
Prediction of metal ion ligand
binding residues by adding
disorder value and propensity
factors based on deep learning
algorithm

Sixi Hao1,2, Xiuzhen Hu1,2*, Zhenxing Feng1,2*, Kai Sun1,2,
Xiaoxiao You1,2, Ziyang Wang1,2 and Caiyun Yang1,2

1College of Sciences, Inner Mongolia University of Technology, Hohhot, China, 2Inner Mongolia Key
Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, China

Proteins need to interact with different ligands to perform their functions.

Among the ligands, the metal ion is a major ligand. At present, the

prediction of protein metal ion ligand binding residues is a challenge. In this

study, we selected Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+ and Mg2+ metal ion

ligands from the BioLip database as the research objects. Based on the amino

acids, the physicochemical properties and predicted structural information, we

introduced the disorder value as the feature parameter. In addition, based on

the component information, position weight matrix and information entropy,

we introduced the propensity factor as prediction parameters. Then, we used

the deep neural network algorithm for the prediction. Furtherly, we made an

optimization for the hyper-parameters of the deep learning algorithm and

obtained improved results than the previous IonSeq method.
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1 Introduction

The interaction between proteins and ligands is particularly important for a variety of

biological processes such as the transport of oxygen, the transfer of cellular signals, energy

conversion and muscle contraction (Reif, 1992; Davis et al., 2004; Jeffrey et al., 2006).

Therefore, it is valuable to accurately identify the protein-ligand binding site for

understanding protein function, disease occurrence and molecular drug design (Laurie

and Jackson, 2006). Among these ligands, more than one-third are metal ion ligands (Hu

et al., 2020). Although the bond length, bond angle and torsion angle of each metal ion

ligand binding to proteins are different, from the perspective of the spatial structure of

protein binding to metal ion ligands, all metal ion ligands combine with residues on the

“pocket” of the protein surface to form a complex and stable spatial structure. Therefore,

we selected the eight metal ion ligands as a series of studies. Due to the small size and
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active chemical properties of metal ion ligands, it is a challenging

work to predict the metal ion ligand binding residues with similar

chemical structures by theoretical calculation methods.

In the prediction of protein-metal ion ligand binding sites,

predecessors have done a lot of research work and made

significant progress. At present, the feature parameters of

most studies were based on the information of primary

sequences, the physical and chemical and predicted structure

information. For example, in 2016, Jiang et al. (2016) used the

component of amino acids, the autocross covariance value, center

motif and site conservative information as feature parameters for

predicting the binding sites of Ca2+ ligands, and the total predict

accuracy (Acc) was better than 70.0%. Then, Hu et al. (2016b)

used position specific scoring matrix (PSSM), secondary

structure, and the real values of phi and psi as feature

parameters to predict the binding sites of Cu2+, Fe2+, Fe3+, and

Zn2+, and the obtained Matthew’s correlation coefficient (MCC)

was higher than 0.20, Acc was higher than 97.0%. In 2017, Cao

et al. (2017) selected the sequences information, site conservative

information, secondary structure information, matrix scoring

values of the hydrophilic-hydrophobic and polarization charge as

feature parameters to identify the binding sites of 10 metal ion

ligands, the MCC value was higher than 0.502. In 2019, Wang

et al. (2019) selected the component information and site

conservative information of features such as amino acids,

secondary structure, relative solvent accessibility, hydrophilic-

hydrophobic, and polarization charge to predict binding sites of

10 metal ion ligands, the ACC was higher than 68.0%. Although

the physicochemical feature of amino acid and predicted

structure information were usually used as feature parameters

in previous studies, the obtained prediction results by different

extraction methods were also different. Therefore, the selection

and extraction methods of feature parameters need to be

emphasized and innovatively optimized in study.

