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Abstract: The structural analysis of biological networks includes the ranking of the vertices based on the connection struc-
ture of a network. To support this analysis we discuss centrality measures which indicate the importance of vertices, and 
demonstrate their applicability on a gene regulatory network. We show that common centrality measures result in different 
valuations of the vertices and that novel measures tailored to specifi c biological investigations are useful for the analysis of 
biological networks, in particular gene regulatory networks.
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Introduction
The interaction of biological entities such as genes, proteins and metabolites is of great interest in life 
science research and is increasingly important for systems biological approaches (Oltvai and Barabási 
(2002); Kitano (2002)). The interplay of different interactions is often represented by biological networks 
such as gene regulatory, protein interaction and metabolic networks. To investigate these complex and 
large networks different network analysis methods have been developed or employed from other fi elds 
of sciences (Junker and Schreiber (2008)). Centrality analysis, the ranking of network elements used 
to identify interesting elements of a network is one of these methods (Koschützki et al. (2005)). It is 
particularly useful to identify key players in biological processes. For example, it has been shown that 
highly connected vertices in protein interaction networks are often functionally important and the 
deletion of such vertices is related to lethality (Jeong et al. (2001)). Wuchty and Stadler applied three 
different types of centralities to metabolic, protein interaction and domain sequence networks (Wuchty 
and Stadler (2003)). Fell and Wagner discuss the possibility that metabolites with highest degree (i.e. 
highest number of connections) may belong to the oldest part of the metabolism (Fell and Wagner 
(2000)). However, it has also been shown that the degree of a vertex alone, as a specifi c centrality 
measure, is not suffi cient to distinguish lethal proteins clearly from viable ones (Wuchty (2002)), that 
in protein networks there is no relation between network connectivity and robustness against amino-
acid substitutions (Hahn et al. (2004)), and that for biological network analysis several centrality 
measures have to be considered (Wuchty and Stadler (2003); Koschützki and Schreiber (2004)).

To assist scientists in the exploration of biological networks, we discuss and compare different cen-
trality measures. Some of them are already known in biological sciences, others are transferred from 
different fi elds of sciences such as social network analysis. We also show that it is useful to consider 
biological knowledge in network analysis and discuss motif-based centralities which have been spe-
cifi cally developed for gene regulatory networks.

Graphs and Centralities
A network is an informal description for a set of elements with connections between them. In a formal 
way a network is modelled as a mathematical object called graph. A directed graph G = (V, E) consists 
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of a fi nite set V of vertices and a fi nite set E ⊆ V × V 
of directed edges. An edge e = (u, v) connects two 
vertices u and v and is directed from u to v. The 
vertices u and v are said to be incident with the 
edge e and adjacent to each other. The set of all 
vertices which are adjacent to a vertex u is called 
the neighbourhood N(u) of u.

The degree d(v) of a vertex v is the number of 
its incident edges. Let (e1,…,ek) be a sequence of 
edges in a graph. This sequence is called a walk if 
there are vertices v0,…,vk such that ei = (vi−1,vi) 
for i = 1,…,k, that is the end vertex of an edge ei is 
the start vertex of an edge ei+1. If all edges are 
pairwise distinct and all vertices are pairwise dis-
tinct the walk is called a path. The length of a walk 
or path is given by its number of edges. A shortest 
path between two vertices u, v is a path with 
minimal length. The distance dist(u,v) between two 
vertices u, v is the length of a shortest path between 
them. If no path exists between two vertices u, v, 
then the distance dist(u,v) is undefined. Two 
vertices u, v of a graph are called strongly connected 
if there exists a walk from vertex u to vertex v. 
If any pair of different vertices of the graph 
is strongly connected, the graph is called strongly 
connected.

A subgraph of the graph G = (V,E) is a graph 
Gs = (Vs,Es) where Vs ⊆ V and Es ⊆ E∩(Vs × Vs). 
Two graphs G1 = (V1,E1) and G2 = (V2,E2) are iso-
morphic if there is a one-to-one correspondence 
between their vertices, and there is an edge directed 
from one vertex to another vertex of one graph if 
and only if there is an edge with the same direction 
between the corresponding vertices in the other 
graph.

Small recurring subgraphs within a given graph 
are called motifs (Milo et al. (2002)). A motif M is 
a directed graph. A match GM of a motif M in a 
graph G is a subgraph of G which is isomorphic to 
the motif M. The motif match set MSG of a motif 
M is the set of all matches of M in the graph G. 
Figure 1 shows a motif and two matches of the 
motif in a graph.

