We must
mention that some patents had designated applicants from different
countries. In this study, only the first applicant was considered when
analyzing country distribution. For example, if the first applicant is listed
as Shell US while the second applicant is listed as Shell Netherlands, only
Shell US was selected.

Secondly, the claims section extraction was performed using regular
NLP expressions. The documents had no identifiable section to define the
end of the claims. Hence, the text included sentences up to the end of the
patent document. These were removed in subsequent text cleaning.
Additionally, the text was lower-cased, abbreviations and single char-
acters were removed, and the whole text was spell-checked.

The next step included splitting the patent documents into three time
periods based on the patenting trends reported in green energy tech-
nologies. The first matrix comprised the period between 2006 and 2010.
The start of our selected period coincidedwith the year that major reform
of the patent classification was implemented by WIPO, on January 1,
2006. The end of this subset was in line with the change in the patenting
trend reported earlier for low-carbon energy patents (IEA, 2021). The
second matrix comprised of patents between 2011 and 2015. We chose
these years to contrast with the trends reported in the case of PCT ap-
plications for renewable technologies (Nurton, 2020). The end of the
data subset allows for capturing patents filed in 2013 with the 18 months
processing time for publication from being granted. The last matrix
contained patent data from 2016 to 2020. We selected this period to
capture the steady growth for low-carbon energy patents. The selected
patent date corresponded to the international filing date, which is the date
at which a patent document was submitted to a patent office. Where this
date was not available, the publication date was considered.

For each patent document, a matrix was built using unique single
words, called unigrams, as rows and IPC codes as columns. Each element
in the matrix represented the word count for the respective claim in the
patent document. Such a matrix can offer insights betweenwords and IPC
codes representing a given technique. Lastly, for each period all the
patent document matrices were merged. The elements from individual
matrices were treated as unique entries and were summed up.

In the next step, the PCA algorithm was applied to each of the three
matrices to obtain a metric as a measure for innovation intensity. PCA is a
mathematical algorithm that reduces the dimensionality of datasets
while minimizing information loss. It is a statistical tool to represent data
tables into smaller datasets for trends, clusters, and outliers’ purposes
(Shlens, 2014). The reduction is realized by transforming the matrix with
respect to a new system of coordinate axes called principal components
obtained using singular value decomposition. Principal components are
derived from the covariance matrix, a measure of the original matrix’s
correlation between the rows and columns. Eigenvalues associated with
each principal component are a measure of variance contained within a
given principal component. If the matrix is composed of values with
different scale units, it is necessary to normalize them (Legendre and
Legendre, 1998). In this case, normalization was not applied because we
used the same base units derived from counting the unigrams. From the
build of our matrix, IPC code for a technique under the technological
domain of interest is represented by a loading vector.

The scree plots for eachmatrix showed that two principal components
captured the most variation. Scree plot figures for each matrix are
4

available in the Supplementary material (Figures S5, S6, S7, and S8). As
such, the loadings contained two components called component load-
ings. The loading magnitude on a two-component axis was determined as
follows:

Loading magnitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Component Loading 12 þ Component Loading 22

p

(1)

The components of the loading vector are a measure of the signifi-
cance of the corresponding IPC code in the new principal components. As
such, we used the loadingmagnitude as a measure of innovation intensity
for the technique represented by the IPC code of the loading vector. The
magnitude can be understood as follows. A popular technique will make
use of similar words across multiple patent documents. The IPC codes are
the fields covering these techniques; hence similar patent documents will
be filed under the same classification codes. We obtained principal
component axes that capture themaximum amount of variance across the
dataset by applying PCA to our matrices. PCA biplots figures for each of
the matrices and the whole dataset is available in Supplementary mate-
rial (Figures S1, S2, S3, and S4).

