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Abstract

Pharmacotherapeutic options for pulmonary arterial hypertension (PAH) have increased dramatically in the last two decades and

along with this have been substantial improvements in survival. Despite these advances, however, PAH remains a progressive and

ultimately fatal disease for most patients and only epoprostenol has been shown to improve survival in a randomized control trial.

Clinical observations of the heterogeneity of treatment response to different classes of medications across the phenotypically

diverse PAH population has led to the identification of patients who derive significantly more benefit from certain medications than

the population mean, the so-called ‘‘super responders.’’ This was first recognized among PAH patients with acute vasodilator

response during invasive hemodynamic testing, a subset of whom have dramatically improved survival when treated with calcium

channel blocker (CCB) therapy. Retrospective studies have now suggested a sex discrepancy in response to endothelin receptor

antagonists (ERA) and phosphodiesterase inhibitors, and more recently a few studies have found genomic associations with

response to CCBs and ERAs. With increasing availability of ‘‘omics’’ technologies, recognition of these ‘‘super responders,’’

combined with careful clinical and molecular phenotyping, will lead to advances in pharmacogenomics, precision medicine, and

continued improvements in survival among PAH patients.

Keywords

precision medicine, pharmacogenomics, super responder, pulmonary arterial hypertension

Date received: 1 December 2016; accepted: 13 February 2017

Pulmonary Circulation 2017; 7(2) 300–311

DOI: 10.1177/2045893217697708

Pulmonary arterial hypertension (PAH) is a disease charac-
terized by progressive pulmonary vascular obliteration and
remodeling that leads to increased pulmonary vascular
resistance (PVR) and ultimately right heart failure and
death.1–4 PAH is seen in idiopathic (IPAH) and heritable
(HPAH) forms, with an increasing number of genes now
known to contribute to predisposition to the disease.5,6

PAH can also be see in association with drugs or toxins,
or other diseases such as connective tissue disease (CTD),
Human Immunodeficiency Virus (HIV) infection, portal
hypertension, congenital heart disease (CHD), and
schistosomiasis.2,7

Historically, survival for PAH patients has been dismal,
with median survival of less than three years when left
untreated.8 The first pharmacologic treatment shown to be

effective in some patients with PAH was high-dose calcium
channel blockers (CCBs), which in a small subset of vasor-
eactive patients (5–10% of IPAH) markedly improved func-
tional status and survival, which could be measured in years
or decades, rather than months for those who did not benefit
from this therapy.9–11 In the past 25 years, there has now
been FDA approval of ten medications, in five different
classes, to treat PAH (Table 1) and survival in the modern
treatment era has improved substantially.12–18 However, of
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the FDA approved medications, only epoprostenol has been
shown to improve survival in randomized controlled trials
(RCTs), and some of this improved survival may be due to
improved recognition of the disease and lead time bias in
diagnosis and treatment.19,20

Two factors leading to these less encouraging results may
be heterogeneity of treatment response and patient selection
for clinical trials. In order for a drug to obtain FDA
approval, it must demonstrate safety and effectiveness on
average in the studied population versus placebo or usual
care. When examining the effectiveness of a particular drug,
all patients enrolled in the trial are taken into consideration,
and the mean change in desired outcome, be it survival, time
to clinical worsening, or six-minute walk distance (6WMD),
is generally interpreted as the most significant factor in
determining whether that therapy should be implemented
into practice. Regardless of the mean outcome, however,
there may be patients within the population that respond
remarkably well to therapy, so-called ‘‘super responders,’’
while others have no response, or even adverse response to
the same treatment.

On one hand, it is valuable to have broad entry criteria to
facilitate more rapid and wide patient enrollment into trials.
However, including patients that may be less likely to
respond to a drug, such as CTD patients, who are less
likely to have improvements in clinical parameters such as
6MWD and FC due to musculoskeletal limitations, also
substantially increases the heterogeneity of response, and
the beneficial effects seen in a subset of the population
may be lost in the final analysis.21,22

We are entering an era of precision medicine, one in
which algorithm-based treatment approaches will be modi-
fied in ways that take individual variability into account.23

We have already seen great strides using this approach in
oncology, such as the use of CTLA-4 blockade in melanoma
and ALK inhibitors in lung cancer.24,25 The pulmonary field

has also seen early advances in precision medicine, specific-
ally in cystic fibrosis (CF) and the approval of ivacaftor for
patients with the G551D mutation.26 This provides an excel-
lent example of a therapy that, if applied across the whole of
the CF population, would be unlikely to have a net positive
clinical effect and may not have garnered FDA approval,
but targeted specifically to the 4–5% of CF patients that
harbor the G551D mutation, resulted in substantial
improvements in CF exacerbation rates, symptoms,
weight, and lung function.26