Centralities in networks
Formally a centrality is a function C which assigns 
every vertex v of a graph a numeric value C(v). As 
we are interested in the ranking of the vertices of 
the given graph G we choose the convention that 
a vertex u is more important than another vertex v 
if and only if C(u) > C(v).

In the following sections we explain different 
centrality measures and show an example graph and 
the corresponding centrality values. We restrict our 
analysis to centrality measures which have been used 
to analyze biological networks or are used in our 
study in the second part of this paper. A comprehen-
sive overview of different centrality measures was 
published in (Koschützki et al. (2005)).

Degree centrality
An obvious order of the vertices of a graph can 
be established by sorting them according to 
their degree. The corresponding centrality measure 
degree-centrality is defi ned as Cdeg(v) = d(v). For 
directed networks two degree centralities, the 
in-degree centrality (considering only ingoing 
edges) and the out-degree centrality (considering 
only outgoing edges), exist. Degree centrality is a 
local centrality measure: only the immediate 
neighbourhood of the vertex of interest is 
considered. Degree can be computed for all kinds 
of networks. See the work of Freeman (1979) for 
a list of references to the usage of degree-centrality 
in social network analysis. For biological network 
analysis degree centrality has been applied in 
numerous situations. For example, it is used by 
Jeong et al. (2001) to correlate the degree of a 

Figure 1. A motif and two matches of the motif in a graph.
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protein in the network with the lethality of its 
removal. Another study by Hahn and Kern (2005) 
compared three centralities (degree, closeness and 
betweenness) for the identifi cation of essential 
proteins in three different organisms: Saccharomy-
ces cerevisiae, Caenorhabditis elegans, and Dro-
sophila melanogaster. In all three networks and 
for all three centralities it was shown that the mean 
centrality value for essential proteins is signifi -
cantly higher than the centrality value of nones-
sential proteins.

Closeness centrality
Closeness-centrality uses information about the 
length of the shortest paths within a network; it 
uses the sum of the minimal distances of a vertex 
to all other vertices. The closeness-centrality is 
defi ned as the reciprocal of this sum: Cclo(u) = 
1/( ( , ))Σ v V dist u v∈ . As the distance between vertices 
is only defi ned for pairwise strongly connected 
vertices this centrality can only be applied to 
strongly connected networks. Closeness-based 
centrality has been used in different studies. 
Wuchty and Stadler (2003) apply this centrality to 
different biological networks and show the cor-
respondence with the service facility location 
problem. According to a slight modifi cation of the 
closeness centrality 8 of the top 10 metabolites of 
the metabolic network of E. coli are part of the 
glycolysis and citrate acid cycle pathways (Ma and 
Zeng (2003)).

Radiality and integration
Similar to the closeness measure are the centralities 
radiality and integration introduced by Valente and 
Foreman (1998). The computation of both cen-
tralities is based on the reverse distance matrix 
which is defi ned on the basis of the distance matrix 
D = (dist(i, j)). The reverse distance matrix RD is 
defi ned as RDij = diameter(G) + 1 – Dij, where 
diameter(G) is the diameter, the highest distance 
value, of the graph. On the basis of this matrix RD 
radiality is defi ned as Crad(i) = ( )Σ i j ijRD≠ /(n−1) 
and integration is defi ned as Cint(j) = ( )Σ i j ijRD≠  / 
(n−1).

A vertex with a high radiality value can easily 
reach other vertices. A vertex with a high integration 
value is easily reachable from other vertices. 
Similarly to closeness both radiality and integration 
are shortest path based measures. In contrast to 
closeness which can be only computed for strongly 

connected networks, radiality and integration can 
also be computed for weakly connected or even 
unconnected networks.

Shortest path betweenness centrality
Shortest path betweenness centrality quantifi es the 
ability of a vertex to monitor communication 
between other vertices. Every vertex that is part of 
a shortest path between two other vertices can 
monitor communication or fl ow between them. 
Counting how many such communications a vertex 
may monitor leads to an intuitive defi nition of a 
centrality: a vertex is central if it can monitor many 
communications between other vertices. In the 
following let σst denote the number of shortest 
paths between two vertices s and t, and let σst(v) 
denote the number of shortest paths between s and 
t that use v as an interior vertex. The rate of com-
munication between s and t that can be monitored 
by an interior vertex v is denoted by δst(v) = σst(v)/
σst. If no shortest path between s and t exists we 
set δst(v) = 0. The shortest path betweenness cen-
trality (Freeman (1977)) is defi ned as Cspb(v) = 
Σ Σs v V t v V st v≠ ∈ ≠ ∈ δ ( ).

