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ABSTRACT
River buffalo (Bubalus bubalis) milk plays an important role in economy and

nutritious diet in several developing countries. However, reliable milk-yield genomic

markers and their functional insights remain unexposed. Here, we have used a

target capture sequencing approach in three economically important buffalo breeds

namely: Banni, Jafrabadi and Mehsani, belonging to either high or low milk-yield

group. Blood samples were collected from the milk-yield/breed balanced group of

12 buffaloes, and whole exome sequencing was performed using Roche 454 GS-FLX

Titanium sequencer. Using an innovative approach namely, MultiCom; we

have identified high-quality SNPs specific for high and low-milk yield buffaloes.

Almost 70% of the reported genes in QTL regions ofmilk-yield andmilk-fat in cattle

were present among the buffalo milk-yield gene candidates. Functional analysis

highlighted transcriptional regulation category in the low milk-yield group, and

several new pathways in the two groups. Further, the discovered SNP candidates

may account for more than half of mammary transcriptome changes in high versus

low-milk yielding cattle. Thus, starting from the design of a reliable strategy, we

identified reliable genomic markers specific for high and low-milk yield buffalo

breeds and addressed possible downstream effects.
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Keywords Buffalo, Single nucleotide polymorphism,Milk-yield, Quantitative trait loci, Mammary
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INTRODUCTION
Dairy farming has been a vital part of agriculture for several thousands of years,

and have a high impact in social, health and economic conditions of several Asian

countries (http://www.fao.org). Notably, India is the largest producer of milk in the world,

and buffalo’s milk account for about half of India’s milk production (http://www.fao.org).

Milk or milk products form the primary source of fat and protein in an average Indian

diet, and buffalo dairy farming is a life sustaining business for millions of small-scale

dairy farmers in the country. Economically important Indian buffalo breeds include:

Mehsani, Jafarabadi, Nili-Ravi, Surti, Murrah, Pandharpuri, Banni etc. Despite their

multi-faceted significance in countries like India, a few effort has been made so far to

improve buffalo breeding programs (Singh et al., 2009). It is well understood that milk

yield in dairy animals have a major genetic component (Cole et al., 2009). In the recent
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years, genomic selection in cattle using molecular markers such as SNPs has been

proved to be highly efficient (Berglund, 2008). A multi-breed analysis will facilitate

precise dissection of milk-yield makers and their molecular framework (Goddard &

Hayes, 2009; Melka & Schenkel, 2012; Olson, VanRaden & Tooker, 2012). Recently, taking

advantage of next-generation sequencing with targeted DNA capture technologies are

proved to be an efficient and cost-effective approach for high-throughput SNP discovery

(Hirano et al., 2013).

Here, we designed a whole exome capture custom array that target exons and

untranslated regions (UTRs) of the cattle genome to perform whole-exome/targeted

sequencing and conducted exome sequencing to identify variants in three recognized

milch breeds of river buffalo native to Gujarat state of India viz. Banni, Mehsani, and

Jafrabadi breeds. This study design allows us to identify the genetic variants specific for

buffalo breeds.

MATERIAL AND METHODS
Sample collection and genomic DNA extraction
We recruited 12 water buffaloes, which were biological replicates from three breeds

namely Banni, Mehsani and Jafrabadi, belonging to either high or low-milk yield category

from the Gujarat state of India (Table 1). The gDNA was isolated from blood samples

using a Qiagen DNeasy Blood and Tissue kit (Qiagen Corp., CA, USA) and the resultant

DNA was quantified using Qubit� dsDNA BR Assay (Invitrogen Corp., CA, USA) and

integrity was confirmed by agarose gels. Blood drawings were conducted in accordance

with regulations and prior approval by the institutional animal ethics committee of

Anand Agricultural University, Gujarat, India.