The genetics of PAH, like CF, have been studied for
decades, and we now know of many genes that predispose
some amount of risk for the development of PAH since the
original discovery of BMPR2 in HPAH.5,6,27 Despite this
increasing knowledge of genetic predisposition, however,
there are presently no PAH therapies targeting these genes
or their products, and patients’ individual molecular eti-
ology plays no role in the selection of PAH directed therapy,
which remains algorithm-based and driven by severity of
disease.28 With the availability and increasing affordability
of high-throughput ‘‘omics’’ technologies, and careful phe-
notyping of patient cohorts, soon it may be possible to use
these techniques to identify patients more likely to respond
to current PAH therapies, as well as develop novel targets
for future therapies.29,30

The need for targeted PAH therapy, and appropriate
selection of initial pharmacotherapy, can be seen in
examples from multiple clinical trials of PAH medications,
where it appears that even short-term treatment with pla-
cebo appears to portend long-term negative
consequences.31,32 These patients, who received placebo
for as short as 12 weeks, often do not reap the same benefits
as those in the active treatment arm, even after long-term
follow-up in the open-label extensions of the trials.32 In add-
ition to posing important questions about trial design for
future PAH therapies, this emphasizes the importance of

Table 1. Drugs for the treatment of PAH and predictors of response to therapy.

Drugs for the treatment of PAH Predictors of response to drug class

Prostacyclin and prostacyclin derivatives Epoprostenol (i.v.) None

Treprostinil (i.v., SQ)

Treprostinil (Inhaled)

Treprostinil (PO)

Iloprost (Inhaled)

IP prostacyclin receptor agonists Selexipag (PO) None

Endothelin receptor antagonists Bosentan (PO) Female sex33

Macitentan (PO) GNG2 polymorphism35

Ambrisentan (PO)

Phosphodiesterase type 5 inhibitors Sildenafil (PO) Male sex34

Tadalafil (PO) Younger age34

Soluble guanylate cyclase stimulators Riociguat (PO) None

Calcium channel blockers* Diltiazem (PO) Acute vasodilator response9,10

Amlodipine (PO) Gene expression in peripheral blood36

*Not FDA-approved for use in PAH.

Pulmonary Circulation Volume 7 Number 2 | 301



appropriate, and ideally patient-specific, drug selection
upfront for PAH patients, so that clinical deterioration
does not occur in the setting of ineffective therapy, knowing
that the ground lost quite possibly will not be recovered
later, when therapy is changed.

The current treatment paradigm for PAH, after establish-
ing a definitive diagnosis via right heart catheterization
(RHC) with acute vasodilator response (VR) testing, and
ruling out alternative causes for pulmonary hypertension,
hinges on establishing a patient’s risk for immediate adverse
outcomes to guide pharmacotherapy.2 Signs of right heart
failure, tempo of disease, syncope, New York Heart
Association (NYHA) or World Health Organization
(WHO) functional class, and further testing such as
6MWD, cardiopulmonary exercise testing (CPET), brain
natriuretic peptide (BNP) or N-terminal proBNP (NT-
proBNP) levels, echocardiographic assessment of right
atrial (RA) size, presence of pericardial effusion, and inva-
sive hemodynamic assessment of right atrial pressure
(RAP), cardiac index (CI), and central venous oxygen sat-
uration (SvO2) are all used to recommend treatments.2

Following this determination of functional class and risk,
the most recent guidelines list the indicated drugs for each
functional class and the strength of recommendation. While
these guidelines serve as an invaluable resource and compil-
ation of the available evidence for treatment of PAH, clin-
icians are still left with the difficult task of selecting what
they believe will be the best treatment option for the patient
in front of them, selecting from the ten drugs or drug com-
binations with level 1 evidence for WHO FC II and III.2

The evidence to guide clinicians in this vital decision is
limited at present, with retrospective data suggesting that
there may be disparities in response to certain drugs or
drug classes by PAH subtype, sex, or race, and two studies
that have begun to look at molecular predictors of response
to PAH specific therapy, which have not yet been applied at
the bedside.33–37 Despite the paucity of clinical trial data to
guide these decisions, clinicians have recognized the phe-
nomenon of ‘‘super responders’’ to PAH medications;
patients who have sustained clinical improvement to a cer-
tain pharmacotherapy, in contrast to patients who progress
to two or three drug combinations with continued decline.
This is a phenomenon also seen in oncology, wherein a small
number of treated patients may have complete remission
and/or prolonged survival despite advanced disease.38

Further investigation into characterizing these ‘‘super
responders,’’ and development of predictive tools prior to
selection of therapy, could have a major impact on patient
care in many diseases, and will be increasingly feasible with
the emerging clinical availability of molecular (e.g. genomic,
proteomic, and metabolomic) technologies.