There are several studies investigating shortest 
path betweenness in biological networks. For an 
S. cerevisiae protein interaction network it was 
reported that proteins with a high betweenness 
centrality value cover a broad range of degree 
centrality values. In particular, proteins with a high 
betweenness and low degree value (HBLC, high 
betweenness low connectivity proteins) are 
prominent as they are supposed to support 
modularization of the network (Joy et al. (2005)). 
Shortest-path betweenness centrality was applied 
to mammalian transcriptional regulatory networks 
and it was noted that betweenness appears to be an 
interesting topological characteristic in regard to 
the biological signifi cance of distinct elements 
(Potapov et al. (2005)).

Katz status index and PageRank
For the analysis of gene regulatory networks dis-
cussed in the second part two further centralities 
can be applied: the status index defi ned by Katz 
(1953) and the PageRank centrality (Page et al. 
(1998)) which is the algorithmic method behind 
the search engine Google. Both centralities are best 
described as computations performed on the adja-
cency matrix accompanied to the graph of interest. 
As we focus on the result of different centralities 
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and their comparison we skip a lengthy formal 
defi nition here and refer to the literature for details 
(Katz (1953); Page et al. (1998); Koschützki et al. 
(2005); Koschützki (2008)).

Motif-based centralities
Given a graph G, a motif M and the corresponding 
motif match set MSG a centrality can be defi ned. 
The motif-based centrality Cmb assigns to every 
vertex v the number of matches the vertex v 
occurs in (Koschützki et al. (2007)). For example 
the vertex v01 in the graph shown in Figure 2 
occurs in two matches of the FFL motif shown 
in Figure 3. Therefore Cmb(v01) = 2. Two 
extensions of this centrality exist: motif-based 
centrality with roles and motif-based centrality 
with classes.

Vertices of motifs may represent different func-
tions. For example, in the gene regulatory network 
context three different functions of the vertices of 
the feed forward loop (FFL) motif as shown in 
Figure 3 can be identifi ed: (1) the vertex at the top 

is the master regulator, this vertex regulates the 
other two vertices; (2) the vertex on the right 
side is the intermediate regulator, it is regulated by 
the master regulator and itself regulates together 
with the master regulator the vertex at the bottom; 
and (3) the vertex at the bottom of the drawing is 
regulated by both other vertices and is therefore 
called the regulated vertex. Such different functions 
of vertices within motifs are called roles and three 
roles can be assigned to the vertices of the FFL 
motif. The motif-based centrality with roles Cmbr 
restricts the number of counted matches to those 
matches where the vertex occurs in the match with 
the role under consideration; see Koschützki et al. 
(2007) for details.

Using the previously introduced concepts we 
can extend the motif-based centrality method 
further. By assigning the same role to similar 
vertices of a group of similar motifs we can estab-
lish a centrality based on a class (or group) of 
motifs. Consider, for example, a group of chains 
(see Fig. 4), where all vertices at the start of such 
chains have a similar characteristic (no incoming 

Figure 2. An example graph used to explain different centrality 
measures.

Figure 3. The FFL motif with roles.

Figure 4. Several motifs of the chain motif class.
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edges) and all vertices at the end have another 
similar characteristic (no outgoing edges). For gene 
regulatory networks several motif classes are 
known. For example, the regulatory chain motif 
class, as in the example above, consists of a set of 
chains of three or more regulators in which one 
regulator regulates another regulator, which in turn 
regulates a third one and so forth (Lee et al. 
(2002)). In the motif class single input motif (SIM) 
a set of vertices is exclusively regulated by a single 
vertex (Shen-Orr et al. (2002)). The motif-based 
centrality with classes Cmbc therefore is the sum of 
motif-based centralities with roles Cmbr for the 
same role in similar or related motifs.

Several motifs have been studied in all kinds of 
biological networks. The best studied motif is the 
FFL motif which functional properties have been 
analyzed in detail theoretically and experimentally 
especially in gene regulatory networks (Mangan 
and Alon (2003); Mangan et al. (2003); Shen-Orr 
et al. (2002); Wall et al. (2005)). However, in these 
approaches only the occurrence of motifs is con-
sidered but motifs are not used to rank the genes.