Sincemany factors influence innovation, the loadings indirectly result
from these inputs. The loading magnitudes for each technique generated
from each period matrix were stacked in a bar chart, and the loadings
sharing the same IPC code were added on top of each other, resulting in a
cumulative weight. This loading magnitude is the innovation intensity
measured across all three periods of a given technique under an IPC code.
They were plotted on an x-y graph where loading magnitudes are
expressed on the y-axis, and the corresponding 139 IPC codes on the x-
axis (Figure 3). Loading magnitudes were also calculated for the subse-
quent PC 3 and PC 4 by extending Eq. (1) (see Supplementary material,
Eq. S1). Comparison between the technological landscaping using the
first two PCs, and the following two (PC 3 and PC 4) is available in the
Supplementary material (Figure S9).

4. Results and discussion

The PCT applications in this domain had a steady pace in the first
period, 2006 to 2010, with only 7 patents filed, followed by a rapid as-
cension, peaking at 68 patents in the 2011–2015 interval, and decreased
to 33 in the latest period, 2016 to 2020. In the following section, the
causes of these records are justified using the metadata details such as
patent applicants and regional mapping. Additionally, this is corrobo-
rated with the focus of the discussion, the innovation intensity of
different techniques found. Based on the loadingmagnitudes, four groups
of techniques became apparent. We positioned these groups within the
technological life cycle of hydrothermal biomass processing.
4.1. Patent applicants and regional mapping

From the patent dataset sample, 38 entities were identified as appli-
cants, which included private companies, universities, and private in-
dividuals. Between 2006 and 2020, Shell Oil Company led the sector
with a total of 48 patents, amounting to 44.4% of the data. The following
highest applicant by patent numbers was ExxonMobil Research and En-
gineering with 6 patents. Csl Carbon Solutions Ltd had 4 patents in the
dataset like Battelle Memorial Institute. The rest of the applicants had
either 1 or 2 patent applications. A graphic representation including
names of applicants, the number of patents, and the region they filed in is
shown in Figure 2. The regional filing of patents helps understand the
market dynamics with regards to technology and innovation incentives.
We can see that our dataset captured patents filed in multiple jurisdic-
tions, a show of widespread support through policies and investment.
69% of the data was filed in the US, but this number is partly due to Shell
Oil Company being considered a US entity only. Shell Oil Company
accounted for 44.4 % of the patent data sample. Nonetheless, the chart
shows that inventors from different regions are working on the



Figure 2. Is a breakdown of the region of filing for the patent dataset. Surrounding the figure are the patent owner names. The bars are a measure of the number of
filings per inventor, where 0 to 50 is the guidance scale. The independent inventor names are available in Supplementary material, Table S1.
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technology, hence diversifying the techniques. From an NLP standpoint,
the dataset diversity is encouraging since it includes a varied lexicon.
This adds up to the quality and multiplicity of the data, resulting in a
balanced assessment of innovation intensities.

4.2. Assessment of innovation intensity

Loadings having a high weight result from significant efforts being
absorbed, meaning innovation intensity is considerable. On the other
hand, a low loading magnitude can be due to knowledge spillover and is
attributed to the IPC code hierarchy or exploration of new technological
avenues. Similarities between loading magnitudes and time group
sharing allowed for further categorisation, resulting into four clusters for
the different techniques: dormant, intense, emerging, and exploratory
(Figure 3).
5

Dormant techniques are represented by loadings in the first period
with magnitudes less than 0.5 weight units. These loadings showed no
additions in the subsequent time groups. The IPC codes covered by this
type of research comprised of improvements on traditional fuels, such as
charcoal and fermentation processes (see Table 1), which are considered
declining industries.

C08H 5/02 and C08H 5/04 are IPC codes that underwent a reclas-
sification due to the constant development of the technology. This sig-
nifies a shift in the approach taken and regular review of the
classification system by WIPO to assess the green innovation techniques.

Intense techniques are IPC codes with loading magnitudes of more
than1.5weightunitsandsharedacrossmultipleperiods (seeTable2).These
techniques are associated with mature technology which can be due to
policies, investment,andknowledgeaccumulation,a theoryweexplainedin
the introduction section (Anderson and Tushman, 1990; Kalthaus, 2020).



Figure 3. Illustrates the technological landscaping and the assessment of innovation intensity. The stacked bars were generated using PC 1 and PC 2 according to Eq.
(1) from each subset of the patent dataset. The weight of the loadings is measured in a dimensionless unit.