This review will focus on what is presently known about
predictors of response to PAH pharmacotherapy, the iden-
tification of ‘‘super responders’’ to these therapies, and
future directions for tailoring the available PAH drugs to
the patients most likely to benefit from them. There is no

consensus definition of ‘‘super responders’’ in PAH at this
time, a challenge unto itself, so we will focus primarily on
the identification of patients who, when treated with a cer-
tain medication, have prolonged survival compared to
otherwise matched patients, and those who have significant
and sustained improvements in clinical parameters such as
6MWD, time to clinical worsening, or functional class when
compared to similarly treated patients.

Calcium channel blockers

Years before epoprostenol was synthesized, trialed, and
approved for the treatment of PAH in the 1990s, there
was recognition that a subset of PAH patients had substan-
tial clinical improvement with vasodilator therapy, and
specifically CCBs.9,39,40 After initial early attempts at treat-
ing PAH with various vasodilators, with mixed results, it
was the close observation of relatively few patients with
careful clinical phenotyping that allowed Rich et al. to
define the subset of PAH patients that responded well to
high-dose CCBs.40–42 Initially the criteria to identify these
patients were imprecise and the methods of performing
vasodilator response testing varied across institutions,
resulting in discrepancies with reported rates of acute vaso-
dilator responsiveness and long-term CCB responders. Over
many years of experimentation and observation, however,
acute VR testing was honed, and by carefully examining the
hemodynamic changes during VR testing in hundreds of
patients with long-term follow-up data, the hemodynamic
criteria for identifying candidates for CCB treatment
became much more precise.10 Presently, acute VR testing
is a class 1 recommendation in all newly diagnosed patients
with IPAH, HPAH, or drug-/toxin-related PAH, and the
criteria for a positive response is reduction in pulmonary
artery pressure (PAP)� 10mmHg to reach an absolute
value of mean PAP� 40mmHg with an increased or
unchanged cardiac output.2 These criteria, as of now, pro-
vide the best opportunity to identify the 5–10% of PAH
patients who benefit from long-term CCB therapy. The
reason it remains so important to identify this subset of
patients, even in the modern treatment era with ten new
available drugs, is that they represent the original ‘‘super
responders’’ to PAH treatment. In the paper that most
clearly defined the criteria for long-term CCB response,
Sitbon et al. reported that with mean follow-up of seven
years, all but one (98%) of the long-term CCB responders
were alive and FC I or II with sustained hemodynamic
improvement, whereas among non-responders, the five-
year survival rate was 48%.10 Unfortunately, this seems to
apply to only IPAH, HPAH, and drug-/toxin-related PAH
patients, with no clear benefit to long-term CCB therapy
seen in associated forms of PAH, and uncertain benefit of
partial or ‘‘non-classic’’ vasodilator response.43–45

With such a profound clinical phenotype, a molecular
basis for this difference between long-term CCB responders
and non-vasodilator responsive PAH patients seemed likely.

302 | Identifying ‘‘super responders’’ in PAH Halliday and Hemnes



This has been the subject of recent work by our group, first
by examining RNA expression patterns of cultured lympho-
cytes and peripheral blood in CCB responders compared
with non-responders.36 We found 13 genes that were signifi-
cantly different between the two groups in quantitative
polymerase chain reaction (qPCR) analysis of peripheral
blood, including cytoskeletal/rho-GTPase genes, cell–cell
adhesion genes, developmental genes, and transcription fac-
tors, three of which were known to be calcium dependent or
activated by adenosine.36 Furthermore, we were able to
design decision trees based on these differentially expressed
genes that reliably detected CCB-responsive PAH patients
from non-responders in two patient cohorts.36 In another
study, we performed whole exome sequencing comparing
CCB responders and non-responders, identifying 1369
genes with 1580 variants unique to IPAH, which identified
differences in biologic pathways such as cytoskeletal func-
tion, ion binding, and Wnt signaling, and showed enrich-
ment in genes related to vascular smooth muscle
contraction.46 The significance of this work is not only in
discovering potentially different molecular causes of the two
PAH phenotypes, but also providing a less invasive and reli-
able means of identifying CCB responders, opening the
doors to precision medicine and pharmacogenomics in
PAH.