Different motifs occurring in a human cellular 
signalling network were analysed by Awan et al. 
(2007). They discovered that genes which are 
related to cancer are enriched in the target vertices 
of several motifs and that cell mobility genes are 
enriched in the source vertices of motifs. For a gene 
regulatory network of E. coli Wang and Purisima 
(2005) discovered, that transcript with short half-
lives are enriched in motifs, especially in SIMs, 
FFLs and bi-fans.

Example graph and centralities
Figure 2 shows a small example graph and the 
corresponding Table 1 shows the centrality values 
for the centralities that are applicable to this 
graph.

Analysing Gene Regulatory 
Networks with Centralities
The applicability of specifi c centrality measures 
for the investigation of biological networks 
depends on the type of the particular network, and 
depending on the type of the network different 
centrality measures are used. Here we focus our 
analysis on gene regulatory networks.

As an example, we analyze centralities 
within the gene regulatory network (GRN) of 

Escherichia coli. The network is based on the data 
of transcriptional regulatory interactions of genes 
from RegulonDB, Version 5.5 (Salgado et al. 
(2006)). Genes are represented by vertices and 
transcriptional regulatory interactions between 
genes are modelled as edges, a common approach 
to model GRNs. The interactions between genes 
represent transcriptional control of transcription 
factors on the transcription of regulated genes. There 
are a few cases where transcription factors are 
formed by subunits of different gene products. They 
are here replaced by a common identifi er which 
corresponds to the transcription factor, e.g. ihfA or 
ihfB result in ihfAB. The regulatory interactions of 
such different subunits are assigned to this new 
identifi er, and parallel edges which occurred due to 
the previous operation are replaced by a single edge. 
The resulting network consists of 1250 vertices and 
2515 edges. In gene regulatory networks genes at a 
high level within the hierarchy of regulatory control 
are of particular interest due to their far reaching 
infl uence on other genes within the network. These 
genes are commonly called global regulators. Some 
criteria for the characterization of global regulators 
have been proposed, such as the number of regulated 
genes, the number and type of co regulators, the 
number of other regulators they control, the size 
of their evolutionary family, and the variety 
of conditions where they exert their control 
(Martínez-Antonio and Collado-Vides (2003)).

Comparison of different centralities 
for GRN
In this section, we compare different centrality 
measures that can be applied to GRNs. As GRNs 
are directed graphs that are not necessarily strong 
connected only the centralities degree, shortest-
path betweenness, integration, radiality, Katz status 
index, PageRank and the different motif-based 
centralities can be applied. The centralities 
PageRank and Katz status index are sensible to the 
directionality of the edges and therefore we con-
sider two variants of the graph, the original graph 
and the graph with all edge directions reversed.

The top 25 genes (top 2% of all genes) accord-
ing to the eight best centrality measures (i.e. the 
centrality measures which identify the highest 
number of global regulators within the top 2% of 
all genes) are shown in Table 2. In total 18 global 
regulators have been identified by Martínez-
Antonio and Collado-Vides (2003). All different 
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centrality measures shown in Table 2 are able to 
identify more than 50% of the global regulators 
within the top 2% of the ranked genes. For exam-
ple, shortest path betweenness fi nds 11 global 
regulators and motif-based centrality with the chain 
motif class is able to identify 15 global regula-
tors.

It should be also noted that for nearly all 
centrality measures the top 5 positions are occu-
pied by global regulators. However, all cen-
tralities result in different rankings even for 
global regulators which are often ranked very 
high. For example, the gene ihfAB is ranked 
either very high at the second position (e.g. 
radiality, PageRank) or not even under the top 
25 genes (shortest path betweenness). Radiality 
ranks similar to the motif-based centrality with 
the chain motif class (short chain centrality) but 
even in this short list differences are visible. For 
example, the global regulator fur ranked on 

position 8 (radiality) is ranked on position 18 by 
the chain centrality.

Correlation coeffi cients are a valid measure to 
show that centralities do not coincide. Table 3 
shows the pairwise Kendall’s correlation coeffi -
cients for the centralities used in Table 2. From 
these centralities only a few correlate with a coef-
fi cient above 0.9 to other centralities. These are 
out-degree, PageRank, Katz status index, radiality 
and the motif-based centrality with chain classes 
(chain). The centralities based on the FFL motif 
and shortest-path betweenness do correlate only 
with correlation coeffi cients less than 0.9 to other 
centralities.