In recent years, many traditional machine learning

algorithms have been used to predict protein-metal ion

ligand binding sites, such as support vector machine (SVM),

random forest (RF), bayesian classifier. For example, in 2016,

Hu et al. (2016a) developed a method called IonSeq based on

SVM to predict 10 metal ion ligands, and the values of

sensitivity (Sn), Acc and MCC were higher than 5.57%,

74.09% and 0.1516, respectively. In 2020, Liu et al. (2020)

used RF algorithm to predict the binding sites of 10 metal

ion ligands, the MCC and Acc were better than 0.07 and 52%,

respectively. In 2021, Wang et al. (2021) applied the SVM

algorithm to predict ten metal ion ligands, the Sn and MCC

values were greater than 39.5% and 0.118, respectively.

Although these traditional algorithms obtained good results

in the prediction of protein-metal ion ligand binding residues, it

is difficult for them to learn deeply and effectively from the

growing amount of data in the post-genomic and big data era

(Song et al., 2020). At present, deep learning is a new way to

realize machine learning, and has powerful deep learning

capabilities and parallel distributed processing capabilities. It

has been used in the study of protein-metal ion ligand binding

residues, and good prediction results have been obtained (Cui

et al., 2019).

In this paper, the deep neural network (DNN) algorithm was

used to predict the binding residues of eight metal ion ligands

(Lorenzo-Trueba et al., 2018). Based on protein sequence, we

selected amino acids, secondary structure, relative solvent

accessibility, dihedral angles, charge and hydrophilic-

hydrophobic as basic feature parameters, and added disorder

values as new feature parameters. On the basis of component

information, position weight matrix, information entropy and

propensity factors were added as a new feature parameter. By

optimizing the three hyper-parameters in the deep learning

algorithm, the prediction results have been significantly

improved.

2 Materials and methods

2.1 Selection of data set

The data set is the basis of prediction. To ensure the

authenticity of data and the accuracy of experiment, we

selected eight metal ion ligands from the BioLip database:

Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+ (Yang et al.,

2013). In order to construct non-redundant data set, we

filtered the data samples by eliminating the sequence length of

less than 50 amino acids, resolution greater than 3 Å, and the

sequence identity higher than 30%. The fragments were

intercepted on the protein sequence by using the sliding

window method. To make that every residue of the protein

chain appears in the center of the fragment, we added (L−1)/

2 pseudo-amino acids at both ends of the protein chain. Here the

length L of the intercepted fragments was taken according to

references (Hu et al., 2016a). If (L+1)/2 is a binding residue, it is

defined as a positive fragment, otherwise it was a negative

TABLE 1 The non-redundant data set for eight metal ion ligands.

Ligands L Chains P N

Zn2+ 13 1,428 6,408 405,113

Cu2+ 15 117 485 33,948

Fe2+ 9 92 382 29,345

Fe3+ 11 217 1,057 68,829

Co2+ 11 194 875 55,050

Mn2+ 11 459 2,124 156,625

Ca2+ 9 1,237 6,789 396,957

Mg2+ 15 1,461 5,212 480,307

Note: Ligands represents metal ion ligand; L represents the sequence fragment length;

Chains represents the number of chains in a protein; P represents the binding residues;

N represents the non-binding residues.
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fragment. The non-redundant data set of eight metal ion ligands

is shown in Table 1.

2.2 Selection of feature parameters

2.2.1 Introduction of new feature parameter
In recent years, researchers have discovered a special class of

amino acid fragments in protein sequences. Due to the fact that

these fragments lack stable structure and are highly variable, they

are called the disordered regions of proteins (Dunker et al., 2002).

The instability and high variability of these disordered regions

can lead to their easy interaction with ligands (Noivirt-Brik et al.,

2009). In this way, it has been applied to the prediction of

protein-protein interaction, and good prediction results have

been obtained (Zhang et al., 2016). In this work, we used the

IUPred2A software and converted the structural state of each

amino acid in the protein sequence into the disorder score

(Mészáros et al., 2018; Gábor and Dosztányi, 2020). The

disorder score ranges from 0 to 1, and the higher the value,

the more disordered the structure of amino acids. In this paper,

the disorder values of positive (negative) set fragments were

statistically analyzed, since the disorder value was continuous, it

was divided into 10 intervals for the convenience of statistics.

Taken Ca2+ and Cu2+ as examples, the distribution of disorder

value of the binding residue and non-binding residue was shown

in Figure 1.