Probe design, target enrichment and exome sequencing
We obtained the intended targets (all coding exons, 3′UTR and 5′UTR exons) of cattle

(Btau_4.6.1/bos Tau7) from RefGene tables of UCSC genome browser. Further, the

custom probe design was performed by NimbleGen (Roche, Germany) which are

compatible with Roche GS-FLX Titanium sequencer.

Rapid library for each sample was prepared from ∼1 mg of gDNA separately and

multiplexed according to manufacturer’s protocol (Roche, Germany) using high

quality DNA. Final libraries were used to set up hybridization reaction at isothermal

temperature of 47 �C for 68–72 h in thermal cycler, with custom designed probes as

per manufacturer’s protocol (NimbleGen). Captured DNA libraries were quantified

spectrophotometrically, and evaluated electrophoretically with high sensitivity DNA assay

on Agilent Bioanalyzer 2100 (Agilent). Finally, the libraries were sequenced on Roche

454 GS-FLX Titanium instrument according to manufacturer’s protocol (Roche,

Germany). The raw sequence data will be deposited in a public repository.

Raw reads filtering, alignment and variant detection
Raw reads were filtered based on phred quality score � 20 and length � 50 bp using

QTrim tool (Schmieder & Edwards, 2011). The resultant sequence reads were mapped
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against Bos taurus genome build 4.6.1 using ‘bwa-mem’ module of BWA v 0.7.5a (Li &

Durbin, 2010). Potential PCR duplicates were removed using ‘MarkDuplicate’ module

of Picard Tools. SNPs passing the criteria depth� 5 and quality score� 30 were identified

using SAMtools, FreeBayes and VarScan tools, through pooled variant calling strategy

(Li et al., 2009; Garrison & Marth, 2012; Koboldt et al., 2012). To deduce the shared

(MultiCom) and specific SNPs from each tool, we used VCFtools package v0.1.11 and

basic Linux commands (Danecek et al., 2011). The SNPs belonging to high-yield and

low-yield were compared using VCFtools package v0.1.11 (Danecek et al., 2011). The

specific SNPs (high or low yield) refers to the SNPs that were present in any of the sample

in the given group which are not present or did not pass the SNP calling threshold in

the other group.

Annotation and QTL dataset
The resulting sequence ontology (SO) and candidate gene annotation of SNPs specific

for high and low yield groups was performed using SnpEff v 3.4 (Cingolani et al., 2012).

The candidate gene enrichment analysis was performed in the GeneCodis tool and

the enriched pathways and gene ontology (GO) terms were identified using

Hypergeometric test followed by Benjamini-Hochberg’s correction (p-value < 0.01).

Cattle QTL candidate genes belonging to milk-yield and milk-fat categories were

obtained from the AnimalQTLdb online resource (Hu et al., 2013).

Mammary gland transcriptome analysis
From NCBI-GEO database, we obtained the whole gene expression data of 8 samples

derived from mammary gland of Holstein Friesen cattle belonging to high or low milk

yield (Accession: GSE33680). The gene expression was measured using Agilent-023647 v2

microarray, comprising of 45,220 oligo-nucleotide probes representing cattle genes. In

the dataset, there were four samples in each for high-milk yield and low-milk yield groups.

GEO2R implementation of LIMMA ebayes test was used to identify differentially

regulated genes between high and low milk yield groups (p-value < 0.01).

Table 1 Summary of samples recruited for the analysis.

Group Sample ID Breed Total milk yield (liters)

Low milk yield BLP1 Banni 1,680

BLP2 1,400

MLP2 Mehsani 1,401

MLP5 1,449

JLP1 Jafarabadi 571

JLP2 583

High milk yield BHP1 Banni 6,440

BHP2 5,880

MHP1 Mehsani 4,104

MHP2 4,091

JHP1 Jafarabadi 3,186

JHP2 2,947
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RESULTS
Samples and overview of sequence data
In order to identify SNPs specific for high and low milk-yield in Indian buffalo breeds, we

designed two balanced sample groups of healthy Indian buffaloes with prominent

difference in milk yields. Animals with fertility issues, inconsistent diets or other known

disorders were excluded from the study. The custom designed capture probes based on