Endothelin receptor antagonists

Increased endothelin (ET-1) activation has been demon-
strated in plasma and lung tissues in all forms of PAH,
and although it is unclear if this association is a cause or a
consequence of the disease, the role of the ET-1 system in
PAH pathogenesis, via vasoconstriction and mitogenicity,
has been well established.47,48

Endothelin receptor antagonists (ERAs) have been a
commonly used first-line agent in the treatment of PAH
since the FDA approval of the dual endothelin receptor
(ETA and ETB) antagonist bosentan in 2001. This was a
major breakthrough in the treatment of PAH, as the first
oral therapy proven to be effective in a large-scale RCT.49

Since then, two additional ERAs have been approved: the
selective ETA antagonist ambrisentan and the dual ERA
macitentan.19,50

Clinically, marked variation in response to ERAs is seen
in PAH patients, with some having significant and sustained
improvement in hemodynamic and clinical parameters,
while others seemingly have little or no response, or adverse
events requiring cessation of the drug and seeking alternate
therapy. Some evidence of this heterogeneity of treatment
response can be seen in the original phase II trial of bosen-
tan, where despite its proven efficacy across the treatment
population as a whole (n¼ 32), fewer than half of the trea-
ted patients had improvement in functional class at 12
weeks.51 The one-year follow-up data from this trial also
support this heterogeneity of treatment response, with
some patients displaying dramatic decreases in PVR, while

others had minimal change and one patient had an
increase.52 Similarly, three patients had significant increases
in cardiac index, perhaps representing ‘‘super responders’’ to
this therapy, while others had a more modest increase, or
even drop at one year.52

Unfortunately, little is known about how to predict
which patients will respond to ERAs favorably. There is
known variation in circulating ET-1 plasma levels according
to sex and race from the systemic hypertension literature,
leading researchers to wonder whether these factors could
play a role in response to ERAs in PAH patients.53,54 Gabler
and colleagues retrospectively analyzed the data from six
RCTs of ERAs in PAH and compared the outcomes of
patients by sex and race; they found that the mean
placebo-adjusted treatment response in women was
improvement in 6WMD by 44.1m, compared to 16.7m
among men, a statistically significant difference.33 They
also found that the mean placebo-adjusted treatment
response among whites was increase in 6WMD by 41.5m,
whereas in blacks 6WMD decreased by 3.5m, though this
finding did not quite reach statistical significance, owing to
the small number of blacks enrolled in the trials.33 This is an
important finding that could impact the treatment of PAH
patients and selection of initial therapy, and further suggests
the possibility of genetic or hormonal differences playing a
role in response to these drugs.

Benza and colleagues took the examination of heterogen-
eity in response to ERAs one step further, investigating spe-
cific ET-1 pathway polymorphisms and how they affected
response to ERAs and subsequent clinical outcomes.35 They
selected candidate ET-1 pathway genes from a previously
performed genome-wide association study (GWAS) on 715
patients of European descent in the STRIDE trial and found
a variant in a G-protein component (GNG2) that signifi-
cantly increased the rates of developing improvement in
6MWD.35 The minor allele of this gene variant has a fre-
quency of approximately 12.67%, thus making it a relatively
common polymorphism, that correlates with improved
response to ERA therapy. While this finding will need rep-
lication and prospective validation before it can be incorpo-
rated into routine clinical use, it provides an exciting step
towards identifying ‘‘super responders’’ to conventional
PAH therapy and incorporating pharmacogenomics into
the treatment of these patients.55

Phosphodiesterase type 5 inhibitors

Phosphodiesterase type 5 (PDE5) inhibitors were the second
class of orally available agents proven to be efficacious in
PAH and have been commonly used as first-line therapy
since the FDA approval of sildenafil for PAH in 2005.
PDE5 inhibitors slow degradation of cyclic guanosine
monophosphate (cGMP), resulting in vasodilatation
through the nitric oxide (NO)/cGMP pathway, and also
have anti-proliferative effects.56 Sildenafil, and later tadala-
fil, have both been proven to increase exercise capacity, and
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tadalafil has also been shown to increase time to clinical
worsening.57,58 Despite widespread clinical use in both
PAH and erectile dysfunction, however, little research has
been done into predictors of clinical response to PDE5
inhibitor therapy. Mathai et al. retrospectively analyzed
data from the PHIRST trial, a RCT of tadalafil in PAH,
to identify baseline characteristics that were predictive of
achieving clinical improvement on therapy.34,58 Using multi-
variable logistic regression analyses, they found that men
had significantly greater odds of achieving the minimal
important difference (MID) in 6MWD.34 They also found
that younger age, lower baseline 6WMD, and IPAH or
HPAH (as opposed to CTD-PAH) were associated with
greater odds of achieving the MID in 6WMD.34 This is in
an interesting juxtaposition to the findings by Gabler et al.,
who found that women had greater clinical response to
ERAs than men, and if these findings were replicated, they
may offer some initial guidance for preferential first-line
treatment for FC II-III PAH patients based on sex.33 A
similar retrospective analysis of the PHAROS registry by
Lammi et al. also suggested that among patients with sys-
temic sclerosis-related PAH, initial PDE5 or PDE5/ERA
combination therapy resulted in improvement in time to
clinical worsening compared with initial ERA monother-
apy.37 Unfortunately for now there are no known molecular
predictors of response to PDE5 inhibitors and little is
known about predicting which patients will have supra-
normal response to these drugs, but this would be an inter-
esting area of further research.