For the fi ve centralities with a correlation coef-
fi cient above 0.9 these high coeffi cients can easily 
be explained: 1101 out of 1250 (88.08%) vertices 
have an out-degree of zero. All these vertices are 
assigned the same centrality value of nearly zero 
for the Katz status index and the PageRank 

Table 2. Names of the top 25 genes (top 2% of all genes) according to 8 best centrality measures, i.e. centralities 
which fi nd a high number of global regulators within the top 2% of all genes. Global regulators according to 
Martínez-Antonio and Collado-Vides (2003) are highlighted in bold face. Note that in few cases were genes with 
the same centrality value occur they are ranked in alphabetical order. For each centrality the last row of the table 
shows the number of global regulators identifi ed within the top 2% of all genes.

position odeg parR katR spb rad chains ffl A ffl Sum
1 crp crp crp hns crp crp crp crp
2 fnr ihfAB fnr gadX ihfAB ihfAB fnr fnr
3 ihfAB fnr arcA fl hD fnr arcA ihfAB arcA
4 fi s arcA ihfAB fur arcA fnr arcA fi s
5 arcA phoB fi s gadE fi s fi s fi s narL
6 narL lexA hns fi s gadE evgA modE ihfAB
7 hns cpxR gadE lrp hns ydeO soxS hns
8 fur soxR gadX rcsAB fur gadE hns fur
9 lrp fi s cspA soxS soxS soxR cpxR gadX
10 glnG evgA evgA fnr evgA soxS fhlA hyfR
11 narP cysB ydeO cspA ydeO torR gadE marA
12 cpxR argR torR caiF oxyR gadW rob fl hD
13 phoB phoP gadW purR gadX cspE gadX nagC
14 fruR fur cspE narL cspA cspA galR soxS
15 modE allR soxS marA narL gadX fur modE
16 fhlA glnG soxR metJ modE hns gntR tdcA
17 lexA sdaR rob malT soxR oxyR oxyR yiaJ
18 fl hD trpR marA arcA torR fur tdcR gutM
19 gadE agaR marR glnG gadW modE gutM ompR
20 purR gadE oxyR ompR cspE narL nagC srlR
21 soxS soxS fur Nac lrp lrp narL galS
22 argR hns modE oxyR glnG glnG ompR idnR
23 cysB lrp gutM hupAB phoB ompR srlR caiF
24 marA tyrR srlR argP narP phoB argP chbR
25 nagC torR narL dnaA ompR cpxR cysB cpxR
#global 13 12 12 11 14 15 12 11
regs.
Abbreviations: see Table 1.
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centrality, and the value zero for the radiality and 
the motif-based centrality with chain classes. 
Therefore, the comparison of correlations between 
all centrality values is not feasible for the complete 
vector of centralities: all fi ve centralities rank these 
1101 vertices into the same group.

Table 4 shows the pairwise correlation coeffi -
cients for the centrality values of the vertices which 
have a non-zero out-degree. These coeffi cients 
show a different picture: all fi ve centralities do rank 
the remaining 149 genes differently, only the cen-
trality radiality and Katz status index archive a 
considerable high correlation to each other and to 
the motif-based centrality with chain classes.

In conclusion, the centralities applied to the 
GRN rank the genes differently and the motif-
based centrality with chain classes is able to rank 
the highest number of interesting genes (global 
regulators) within the top 2% of all genes. The 
chain centrality identifi es 15 out of 18 global 
regulators (83%) identifi ed by Martínez-Antonio 
and Collado-Vides (2003) and outperforms the 
other centralities used.

Discussion
To investigate large biological networks different 
analysis methods have been developed, and 
centrality analysis is a particularly useful method 

to analyze the structure of these networks. In this 
paper we discussed and compared different 
centrality measures and applied them to a gene 
regulatory network of E. coli. The results show that 
using centrality analysis methods from other fi elds 
of sciences such as social network analysis is a 
starting point to investigate gene regulatory 
networks. However, we also show that it is useful 
to consider biological knowledge in network 
analysis and that the recently introduced motif-
based centrality outperforms other methods.

The comparison of the pairwise correlation 
coeffi cients and the analysis of the rankings of the 
top 25 genes show that the motif-based centralities, 
in particular with the chain motif class, produce 
rankings different to the rankings computed by 
existing centralities, and that these rankings show 
interesting features of the gene regulatory network 
under analysis.
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