Note: The abscissa is the disorder value; the ordinate is the

probability of the disorder value.; Solid line and dotted line are

the positive and negative sets, respectively.

It can be seen from Figure 1A that the difference of the

disorder values of Ca2+ ligand between the positive and negative

sets was mainly concentrated in two intervals: 0–0.55 and 0.55–1,

and the threshold was 0.55. In Figure 1B, the threshold for Cu2+

ligand was 0.52. Therefore, eight metal ion ligands were

integrated, the disorder value was divided into two categories,

the threshold value was set as 0.5, and the value greater than

0.5 tends to disorder. X represents the disorder value, and the

classification threshold of the disorder value was represented by

the function f(x).

f(x) � I, x ∈ [0, 0.5]
ΙΙ, x ∈ (0.5, 1]{

2.2.2 Basic feature parameters
Based on the sequence of amino acids, we selected amino

acids, physicochemical features and predicted structural

information as feature parameters. Among them, the

physicochemical features of amino acids included the charge

and hydrophilic-hydrophobic of amino acids. According to the

charge properties of amino acids, the 20 amino acids were

divided into three categories (Taylor, 1986), as shown in

Figure 2A; according to the hydrophilic-hydrophobic

properties of amino acids, the 20 amino acids were divided

into six categories (Pánek et al., 2005), as shown in Figure 2B.

The predicted structural information includes: secondary

structure information, relative solvent accessibility and

dihedral angle (phi angle and psi angle), all of which were

obtained by the ANGLOR software for protein sequences (Wu

and Zhang, 2008). The secondary structure information included

three types: α-helix, β-sheet and coil. According to statistical

analysis, the solvent accessibility was divided into four intervals

(Cao et al., 2017), and its threshold was represented by r(x):

r(x) �
I, x ∈ (0, 0.2]

II, x ∈ (0.2, 0.45]
III, x ∈ (0.45, 0.6]
IV, x ∈ (0.6, 0.85]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
The dihedral angle information was reclassified in line with

statistics (Liu et al., 2020), the threshold value of the phi angle was

represented by the function g(x), and the threshold value of the

psi angle was represented by the function h(x):

g(x) � I, x ∈ [−180°,−75°]
ΙΙ, x ∈ ( − 75°, 180°] h(x) �

I, x ∈ [−180°, 15°]
II, x ∈ (15°, 135°]
III, x ∈ (135°, 180°]

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩

FIGURE 1
Distribution of disorder values of the binding residue and non-binding residue of Ca2+ and Cu2+ ligands. Note: The ordinate is the probability of
the disorder value; P, represents the binding residues; N, represents the non-binding residues.
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2.3 Extraction of feature parameters

2.3.1 New extraction method - propensity
factors

The previous methods of extracting feature parameters were

based on sequence fragments, and the effect of binding residues

and their surrounding residues on the protein-ligand binding

process has been sufficiently considered. However, in the process

of ligand protein binding, the specific binding residues can

directly interact with the ligands. The preference for amino

acids and physicochemical properties of these specific binding

residues has more outstanding impact on the binding process.

The propensity factors first appeared in the 1970s and was

proposed by two scholars, Chou and Fasman (Chou and

Fasman, 1974). It has been applied to the prediction of

protein secondary structure with good prediction results. The

formula of the propensity factors was expressed as follow:

Fij � pij

pj
(1)

where, pij � nij
Ni
, pj � Nj

Nt
, Ni � ∑20

i�1
nij, Nt � ∑2

j�1
Nj, i (i = 1, 2,. . .,

20) represents 20 amino acids; j (j = 1, 2) represents binding
residues and non-binding residues; nij represents the number of
amino acid i in binding residues or non-binding residues; Nj

represents the number of binding residues or non-binding
residues. Taking Ca2+ and Cu2+ as examples, the propensity
factor of amino acid, charge (i = 1, 2, 3) and hydrophilic-
hydrophobic (i = 1, 2,. . ., 6) were statistically analyzed, as
shown in Figure 3.