Table 1. Highlights the IPC codes and dormant techniques.

Dormant techniques

IPC code Summary based on description found in the IPC database

C08B 1/00
C08B 37/14

Production of cellulose and hemicellulose
through fermentation processes.

C08H 5/02
C08H 5/04

Macromolecular compounds derived from lignin or
lignocellulosic materials.
Reclassified due to technical development in the 2010 version.

C10G 1/04
C10G 2/00

Production of hydrocarbon involving steam equipment.

C10L 9/00
C10L 9/02

Improvement of traditional solid fuels properties.

C12P 1/00 Stimulated fermentation with the use of different enzymes.

Table 2. Lists the IPC codes identified under the intense area of research.

Intense techniques

IPC code Summary based on description found in the IPC database

C10G 1/00 Separation of hydrocarbons into useful oils by processes such
as hydrogenation with moving catalysts.C10G 1/06

C10G 1/08

C10G 3/00
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Analysis of techniques under this group revealed interest in the effi-
cient exploitation of biomass through process improvements and opti-
mization. For example, applicants are interested in exploiting work
related to pre-treatment of the biomass in the form of fatty amines by
exposing it to a catalyst comprising rare earth oxide, alkali oxide, or
alkaline earth oxide (Roberts et al., 2014). Exploration in this area
showed that average bio-crude yields for lignocellulosic and macroalgae
biomasses in hydrothermal processes without catalysts and water as
solvent reached 26.9 wt.% and 17.5 wt.%, respectively.

Due to the hydrothermal pathways of the carbohydrate-rich sub-
strates, the application of catalysts is known to improve bio-crude yields.
Applying strong alkaline solutions neutralizes the pH and inhibits the
6

formation of organic acids, thus hindering the repolymerization re-
actions. After applying alkali catalysts to lignocellulosic substrates, bio-
crude yields increase by 50 units–135 wt.% (Haarlemmer et al., 2016;
Hu et al., 2020; Zhang et al., 2018).

Another topic included “the removal of chlorine and phosphorus/
removal of metal and its anions from cellulosic biomass prior to catalytic
hydrogenation/hydrogenolysis/hydrodeoxygenation” (Powell and Chheda,
2015). Regardless of the substrate, high bio-crude yields can also be
achieved by metal-based catalysts. Their presence activates the H2 mol-
ecules and favors hydrodeoxygenation (De et al., 2015).

Specific techniques covered by IPC codes in Table 2 include the
following:

� A system using concentrated thermal energy from focused high beam
energy to provide sufficient energy for driving the hydrothermal
liquefaction of biomass to bio-crude oil;

� An improved hydrothermal liquefaction system with separations ef-
ficiencies higher than conventional processes;

� Partial removal of water from biomass prior to hydrothermal
treatment;

� Methods of feeding the reactor, such as a horizontal or an inclined
surface;

� Promoting hydrogen gas distribution in the presence of a digestion
solvent and slurry catalyst;

� Pretreatment of the biomass in the form of fatty amines by exposing it
to a catalyst comprising rare earth oxide, alkali oxide, or alkaline
earth oxide;

� Integration of a reactor unit with a catalyst reduction unit;
� Methods of separation of cellulosic fine via centrifugation within the
processing loop;

� A step involving subcritical temperature to extract specific compo-
nents followed by supercritical treatment of the remainder to produce
bio-oil from algae biomass;

� System comprising two heating units to facilitate biomass conversion.

Emerging techniques - Stacked loadings of magnitudes up to 1.5
cumulative weight that showed interest in the last two periods defines
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emerging techniques. Six IPC codes and corresponding techniques were
discerned (see Table 3). They have high cumulative weights, but their
industrial applications have yet to make it mainstream. Furthermore,
adopting these techniques on a larger scale competes with the estab-
lished, mature techniques.