UCSC RefTable data of Bos taurus genome version 4.6.1/bosTau7 covered 125,679 exons,

14,084 3′UTRs and 16,574 5′UTRs. The sequencing experiment of 12 samples generated

about 2.49 gigabases encompassed in ∼6.5 million sequence reads with average length

of 380 bases (Table 2). We obtained ∼68% average on-target capture efficiency across

samples and approximately 98% of filtered reads were mapped to Bos taurus 4.6.1

reference sequence (NCBI), with the average per sample depth � 5� (Table S1).

Identification of SNPs specific for high and low milk-yield
using MultiCom approach
We grouped the samples based on milk-yield (high and low milk-yield groups), and

performed the SNP analysis separately for each group, using cattle as reference. Initially,

we used three variant calling tools namely: SAMtools, FreeBayes and VarScan with the

consistent thresholds of base depth � 5 and quality score � 30 for all the tools. In the

high milk-yield group, SAMtools detected 1.097 million SNPs. FreeBayes and VarScan

reported 1.101 million and 1.090 million SNPs respectively (Fig. 1A–1C). Even though

high concordances were observed between the outcomes from the three tools, several

thousands of SNPs (6.5–9.3% of output from each tool) were tool-specific or

non-reproducible SNP calls (Fig. 1A). On the other hand, in the low milk-yield group,

SAMtools identified 1.389 million SNPs, followed by 1.103 and 1.098 million SNPs

respectively by VarScan and FreeBayes. In the low milk-yield group, the tool-specific

SNP calls for SAMtools was the same as that of high-production dataset (6.5%), but a

considerable reduction of tool–specific calls was observed for VarScan and FreeBayes

(4.6 and 3.8%, respectively) outputs, even though the total outcome by these two tools

were comparable with the high milk-yield group (Fig. 1A). We hypothesized that the

non-reproducible SNPs were potential false positive calls. To test this, we compared

the transition/transversion (ts/tv) ratios of SNPs which were tool-specific and shared,

separately for the two groups. A highly consistent ts/tv range was observed for the shared

SNPs, ranging from 2.61 to 2.65. On contrary, the tool-specific or non-reproducible SNPs

showed a dynamic range of lower ts/tv ratios, ranging from 1.60 to 2.38 (Fig. 1D).

Strikingly, the difference in the ts/tv ratios were highly significant (p-value < 0.005)

(Fig. 1D). Next, using SO annotation by snpEff tool, we compared the regions in the

reference genome in which the SNPs are located. Notably, it was observed that

the inter-genic region SNPs were almost doubled in case of tool-specific SNP

calls, consistently in three tools and the two groups (Fig. 1E). Therefore, we considered

only those SNPs which were reproduced by at least two tools (hereon called MultiCom

approach). There were a total of 1.203 million SNPs in high milk-yield group and
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Table 2 Summary of sequence data.

Sample

ID

Raw dataset Filtered dataset

Total reads Base count

(Mb)

Mean read

length

No. of reads Base count

(Mb)

Mean read

length

% passed Target covered (%)

BLP1 468,655 179.2 382 434,193 149.6 344 92.6 70.6

BLP2 544,069 206.1 379 503,649 173 343 92.6 71.7

BHP1 604,742 229.7 380 555,099 195 351 91.8 63.3

BHP2 629,606 240.7 382 580,983 204.8 352 92.3 65.5

MLP2 573,466 213 371 530,089 176.3 332 92.4 67.2

MLP5 437,957 165.4 378 407,996 137.1 336 93.2 73.3

MHP1 544,403 197.3 362 498,613 163.2 327 91.6 70.2

MHP2 657,400 238.4 363 602,554 197.3 327 91.7 62.8

JLP1 632,961 249 393 594,251 213.9 359 93.9 65.3

JLP2 576,284 227.3 394 541,456 195.4 360 94 66.3

JHP1 447,055 172.3 385 413,569 145.1 350 92.5 76.4

JHP2 445,066 180 404 413,702 151.7 366 93 74.3

6,561,664

(total)