Guanylate cyclase stimulators

Like PDE5 inhibitors, soluble guanylate cyclase (sGC)
stimulators act to enhance the NO-cGMP pathway, a crit-
ical pathway in the pathogenesis of PAH, resulting in vaso-
dilatation and anti-proliferative effects.59,60 Riociguat, the
only commercially available sGC stimulator, was FDA
approved for the treatment of PAH and chronic thrombo-
embolic PAH following landmark RCTs in 2013, where it
was found to significantly increase the 6MWD in both
groups.29,60 Like ERAs and PDE5 inhibitors, riociguat has
a class I recommendation for the treatment of FC II–III
treatment-naı̈ve PAH patients, and perhaps even more so
than ERAs and PDE5 inhibitors, little is known about spe-
cific predictors of response to therapy. What is known
comes from analysis of the PATENT-2 long-term extension
trial and, not unsurprisingly, 6WMD, WHO functional
class, and NT-proBNP levels at baseline and after 12
weeks of therapy were significantly associated with time to
clinical worsening and long-term survival.61 Similar findings
have been seen in large patient registries, regardless of
pharmacotherapy.13,62 While helpful in establishing progno-
sis in PAH patients as a population, this offers little insight
to clinicians charged with the task of choosing a first-line
agent for PAH patients, and presently we have no way of
predicting which individual patients may be ‘‘super

responders’’ to riociguat and which should be treated with
alternative drugs or initial combination therapy.

Prostacyclin analogues

Prostacyclin is an endogenous compound, produced primar-
ily by endothelial cells, that induces potent vasodilatation in
all vascular beds and has cytoprotective, anti-platelet, and
anti-proliferative properties.63 It is a lipid-derived molecule,
generated by the cleavage of arachidonic acid by cyclooxy-
genase and prostacyclin synthase, and signals primarily
through the G-Protein coupled IP receptor, resulting in
increased cAMP and vasodilatation, but also has important
downstream effects on peroxisome proliferator-activated
receptor-g (PPARg) that may play a role in its anti-prolif-
erative properties.64 Dysregulation in prostacyclin metabolic
pathways has been long established in PAH, with perturb-
ations in prostacyclin synthase, IP receptor expression, and
decreased excretion of prostacyclin metabolites in PAH
patients.65–67 Because of this, the prostacyclin pathway
was one of the first directly targeted therapies for PAH,
and synthetic prostacyclin, in the form of intravenous
(i.v.) epoprostenol, was the first FDA-approved treatment
for PAH.20,68 In addition to being the first FDA-approved
therapy, i.v. epoprostenol remains the most efficacious, with
years of data from trials and registries showing improved
survival in IPAH, CHD-PAH, and CTD-PAH
patients.17,69,70 It is the only medication with a class I rec-
ommendation for WHO IV patients, is indicated for any
PAH patient with evidence of right heart failure or progres-
sion of disease despite oral therapy, and has been repeatedly
shown to improve right ventricular function.2,71 Despite
being the most efficacious treatment option for PAH, how-
ever, there remains heterogeneity of response to i.v. epo-
prostenol, with some patients having long-term survival
after being rescued from WHO IV functional class, while
others fail to improve and progress to right heart failure,
death, or transplant despite therapy.72 It has even been
reported that some patients may have near normalization
of hemodynamics, and can later be weaned off i.v. epopros-
tenol to oral therapies.73 Failure to respond to i.v. epopros-
tenol, however, is an independent risk factor for mortality in
PAH, so being able to identify patients likely to respond to
therapy, and conversely those who will not, carries import-
ant prognostic and treatment implications.17,74

Unfortunately, like other PAH directed therapies
discussed above, relatively little is known about predictors
of response to i.v. epoprostenol therapy prior to the initi-
ation of the drug. In long-term follow-up studies of patients
treated with i.v. epoprostenol, the strongest predictors of
survival, like with other PAH trials and registries, are base-
line clinical and hemodynamic characteristics indicative of
severity of disease.17,74 McLaughlin et al. reported that
change in PVR in response to adenosine challenge during
initial RHC was predictive of improved survival with i.v.
epoprostenol, but other studies using alternative means of
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acute VR are mixed in terms of prognostic value.17,44,45

Sitbon et al. examined clinical and hemodynamic param-
eters at baseline and after three months of therapy
with i.v. epoprostenol, and found that decrease in total pul-
monary resistance (TPR) by 30%, and increase in CI by
0.5 L/min/m2 at three months were associated with good
response to therapy and long-term survival.74 This is
important because although it requires early and invasive
hemodynamic assessment of response, being able to differ-
entiate patients likely to do well with i.v. epoprostenol from
those more likely to fail could help with deciding whom to
refer for lung transplantation, which is likely the only viable
treatment option for patients with progressive PAH despite
i.v. epoprostenol.