Analysis of the patents revealed process-related inventions. For
example, the inventions protected relate to “subjecting the biomass to an
oxidation process followed by supercritical water gasification or liquefaction”
(Ozdenkci and Koskinen, 2017). Studies have shown that water at su-
percritical conditions, such as 400 �C and 350 bars, achieves complete
deoxygenation, favoring liquefaction at the expense of gasification. The
ionic product remains unchanged under these operating conditions
compared to lower operating parameters reported in academic literature,
such as 350 �C and 250 bars. Under these conditions, the process is still
energy efficient, primarily because of the heat capacity and the low
compressibility of liquids (Castello et al., 2018).

Techniques under the emerging area also covered topics related to
multiple processing steps. Understandably, since the biochemical compo-
sition of biomass varies depending on the substrate. As such, it is intuitive
to target processes that address attaining specific compounds. Specifics of
the techniques covered by IPC codes in Table 3 also include the following:

� Flash cooling a dilute acid hydrolysis reaction of a biomass feedstock;
� A continuous feeding of the hydrothermal reactor;
� A microwave-assisted hydrothermal conversion;
� An introduction of water under pressure in a reactor set up to facili-
tate the C5 sugar release;

� The use of a slurry catalyst capable of activating molecular hydrogen
in a hydrothermal digestion process;

� The generation of fuel gas by hydrothermal carbonization followed by
another step of hydrolysate catalysis;

� Production methods of biogas and bio-oil of the extractant process in
the hydrothermal reactor;

� Hydrothermal carbonization with water recirculation;
� Hydrothermal carbonization using catalysts;
� The conversion of biomass such as coal or humic substance into
cement additive;

� Hydrothermal treatment to convert biomass in the presence of pH
buffering agent and supported hydrogenolysis catalyst with various
chemical compositions;

� A combined system (hydrothermal liquefaction and catalytic hydro-
thermal liquefaction) to convert biomass into bio-oils and aqueous
effluent for further processing;

� A design of a system that uses solar thermal energy to conduct the
hydrothermal process.
Table 3. Shows IPC codes and emerging techniques.

Emerging techniques

IPC Code Summary based on description found in the IPC database

B01J 3/00 Physical or chemical process or apparatus using sub-atmospheric
or super-atmospheric pressure to change chemical or physical
properties.

C10L 3/08 Production of synthetic natural gas.

C10L 9/08 Production of synthetic natural gas by heat treatment (e.g.,
calcining).

C12P 19/02 Fermentation or enzyme-using processes to synthesize a desired
chemical compound or composition or to separate optical
isomers from a racemic mixture.
Preparation of compounds containing saccharide radicals
(ketoaldonic acids C12P 7/58) - Monosaccharides.

C12P 7/10 Preparation of oxygen-containing organic compounds, substrate
containing cellulosic material.

C13K 1/02 Sugar industry - saccharides obtained from natural resources or
by hydrolysis.
Glucose-containing syrups, obtained by saccharification of
cellulosic materials.
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Loading magnitudes having weight values of less than 1.5, occurring
in only one period, were considered part of the catchment area, resulting
from the shared concepts of the IPC codes. The patent examiners decide
the relevant IPC codes for classification during the filing process. How-
ever, a technology can have multiple applications. Hence examiners
allocate multiple IPC codes to one patent. This indicates that a single
patent can cover multiple techniques.

Exploratory techniques are represented by loadings with magni-
tudes between 0.2 and 0.5 in the last period, between 2016 and 2020.
Innovation intensities for these techniques are low, and their de-
velopments are still at the infant stage. This area of interest can be an
outcome of aligning techniques with commercial and social demands. It
supports the circular economy concept, in which the sewage feedstock
derived from wastewater treatment plants can be paired with hydro-
thermal processes, thus, minimizing energy use and contributing to
sustainable resource allocation (Fan et al., 2021; Mikul�ci�c et al., 2021).
Additionally, from a performance perspective, municipal sludge sub-
strates showed similar heat recovery rate values when used in
continuous-flow reactors (Anastasakis et al., 2018). Table 4 summarises
the IPC codes classified under this group.

Low weight magnitude loadings, such as those below 0.2 weight units
seen in the last period, can be associated with the mid-range loadings in
the same period. One explanation is due to their hierarchy association to
IPC codes and targeting similar trends in demand.