In Figure 3A, for Ca2+ ligand, the propensity factor values of

four amino acids D, E, H and N in binding residues were

significantly higher than that in non-binding residues. It

showed that the amino acids D, E, H, and N were more likely

to be used in binding residues for Ca2+ ligand. Similarly, it can be

seen from Figure 3B that the amino acids C, E, H, and M were

more likely be used in binding residues for Cu2+ ligand. It can be

found in Figures 3C,D that the binding residues of both Ca2+ and

Cu2+ ligands tended to be positively charged. As can be seen in

Figures 3E,F, the binding residues of Ca2+ ligands were more

likely to strong hydrophilicity, and the binding residues of Cu2+

ligands were more likely to strong hydrophilicity and amino acid

C. It can be seen from the comprehensive statistical analysis that

the amino acid, charge and hydrophilic-hydrophobic had

obvious preferences in binding residues and non-binding

residues. Therefore, this paper used the propensity factor that

can reflect the preference of binding residues as new extraction

method, the above three feature parameters was extracted and

used them as the predicted feature parameters. Finally, we obtain

6-dimensional propensity factor.

2.3.2 Extraction method of conservative
information and information entropy

The position weight matrix were widely used in the

prediction of protein structure and function to extract the site

conservative features, and good prediction results were obtained.

Here, the position weight matrix was also used to extract the site

conservative features, and the matrix elements of position weight

matrix were expressed as follows (Kel et al., 2003; Gao and Hu,

2014):

mi,j � ln⎛⎝pi,j

p0,j

⎞⎠ (2)

Where, pi,j �
(ni,j+

��
Ni

√
q )

(Ni+ ��
Ni

√ ), Ni � ∑21
j�1

ni,j, P0,j represents the

background probability, and ni,j represents the frequency of

the jth amino acid at the ith site, j represents 20 kinds of

amino acids and vacancies, q represents the number of

categories, here it is 21. Two standard scoring matrices can be

obtained from the positive and negative training sets, and 2L-

FIGURE 2
Classification of charge features and hydrophilic-hydrophobic features of amino acids. Note: (A) is 3 categories of the charge features; (B) is 6
categories of the hydrophilic-hydrophobic features.
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dimensional (L is the window length) feature vector can be

obtained for each segment. Similarly, the predicted secondary

structure (q = 4), relative solvent accessibility (q = 5), Phi angle

(q = 3), psi angle (q = 4) and disorder value (q = 3) were also

extracted by the same method. Finally, we obtained 6*2L-

dimensional the site conservative information.

According to previous studies (Liu et al., 2020; Wang et al.,

2021), information entropy was used to extract charge and

hydrophilic-hydrophobic and better prediction performance

was obtained. Here, we also use the extraction method of

information entropy. The 1-dimensional information entropy

was obtained from the hydropathic-hydrophobic and charge

information of amino acids, respectively. Finally, we got 2-

dimensional information entropy.

The information entropy formula was expressed as (Strait

and Dewey, 1996):

H(x) � −∑q
j�1
pj log2pj (3)

Where, pj � nj
N, nj represents the frequency of occurrence of

the jth classification in a segment, and N is the segment

length. For the value of q, if it represents the charge

classification, q = 4; if it represents the hydrophilic-

hydrophobic classification, q = 7.

FIGURE 3
Statistical analysis of the propensity factors of binding residues and non-binding residues. Note: In Figure 3, the ordinate represents the value of
propensity factors, and P and N represent binding residues and non-binding residues, respectively. Figures (A) and (B) are the statistical analysis of
propensity factors of amino acids of Ca2+ and Cu2+ ligands, respectively; The abscissa represents 20 amino acids. Figures (C) and (D) are the statistical
analysis of propensity factors of charge features of Ca2+ and Cu2+ ligands, respectively; and the abscissa represents the three charge
classifications. Figures (E) and (F) are the statistical analysis of the propensity factors of hydrophilic-hydrophobic features of Ca2+ and Cu2+ ligands,
respectively; and the abscissa represents the six hydrophilic-hydrophobic classifications.
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According to previous studies (Jiang et al., 2016; Cao et al.,

2017; Wang et al., 2019; Liu et al., 2020; Wang et al., 2021), it was

found that good prediction results were obtained by using

component information, which indicated that the component

information was particularly important for predicting the

binding sites of protein-metal ion ligands. Therefore, we also

adopted the extraction method of component information. In the

study, we extracted 21, 4, 5, 3, 4, and 3-dimensional component

information for amino acids, secondary structure, relative solvent

accessibility, phi angle, psi angle and disorder value, respectively.