‘‘Super responders’’ to i.v. epoprostenol may not be a
defined entity, but clearly represent a portion of the PAH
population, with a subset of patients living over twice as
long as would be predicted by recent registries, despite pro-
gressing to FC III–IV prior to the initiation of this ther-
apy.75 A representative example of the heterogeneity of
response seen to i.v. epoprostenol is provided in Fig. 1,
showing the change in PVR before and after the initiation
of therapy, from a cohort of patients treated at our center.
The clinical characteristics for two of these patients are pro-
vided in Table 2, highlighting the inter-individual variability
in response to treatment, and the importance of persona-
lized and precision medicine in PAH.

A case report of one such ‘‘super responder,’’ who
survived for 18 years on i.v. epoprostenol without clinical
progression before dying of colon cancer, provides interest-
ing insights into what might characterize these patients and
the pathogenesis of PAH.75 Rich et al. found evidence of
extensive proliferative vasculopathy and ongoing cellular
proliferation in this patient at autopsy, but in contrast to

patients who had died from PAH and RV failure, this
patient’s RV showed evidence of hypertrophy and seemingly
preserved contractility.75 Preservation of RV function is cru-
cial to survival in PAH, and presently little is known about
what factors contribute to hypertrophy versus dilatation,
but it appears to be a major determinate in the differential
survival between men and women with the disease.1,76 There
is emerging research that altered myocardial metabolism,
specifically increases in glycolytic pathways and reduced
fatty acid consumption, plays a major role in RV dysfunc-
tion via lipotoxicity, and further studies into this may allow
us to better understand why some patients can have
long-term survival on therapy despite persistently elevated
PA pressures, while other have continued clinical
deterioration.77–81

In addition to i.v. epoprostenol, there are two additional
FDA-approved synthetic prostacyclin analogs, treprostinil,
which is available in i.v., subcutaneous (SQ), inhaled, and
oral (PO) formulations, and iloprost, which is available as
an inhaled formulation.82–86 These all have the same
mechanism of action, although the inhaled and PO formu-
lations do not have the same long-term survival data as i.v.
epoprostenol and are likely not as efficacious, but offer the
considerable benefit of not requiring permanent i.v. access.
Inhaled formulations have been used with success in patients
who have complications or cannot tolerate parenteral pros-
tacyclin analogs.87 Being newer medications, there is less
clinical and research experience with treprostinil and ilo-
prost than epoprostenol, and it is not well-described if
there are ‘‘super responders’’ to these therapies.

Prostacyclin receptor agonists

The newest approved medication for PAH is selexipag, an
orally available selective IP receptor agonist.88 The first of
its class, selexipag is a structurally distinct molecule from
prostacyclin analogs, but has similar mechanism of action
and side effects.88,89 To date there has only been one large
RCT of selexipag, which showed reduction in a composite
end point of death or PAH complication (driven mostly by
disease progression and hospitalization) in a cohort that
included both treatment-naı̈ve patients and patients on
ERAs and PDE5 inhibitors.88 With no published long-
term follow-up data, and limited clinical experience with
the drug, there are no known predictors of response at
this time.

Combination and sequential therapies

With few treatment options, many patients who progress
despite therapy, and proven efficacious drugs that work
via different molecular pathways, it is intuitive that sequen-
tial and combination therapy has been a part of PAH ther-
apy ever since there have been two drugs on the market.90

The initial trial of upfront therapy with i.v. epoprostenol
and PO bosentan did not show significant hemodynamic