2,498

(total)

381

(average)

6,076,154

(total)

2,102

(total)

346

(average)

92.6

(average)

67.8

(average)

Figure 1 SNPs discovery using MultiCom approach. (A-B) shows the MultiCom SNP discovery in

the high and low production respectively. The total number of high quality SNPs detected by

SAMtools, VarScan and Freebayes tools are given. In (A and B) the numbers given in uncoloured

region inside the Venn diagram is the number of non-reproducible or tool-specific SNPs. MultiCom

approach identified 1.203 million and 1.315 million SNPs respectively in high and low production

group. (C) shows the number of shared and specific SNPs in high and low production groups.

(D) Comparison of ts/tv ratios in tool-specific and shared SNPs outputted by each of the three

tools in high and low production groups. The difference in ts/tv ratio is statistically significant

(p-value < 0.005) (E) Percentage of intergenic SNPs detected by each of the three tools in high and

low production groups.
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1.315 million SNPs for low milk-yield group (Fig. 1A–1C). Interestingly, in almost all

cases, SNP selection through MultiCom approach facilitated an increased discovery rate

(up to 20%) compared to the outcome from each tool. Finally, we compared MultiCom

outcomes in high milk-yield and low milk-yield groups, and have found that 255,741

SNPs (21.3%) were specific for high yield group, and 367,674 SNPs (28.0%) were specific

for low yield group. On the other hand, the 947,646 SNPs were common to the two groups

which may be generic SNPs in buffalo, as the reference genome was cattle.

Candidate gene prediction and comparison with milk-yield
and milk-fat QTL dataset
Using snpEff prediction candidate genes were determined for high and low milk-yield

specific SNPs (Table S2). The snpEff annotation mapped the 255,741 high yield specific

SNPs in 7,212 genes, and the 367,674 low yield specific SNPs in 8,284 coding genes.

Even though the SNPs were specific for the two groups, we have found that the 5,037

genes were common to high and low milk-yield groups. On the other hand, there were

2,175 genes specific for high yield and 3,247 for low milk-yield. In order to determine

whether these genes were present among the reported milk-yield and milk-fat related

genes in QTL region, we obtained the list of candidate genes in milk-yield and milk-fat

categories of cattle resources of the animal genome data repository. Remarkably, of

74 milk-yield candidates, 51 genes were present in our results, among which 26 were

common to high and low milk-yield group and 17 genes specific for low yield specific

genes, and 8 were high specific genes (Fig. 2A). On the other hand, of 91 milk-fat

candidates, 30 genes were common to high and low-milk yield group, 24 and 15

candidate genes were specific for low and high milk-yield groups respectively (Fig. 2B).

On the whole, about 70% of the QTL candidate genes in respective categories belonging

to cattle genome annotation were present among the genes the genes identified by our

study in buffalo breeds.

Enrichment analysis of yield specific candidate genes
Next, we performed the GO enrichment analysis of the candidate genes, specific for

high and low milk-yield groups with the threshold of FDR corrected p-value < 0.01.

In the GO molecular functions category, eight GO terms were enriched in high milk-yield

group. On the other hand, 21 terms were enriched in low-milk yield group, among which

four terms were common to GO terms belonging to high milk-yield group (Fig. 3).

The common terms were metal ion binding, nucleotide binding, zinc ion binding and

cytokine activity. Interestingly, several GO terms in the low milk-yield category which

were related to transcriptional regulation, such as sequence-specific DNA binding

transcription factor activity (GO:0003700), sequence-specific DNA binding (GO:0043565)

and transcription regulatory region DNA binding (GO:0044212) (Fig. 3A). Collectively,

140 genes were found to be contributing to the statistical enrichment of these three GO

terms, which were specific for low-milk yield group (Fig. 3C).