Finally, we obtained a total of 40-dimensional component

information.

2.4 Deep neural network algorithm

Deep Neural Network (DNN) is one of the common deep

learning algorithms, which aims to improve the discriminative

ability of the model by providing a higher level of abstraction. Its

neural network layer can be divided into input layer, hidden layer

and output layer. The addition of hidden layer enhances the

expression ability of the model; the extension of activation

functions, such as Tanx function, Softmax function, and Relu

function, etc, makes that the DNN algorithm have a wider

application field. Therefore, DNN algorithm is selected as the

prediction tool in this paper.

This paper used the following modules of the deep learning

algorithm: the DNN backpropagation algorithm was used

to train samples; the sklearn-preprocessing module was

used to normalize the data; the Adam module was used as

optimizer; the Relu function was used as the activation

function of hidden layer; using the EarlyStopping module can

effectively avoid the problem of overfitting caused by continuous

training; the cross entropy loss function was used to speed up the

operation. These algorithm modules were implemented under

the keras framework of Python deep learning, and used

TensorFlow as the back-end engine to build the DNN algorithm.

2.5 The validation methods and evaluation
metrics

In this study, the 5-fold cross-validation was generally used to

predict metal ion ligand binding residues (Hu et al., 2016b; Hu

et al., 2016b; Jiang et al., 2016; Cao et al., 2017; Hu et al., 2020).

For the evaluation of the prediction results, we used the methods

commonly used in the prediction of protein-metal ion ligand

binding residues: sensitivity (Sn), specificity (Sp), accuracy (Acc),

and Matthew’s correlation coefficient (MCC) (Jiao and Du, 2016;

Chen et al., 2019). The expressions are:

Sn � TP

TP + FN
× 100% (4)

Sp � TN

TN + FP
× 100% (5)

Acc � TP + TN

TP + TN + FP + FN
× 100% (6)

MCC � (TP × TN) − (FP × FN)�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (7)

In the formula, the number of metal ion ligand binding

residues correctly predicted is TP, otherwise it is FN; the number

of metal ion ligand non-binding residues correctly predicted is

TN, otherwise it is FP.

3 Results and discussion

3.1 Prediction results of basic feature
parameters

The component information (37 dimensions) and site

conservative information (5*2L dimensions) of amino acids,

secondary structure, relative solvent accessibility and dihedral

angle, and information entropy (2 dimensions) of charge and

hydropathic-hydrophobic were fused as feature parameters,

the DNN algorithm was used to predict, and the 5-fold cross-

validation results were shown in Table 2 (DNNa). Overall, the

predicted results were not ideal. The Sn value of the eight metal

ion ligands was only over 11.53%, the Sp and Acc values were

only better than 96.38%, and the MCC value was only better

than 0.1354.

3.2 Prediction results of adding disordered
value and propensity factors

In order to further improve the prediction performance,

disorder value and propensity factor were introduced, and the

DNN algorithm was used to predict the metal ion ligand binding

residues. The results of 5-fold cross-validation of Ca2+ and Cu2+

ligands as examples were shown in Figure 4.

It can be found from Figures 4A,B that when the disorder

value and propensity factor were added separately, the Sn and

MCC values were significantly improved, and the Sp and Acc

values were almost unchanged. When the disorder values and

propensity factor were used at the same time, the prediction

results were the best. Therefore, we believed that both the

disorder value and the propensity factor had a more positive

effect on the prediction of metal ion ligand binding residues.