4.3. Further discussion

The method applied in this study showed that hydrothermal biomass
conversion is done through various techniques. We placed them into four
groups based on their publication times and the loading magnitudes. The
method is unique on its own through the interpretation of the PCA al-
gorithm but also in this subject area. As far as we know, no one inves-
tigated the “hydrothermal biomass” processing at a patent level.

During the analysis it was noted that Shell Oil Company accounted for
a significant number of patents in the dataset. These were part of the
matrices covering the periods between 2011 to 2015 and 2016 to 2020. A
side analysis determined that the impact of this cluster of patents on the
PCA results does not change the overall trend, instead it can provide
additional information from a reduced data perspective. Analysis results
are available in the Supplementary material (Figures S10, S11, S12, S13,
and S14).

The patenting trends we identified mirror the evolution of scientific
publications across time for biomass as a renewable energy source. A
total of 10000 articles were retrieved between 2000 and 2019 from the
Web of Science database. Publication numbers in the early 2000s were
below 100, increasing to almost 800 in 2019, with a rapid ascent between
2010 and 2017. Authors in the US are significant contributors to the field,
whereas other regions such as China and Western Europe also made
important contributions (Ferrari et al., 2020).

The analysis methods used by other authors focused on bibliometric
studies and classic literature reviews. Authors that conducted biblio-
metric analyses targeted specific techniques such as thermochemical
conversion, hydrochar and bio-oil, and hydrothermal liquefaction, which
was a scope narrower than our search criteria. With reference to the
thermochemical conversion of biomass it is found that keywords such as
gasification, pyrolysis and combustion are frequently used.
Table 4. Lists the IPC codes and exploratory techniques.

Exploratory techniques

IPC code Summary based on description found in the IPC database

C02F 11/04
C02F 11/10

Treatment of sewage communal water to obtain methane
gas using processes such as pyrolysis.

C10L 5/40
C10L 5/42

Obtaining solid fuels from materials of non-mineral origin,
such as animal derived origin.
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Thermochemical biomass studies are deliberated to a greater extent than
biochemical conversion studies (Osman et al., 2021).

Research of techniques to convert biomass into hydrochar and bio-oil
found that most cited articles are about the chemical and structural
properties of solid residues (610 citations at an article published in 2009),
followed by processing of municipal waste (230 citations at an article
published in 2011) and solid residues resulted from processing of ligno-
cellulosic materials (216 citations at an article published in 2012) (Mikhail
et al., 2020). The top 20 most cited research articles were from 2010 to
2014. Hence, we deduce that they are an essential contributor to the
knowledge at their time of publication. This could explain why we had the
highest number of patents in our dataset during the 2011 to 2015 period. It
is in this period that we grouped the intense and the emerging techniques.

Bibliometric analyses of research related to hydrothermal liquefac-
tion revealed that studies between 2015 and 2021 focused on optimizing
process parameters through surface methodology or application of ma-
chine learning algorithms (Sahoo et al., 2021). Interestingly, under our
search criteria, no patents that contain claims on artificial intelligence
were filed or published. It is usually the case that when technology has
multiple applications, multiple IPC codes are assigned to that patent, and
our search criteria should have also captured those with applications in
hydrothermal biomass processing.

In another bibliometric study, it was reported that catalysts are thor-
oughly researched for cost improvement purposes. Among “catalysts”,
feedstocks such as “algae,” “food waste,” and “sludge” have a high
occurrence frequency in recent years (Yang et al., 2021). The use of grown
for purpose and waste feedstock represents a shift from
lignocellulosic-based biomass toward a circular economy model and sup-
ports the techniques grouped under the exploratory techniques. Conversion
process evaluation focuses on reaction conditions for yield improvements.
However, it is unclear which technique is of most interest in the literature.
From a patent perspective, the IPC allowed us to categorize with a certain
degree of confidence, therefore we gained more precise insights.