In order to obtain the clues about the functional consequences of the candidate

genes specific for high and low-yield specific groups, we performed the KEGG pathway
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enrichment analysis using Genecodis tool. There were 15 pathways enriched for the

high yield specific group and 32 pathways for the low-yield specific group (Table S3).

However, we have noticed that several of the pathways were related to human diseases.

Further, after excluding human disease specific pathways, there were 8 pathways

present in high-yield group and 19 pathways for the low milk yield group (Table 3).

The most significant pathways in the low milk-yield group were Oxidative

phosphorylation, Toll-like receptor signalling, cytokine-cytokine receptor interaction etc.

On the other hand, the most significant among the high-yield group were Jak-STAT

signalling pathway, Wnt signalling pathway, ErbB signalling pathway etc. Surprisingly,

Toll-like receptor signalling and MAPK signalling pathway were enriched in both

high and low milk-yield groups by distinct set of genes falling in the same pathway

(Figs. S1–S3).

Comparison of buffalo milk-yield specific candidate genes
with milk-yield DEG (Differentially Expressed Genes) in cattle
Next, we hypothesized that the SNPs in the candidate gene may exert changes in the gene

expression that could have an effect on milk yield. In order to verify this, we obtained the

mammary cell transcriptome dataset belonging to high and low milk-yielding cattle (see

Figure 2 Gene level comparison of SNPs specific in high and low milk-yield groups with QTL

dataset. (A) Overlapping genes in milk-yield category. The first column represents high and low

milk yield specific SNPs located in 26 common genes. The second and third column respectively

indicates the 17 low-milk yield specific and 8 high-milk yield specific candidate genes. (B) Overlapping

genes in milk-fat category. The first column represents high and low milk yield specific SNPs located in

30 common candidate genes. The second and third column respectively indicates the 24 low-milk yield

specific and 15 high-milk yield specific candidate genes.
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Materials and Methods). LIMMA analysis between the high milk-yield and low milk-yield

group detected 1,056 annotated differentially expressed genes, in which 579 gene were

up-regulated and 477 genes were down-regulated among the low milk-yield samples

(Fig. 4; Table S4). Quite interestingly, it was found that 582 out of 1,056 DEG were buffalo

SNP candidate genes in low yield specific, high yield specific or common to both groups

(Fig. 4). Among these 582 overlapping DEG, 196 genes (118 up-regulated and 78 down-

regulated) belonged to low yield specific group, 139 genes (68 up-regulated and 71 down

regulated) were high yield specific group. On the other hand, 247 DEG (147 up-regulated

and 100 down-regulated in low milk yield) were common to high and low milk-yield

groups. However, we didn’t observe any trend in the direction of fold change with respect

to milk-yield group. Next, in order to assess whether the overlap between the DEG and

the SNP candidates are not due to random chance, we performed Hypergeometric tests

on each category viz. low yield specific, high yield specific and common. Interestingly,

in all categories p-value < 0.0001. Thus, considering that SNP candidate genes

accounted more than half of the DEG in a cross-species comparison, we propose that

buffalo SNP candidates potentially influence downstream gene expression changes to a

large extend.

Figure 3 Gene ontology enrichment analysis of high and low specific gene candidates. (A) Twenty one gene ontology (molecular functions)

terms enriched in low-yield specific group. The number of hits associated with each term along with the FDR corrected p-value is given. (B) Eight

gene ontology (molecular functions) terms enriched in high-yield specific group. (C) The transcriptional regulators (140 genes) highlighted by the

GO analysis in low-yield group.
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DISCUSSION
In India, milk or milk products form one of the primary source of nutrition in an average

diet, and water buffalo’s milk contribute to about 55% country’s total milk production