The prediction results of feature parameters four are listed in

Table 2 (DNNb). It can be seen from Table 2 that the Sn value of

the eight metal ion ligands reached 16%, the Sp and Acc values

reached 97.42%, and the MCC value reached 0.2051. Compared

with the prediction results of the basic parameters, it can be

found that all the four evaluation indexes of the eight kinds of
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ions have been improved, in which the Sn and MCC values

increased significantly. For example, the Sn value of Mg2+, Ca2+,

Co2+ and Zn2+ ligands increased by 10%, 6.04%, 4.47% and

4.84%, respectively; the MCC value increased by 0.0439,

0.0484, 0.0697 and 0.0776, respectively. It can be seen that the

adding disordered value and propensity factor can effectively

improve the prediction performance.

3.3 Optimization of hyper-parameters

The hyper-parameters of deep learning algorithms include:

learning rate, activation function, and number of epochs, etc. The

hyper-parameters had great influence on the training speed and

performance of the predictor. Therefore, we optimize the hyper-

parameters to improve the prediction performance. Considering

the influence on model accuracy, computing resources, computing

time and previous studies (Koutsoukas et al., 2017), we selected

three hyper-parameters to optimize, which included the number of

hidden layers, the number of hidden layer nodes (the number of

hidden neurons) and the batch size. The value range of the

optimized hyper-parameters was given in Table 3.

Taken Ca2+ as examples, Figure 5A is a line chart showing the

MCC value and Sn value of Ca2+ ligands with the number of hidden

layers. It can be seen from Figure 5A that the number of hidden

layers had great influence on the performance of the predictor.

TABLE 2 Comparison of 5-fold cross-validation results.

Ligand Algorithm Hidden layers Hidden neurons Batch size Sn(%) Sp(%) Acc(%) MCC

Zn2+ DNNa 2 64 64 26.65 99.34 98.21 0.3147

DNNb 2 64 64 31.49 99.51 98.45 0.3923

DNNc 2 16 16 33.33 99.73 98.69 0.4630

IonSeq — — — 43.56 99.21 99.75 0.5043

Cu2+ DNNa 2 64 64 38.97 98.62 97.78 0.3237

DNNb 2 64 64 42.06 99.07 98.27 0.3982

DNNc 4 64 16 49.90 99.38 98.68 0.5070

IonSeq — — — 50.65 99.01 99.69 0.5868

Fe2+ DNNa 2 64 64 29.32 98.74 97.85 0.2504

DNNb 2 64 64 33.25 99.15 98.30 0.3264

DNNc 2 16 16 35.84 99.27 98.45 0.3659

IonSeq — — — 54.08 99.51 98.84 0.5772

Fe3+ DNNa 2 64 64 27.27 99.47 98.32 0.3254

DNNb 2 64 64 29.29 99.49 98.39 0.3452

DNNc 2 16 16 32.08 99.51 98.49 0.3953

IonSeq — — — 52.27 99.81 99.21 0.6370

Co2+ DNNa 2 64 64 11.53 99.18 97.81 0.1354

DNNb 2 64 64 16.00 99.36 98.06 0.2051

DNNc 4 16 16 17.83 99.37 98.10 0.2254

IonSeq — — — — — — —

Mn2+ DNNa 2 64 64 15.74 99.71 98.60 0.2462

DNNb 2 64 64 17.62 99.70 98.61 0.277

DNNc 3 16 32 18.17 99.74 98.65 0.2933

IonSeq — — — 31.07 99.82 99.01 0.4553

Ca2+ DNNa 2 64 64 20.42 98.52 97.20 0.1831

DNNb 2 64 64 26.46 98.68 97.42 0.2315

DNNc 2 32 32 28.14 98.72 97.62 0.2664

IonSeq — — — 22.72 99.04 98.18 0.2111

Mg2+ DNNa 2 64 64 22.85 96.38 96.67 0.1852

DNNb 2 64 64 32.85 98.33 97.61 0.2291

DNNc 4 64 32 34.82 98.52 97.83 0.2565

IonSeq — — — 5.57 99.98 99.49 0.1825

Note: DNNa, is the prediction result of without optimization of hyper-parameters and without adding disorder value and propensity factor; DNNb, is the prediction result of without

optimization of hyper-parameters and adding disorder value and propensity factor; DNNc, is the prediction result of optimization of hyper-parameters and adding disorder value and

propensity factor; IonSeq is data obtained from Reference (Hu et al., 2016b).
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When the number of hidden layers was 2, both the MCC and Sn

values reached their peaks. We took the optimal layer value for Ca2+

ligand as 2. From Figure 5B, it can be known that the optimal hidden

layer node value of Ca2+ ligands was 32. From Figure 5C, it could be

seen that the optimal batch size of Ca2+ ligands was 32.