Fig. 1. Change in PVR after initiation of i.v. Prostanoid. PVR in 27

patients with PAH with a RHC 17� 10 months after initiation of

parenteral prostanoid therapy. Detailed data for two of the highlighted

patients are provided in Table 2.
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or clinical benefit, and due in part to negative early trials
and in part to the high cost of PAH medications, a sequen-
tial combination approach had been favored over upfront
combination therapy in both trials and clinical prac-
tice.2,90–94 Various sequential combination strategies of
ERAs, PDE-5 inhibitors, and prostanoids have been used,
with mixed success, but an overall trend has supported this
strategy in patients who do not respond to initial monother-
apy.2,95 There has been a recent change in this paradigm
with the AMBITION study in 2015, in which patients trea-
ted with initial combination of ambristentan and tadalafil
had improvement in a composite endpoint of death, hospi-
talization, disease progression, and clinical status compared
to patients treated with monotherapy with either drug.96 As
a result of this trial, initial treatment with tadalafil and
ambristentan now has a class I recommendation for WHO
FC II and WHO FC III PAH patients in the most recent
guidelines, though adoption of this strategy has been limited
by the increased cost of starting two medications initially.
Additionally, little is known about the characteristics of
patients that may respond to initial combination therapy
that would not have responded adequately to monotherapy,
with fewer side effects and lesser cost. Perhaps some of the
benefit seen in AMBITION can be attributed to patients
with different likelihoods of deriving benefit from either an
ERA or PDE5 inhibitor, as discussed in previous sections,
having greater odds of receiving the right therapy upfront by
receiving two drugs instead of one. As precision medicine in
PAH advances, however, there will likely be a role for initial

combination therapy in those patients with poor predictors
of response to individual pharmacotherapies.

Summary

There have been tremendous advances in PAH therapy in
the last two decades, with discovery and FDA approval of
ten medications, in five classes, targeting three molecular
pathways (Table 1). With the implementation of these medi-
cations into clinical practice, there has been an associated
improvement in mean survival among PAH patients, from
2.8 years to greater than five years from time of diagnosis,
albeit with potential confounding factors, such as lead time
bias and selection of less ill patients for clinical trials.13,14

Despite these advances, however, PAH remains a progres-
sive and ultimately fatal disease for most patients. With
relatively few medications in development, improving out-
comes for today’s PAH patients must focus on optimizing
treatment for the individual using the available pharmaco-
therapy. Large RCTs have provided evidence that the avail-
able medications are safe and at least moderately efficacious
across the PAH population as a whole, but PAH is a pheno-
typically and molecularly heterogeneous disease, so a more
nuanced and personalized approach to therapy is needed to
account for this inter-individual variability. One such way of
doing this is by examining the patients who seem to have
supra-normal response to the available therapies and learn-
ing from them so that future patients can hopefully derive
similar benefits.

Table 2. Hemodynamic and clinical parameters of two IPAH patients treated with i.v. epoprostenol.

Patient 1 (red triangle in Fig. 1) Patient 2 (blue square in Fig. 1)

Diagnosis IPAH IPAH

Demographics Female, age 28 years Female, age 36 years

Baseline characteristics (prior to treatment)

Pulmonary vascular resistance (Wood Units) 30.8 13.5

Cardiac index (L/min/m2)* 1.1 1.4

Mean PA pressure (mmHg) 67 58

Mean right atrial pressure (mmHg) 15 12

Mean pulmonary artery wedge pressure (mmHg) 14 9

Six-minute walk distance (m) 258 30

WHO functional class 3 4

Treatment i.v. epoprostenol i.v. epoprostenol

Characteristics at follow-up (after treatment)

Pulmonary vascular resistance (Wood Units) 3.75 10.3

Cardiac index (L/min/m2)* 2.79 1.63

Mean PA pressure (mmHg) 39 54

Mean right atrial pressure (mmHg) 2 15

Mean pulmonary artery wedge pressure (mmHg) 3 15

Six-minute walk distance (m) 418 258

WHO functional class 1 3

Additional treatment needed None Sildenafil, Bosentan

*Cardiac output measured by Fick’s method.
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Identification of these ‘‘super responders’’ has long been
recognized in pulmonary hypertension, dating back to the
discovery of acute and long-term vasodilator responsive
patients.9,40 An important lesson from the discovery of
these 5–10% of IPAH patients who benefit tremendously
from CCB therapy is that prior to refinement of acute vaso-
dilator testing and the definition of vasodilator response,
several vasodilators were tried for the treatment of PAH,
often times with deleterious effect across the PAH patient
population as a whole.39,41 This exemplifies the potential
benefits of careful patient phenotyping and a shift from
population wide to personalized medicine.

An interesting correlate to this experience is seen in the
IMPRES trial of imatinib in PAH.97 Imatinib, a tyrosine
kinase inhibitor used for the treatment of chronic myeloid
leukemia, had been shown in preclinical studies to have
proapoptotic effects on pulmonary artery smooth muscle
cells from IPAH patients, as well as vasodilatory effects in
animal models of PAH.98–100 Spurred by these findings,
several case reports emerged of PAH patients successfully
treated with imatinib, with improvement in hemodynamics
and functional class.101–103 A phase II study showed safety
and tolerability of imatinib, and greatest improvement
among patients with the highest PVR, which led to a
phase III study of imatinib as an add-on therapy for patients
with severe PAH.97,104 The IMPRES trial did, in fact, show
that imatinib improved 6WMD and hemodynamics in
patients with advanced PAH already on two to three PAH
medications at the time of enrollment, some of whom
improved dramatically.97,105 Enthusiasm for this finding
was tempered, however, by the high rates of adverse
events and drug intolerability, and the long-term extension
was ultimately terminated early due to a high rate of adverse
events, particularly subdural hematomas, and withdrawal
from the study by both patients and the drug sponsor.97,106