Recent literature reviews reported that technologies for biofuel pro-
duction composed of thermo-bio-chemical processes and biomass com-
bustion via coal-fired technologies are emerging. Bio-chemical conversions
such as anaerobic digestion, fermentation esterification, and photo
fermentation are also reportedly studied. Studies in biophotolysis, photo-
fermentation, dark fermentation, and hybrid systems for bio-hydrogen
production are considered emerging (Ambaye et al., 2021). Currently, in
international patents, we do not identify protection covering these tech-
niques. Instead, under the emerging techniques, some areas, such as mi-
crowave co-processing are a topic of interest to current inventors.

From a hardware processing perspective, batch reactors dominate the
scientific research studies, while continuous processing is encouraged.
Studies investigating slurry viscosity and its control through catalysts
addition such as ammonia or carboxymethyl cellulose have attracted
attention. Evidence of this research in our study is found under the intense
techniques. Scientists are still to find solutions posed by environmental
issues associated with the biomass volumes required to facilitate this
green energy transition. High-density biomass is preferred to lignocel-
lulosic feedstocks, and waste streams are recommended for further
studies. Additionally, downstream process capabilities also experience
development deficiencies, with pain points such as product filtration,
that are economical and time-efficient, and hydrothermal conversion
techniques that are suitable for large-scale operations (Filipe et al.,
2020). From our patent dataset, we understand that continuous tech-
nologies are intensely researched, and downstream technologies are
emerging, such as methods of feeding the reactors and purification steps
combined with the conversion techniques.

4.4. Limitations and future work

i. It is yet unclear if patenting in this domain carries an anti-patent
culture or is considered as important as other industries, where
they have a pro-patents view (e.g., pharmaceutical or chemicals).
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Some strategies involve focusing on first-mover advantages and lead
time, while others might prefer secrecy (Scherer, 2014). Vimalnath
et al. (2020) found that green innovators engage in semi-opened and
closed IP strategies, and no fully open IP strategy has come to light
yet. Thus, some innovations might not have been captured in this
dataset analysis for those reasons.

ii. The arbitrary choice of loading magnitudes gives another limitation for
deriving the four life cycle groups. User interaction with domain
knowledge was necessary to position the technologies within the
respective groups. A classificationmethodwould be beneficial for auto-
matic categorization,perhapsbasedonthe informationentropyconcept.

5. Conclusion

The green energy transition is an ongoing process and can be accel-
erated through a technology-driven approach. Hydrothermal biomass
conversion is a contender to support these efforts through the use of
renewable energy feedstocks. In addition, this type of energy transition
could mitigate the environmental impact of other renewable energy
sources while creating a circular economy system. However, under-
standing the methods, the environmental impact, and raw material uti-
lization was necessary at the industrial level through insights into the
past and upcoming trends. Using PCT patents, we identified technology
developments at different rates. The variation in progression implied the
need for a differentiation scheme.

Using the PCA algorithm to determine the loading magnitudes, we
categorized the techniques into dormant, intense, emerging, and exploratory.
Based on this dataset and the resulted groups, we established that tradi-
tional fermentation processes and improvements of traditional fossil fuels,
which fall under the dormant techniques, have little commercial interest. In
the next group, patents under the intense techniques focused on improving
process efficiency, highlighting the need to drive the innovation into scale-
up and lower the production costs. Possible ways of achieving these targets
refer to continuous processes and economical reactor designs. Emerging
techniques focus on producing synthetic gas, using multiple processing
steps to harvest multiple compounds, and using solar energy to power the
hydrothermal processes. These techniques are in alignment with the car-
bon neutrality set by the Net Zero state. Lastly, the exploratory techniques
are going even further in achieving Net Zero by creating a circular econ-
omy system through the use of sewage communal water and conversion of
animal-derived materials into solid fuels.

Data under this group also supports the need to reduce the stress on the
supply chain by implementing locally sourced feedstock. Four applicants
were identified as protecting their techniques under the emerging group,
two universities and two commercial companies located in three different
regions. In conclusion, the green transition supported by hydrothermal
biomass processing could see an early implementation of techniques
described by the intense group with a shift later on toward those in the
emerging and exploratory groups, which are gradually gaining traction.
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