The prediction results after optimization of hyper-

parameters were shown in Table 2 (DNNc). It can be seen

from the results that the Sn value of eight metal ion ligands

reached 17.83%, the Sp and Acc values reached 97.62%, and the

MCC value reached 0.2254. Compared with DNNb, it was found

that the optimization of hyper-parameters could effectively

improve the prediction performance of the DNN algorithm,

and the four evaluation indexes had a certain improvement.

The Sn and MCC values were significantly improved, in which

the Sn value of Cu
2+ and Fe3+ ligands increased by 7.84 and 2.79%,

respectively. The MCC value of Fe3+, Cu2+ and Zn2+ ligands

increased by 0.0501, 0.1088 and 0.0707, respectively.

3.4 Comparison of predicted results

In order to verify the reliability and practicability of the

prediction model, the results were compared with the previous

IonSeq method. For the convenience of comparison, the results of

the IonSeqmethodwere also listed in Table 2. Through analysis and

comparison, it was found that the evaluation index of the prediction

result of the DNN algorithm has the same characteristics as the

IonSeq method. Both the methods have small Sn value and large SP
value. The reason for this result was that the number of negative

samples was much greater than that of positive samples in the

dataset. The results of DNN algorithm for alkaline Earth metals

(Mg2+ and Ca2+) were better than IonSeq method, in which the Sn
and MCC values of Mg2+ ligand increased by 29.25% and 0.074,

respectively. The Sn and MCC values of Ca2+ ligand increased by

5.42% and 0.0553, respectively. The prediction results of Cu2+

ligand were closest to the IonSeq method, and the Sp value was

FIGURE 4
The results of 5-fold cross-validation of Ca2+ (A) and Cu2+ (B) ligands. Note: The abscissa is the four evaluation indexes, and the ordinate is the
value of the evaluation index. The ordinate is the value of the evaluation index. The blue bar represents the prediction results of the basic feature
parameters, the yellow bar represents the prediction results of 1+propensity factor, the green bar represents the prediction results of 1+disorder
value, and the red bar represents the prediction results of 2+ disorder value.

FIGURE 5
Curve of MCC value and Sn value of Ca2+ ligands with hyper-parameters. Note: The abscissas of (A-C) represent three hyperparameters,
respectively. The ordinate is the value of MCC and Sn; MCC and Sn are the evaluation index.

TABLE 3 Value range of hyper-parameters.

Hyper-parameters Value range

Hidden layers 1,2,3,4,5,6,7,8

Hidden layer nodes 2,4,8,16,32,64,128

Batch size 2,4,8,16,32,64,128
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slightly higher than the IonSeq method. Co2+ ligand can’t be

compared with the IonSeq method, but the prediction

performance was greatly improved by comparing the prediction

results. The prediction results of the other four metal ion ligands

using the DNN algorithm were slightly poor. Although not all of

our results were better than the IonSeqmethod, theDNNalgorithm

had a certain positive effect on the prediction of metal ion ligand

residues.

4 Conclusion

In this paper, based on the information of protein sequence

and sequence-derived structure, the DNN algorithm was used to

predict eight types of metal ion ligands binding residues. The

introduction of new feature parameters and extraction methods

perfected the basic feature parameter information, which helped

to identify metal ion ligand binding sites and improved the

prediction performance. The hyper-parameter optimization of

the model effectively improved the prediction performance of the

DNNmodel. In comparison with IonSeq, the obtained prediction

model based on sequence information, sequence-derived

structure information and DNN algorithm was not very

perfect. However, in view of the universality and practicability

of the prediction model, DNN model can be used as a

supplementary model to predict metal ion ligand residues.
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