Imatinib is not approved for treatment of PAH as a result of
this trial, but those patients that responded well to treat-
ment, perhaps representing a specific endophenotype of
the disease, merit further investigation, and perhaps better
characterization of this group could guide future research
into which patients would be most likely to benefit from
anti-proliferative chemotherapies.107

Aside from the well-established acute vasodilator
response criteria to detect ‘‘super responders’’ to CCB ther-
apy, the ability to prospectively identify responders and
non-responders to the currently available PAH pharma-
cotherapies is limited. Without a definition of ‘‘super
responder,’’ the ability to study these patients and their
unique characteristics is limited. There is some suggestion
from retrospective analyses that men may derive more bene-
fit from PDE5 inhibitors than women, and conversely,
women may derive more benefit from ERAs.33,34 These
results have not been verified prospectively, however, and
in the limited number of head-to-head trials comparing
ERAs and PDE5 inhibitors, there has not been a significant
difference in primary outcomes between sexes.96,108

Presently, the only reliable clinical predictors of long-term
response to medications in PAH remain baseline severity of
disease and initial hemodynamic response to medications on
follow-up evaluation.74 However, with increasing availabil-
ity of next generation sequencing and ‘‘omics’’ technologies,
this paradigm is changing, and with incorporation of
precision medicine into PAH, we may soon be targeting
medications to ‘‘super responders.’’

An early example of precision genomic medicine identify-
ing ‘‘super responders’’ to medications in PAH can be seen
in our group’s discovery of a gene expression signature that
can be derived from peripheral blood and reliably distin-
guishes CCB responsive PAH from non-responders.36

Benza and colleagues have also used genomic techniques
to identify polymorphisms in the ET-1 pathway associated
with positive response to ERAs.35 Both of these studies
require replication and prospective validation before clinical
use, but gene-medicine interaction studies, such as these,
could be the cornerstone of pharmacogenomics and preci-
sion medicine in PAH going forward. Our group is currently
researching genetic associations with ‘‘super responders’’ to
parenteral prostacyclin analogs. While exploring other clin-
ical definitions of ‘‘super responders,’’ we have used the pre-
viously published short-term hemodynamic predictors of
long-term survival after i.v. epoprostenol, as this definition
offers one linked to survival. We encourage other groups to
explore definitions of ‘‘super responders’’ to all classes of
PAH medications and engage in a community-wide discus-
sion of how to define these patients with the ultimate goal of
generating a ‘‘super responder’’ definition used clinically and
in practice, just as was done for CCB responders.10

PAH patient registries have greatly increased our know-
ledge and understanding of the natural history of the disease
in the past three decades, and combined with biobanking,
will be key to better characterizing the endophenotypes of
PAH to allow for precision medicine going forward. The
first step is an agreed upon definition of ‘‘super responders,’’
which may rely on serial evaluations of clinical parameters
such as 6MWT, laboratory parameters such an BNP, as well
as invasive hemodynamic and echocardiographic measure-
ments after initiation of pharmacotherapy. Identification of
‘‘super responders’’ will no doubt be difficult in the clinical
trial setting, with increasing enrollment of older patients
with multiple medical comorbidities, fewer FC III–IV
patients included in trials, the high prevalence of patients
on background therapy, and lack of long-term follow-up
making true ‘‘super responders’’ harder to detect.109,110

However, most of the FDA-approved PAH medications
have now been commercially available for a sufficient
period to allow for retrospective analyses to see which of
these parameters are associated with long-term response and
survival. Once these ‘‘super responders’’ have been identi-
fied, via demonstration of improved clinical outcomes, the
genomic, proteomic, and metabolomic data contained
within the biobanks should be compared between these
‘‘super responders’’ and average or non-responders, both
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to allow for prospective identification of patients likely to
respond to certain therapies and to enhance our understand-
ing of the molecular mechanisms of the disease and drug
response. Lastly, after development of these predictive
‘‘omics’’ profiles, prospective studies, stratified by ‘‘omics
profile,’’ will be needed for confirmation of these findings.

Conclusions

PAH is a phenotypically and molecularly heterogeneous dis-
ease, and using the same medication algorithm for every
patient, solely stratified by functional class and risk, will
not be the treatment paradigm of the future, as our under-
standing of the multiple endophenotypes of the disease and
pharmacogenetics advances. By careful phenotyping of
patients, and better characterizing the molecular associ-
ations with response to pharmacotherapy, we will be able
to tailor treatment to the individual, working toward a goal
of making every PAH patient a ‘‘super responder.’’
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