(Michelizzi et al., 2010). In this study, using Roche 454 GS-FLX Titanium sequencer we

performed exome sequencing of replicated samples of three Indian buffalo breeds

belonging to high or low milk-yield groups. The contrast between high and low-milk yield

across breeds were about 3.7 fold, which was not influenced by disease, fertility or diet

factors. The sequencing experiment generated about 2.49 Gb of data, and the reads were

mapped to cattle genome, as the complete assembly of water buffalo whole genome

sequence is not available yet. Initially, this resulted in high discovery rate of SNPs

compared to the previously reports (Jansen et al., 2013; Georges, 2014). However, the

number of SNPs have markedly reduced when we filtered out those which are specific for

Table 3 Pathways enriched in low and high milk-yield groups.

KEGG pathways Group Genes FDR p-value

Oxidative phosphorylation L 33 1.53E-07

Toll-like receptor signalling pathway* L 20 3.39E-05

H 13 4.54E-03

Cytokine-cytokine receptor interaction L 26 1.08E-04

Jak-STAT signalling pathway H 18 1.96E-04

Melanogenesis L 14 6.75E-04

Spliceosome L 21 9.81E-04

Viral myocarditis L 11 1.03E-03

Wnt signaling pathway H 17 1.91E-03

RIG-I-like receptor signaling pathway L 12 2.99E-03

Osteoclast differentiation L 17 3.25E-03

Toxoplasmosis L 17 3.25E-03

Adipocytokine signaling pathway L 12 3.40E-03

Protein digestion and absorption L 10 3.91E-03

ErbB signaling pathway H 10 4.14E-03

Natural killer cell mediated cytotoxicity H 13 4.36E-03

Leukocyte transendothelial migration H 14 4.43E-03

Cell cycle L 17 4.87E-03

MAPK signaling pathway* L 27 5.01E-03

H 21 5.28E-03

Vasopressin-regulated water reabsorption L 9 6.02E-03

VEGF signaling pathway H 10 6.79E-03

Collecting duct acid secretion L 7 7.38E-03

Axon guidance L 15 7.50E-03

Apoptosis L 13 7.56E-03

Cell adhesion molecules (CAMs) L 15 8.50E-03

Protein processing in endoplasmic reticulum L 20 9.14E-03

Notes:
L, Low milk-yield; H, High milk-yield.
* Common pathways in L and H groups.
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low and high milk-yielding group. It has been recently reported that there are indigenous

bias for each SNP calling algorithm which causes disagreement of results across software

tools (Pabinger et al., 2014; Yi et al., 2014). However, only few efforts have been taken

to assess this aspect systematically (Yi et al., 2014). In this study, we have used three

algorithms for SNP calling and have selected those SNP which were detected by at least

two tools. Initially, in order to assess potential true positive calls, we have applied the

widely accepted ts/tv metrics (DePristo et al., 2011). According to the 1000 genomes

project, the expected ts/tv ratio in whole-genome sequencing is about 2.10, and for exome

target regions ranges from 2.6 to 3.5 (http://www.1000genomes.org/). We have not

only observed a lower ts/tv ratio in the non-reproducible SNP calls, but also a varying

range of ts/tv values. In addition, the SNP calls from intergenic region were almost

doubled in case of non-reproducible SNPs. Overall, we propose the MultiCom approach

as a simple but effective strategy to identify reliable SNPs, without decreasing overall

discovery rate.

After determining the SNPs specific for high and low milk-yield groups, it is important

to understand its possible consequences by extending the analysis at gene level, which

is a very useful strategy to obtain the possible molecular framework hosted by the

SNPs (Lehne, Lewis & Schlitt, 2011; Menon & Farina, 2011; Shastry, 2009). Towards this,

we focused on the genes in which SNPs fall in their exonic region. Initially, we have seen

Figure 4 Comparison between DEG in high vs low-milk yield cattle and SNP candidate genes from

buffalo breeds. The top shows the workflow for the derivation of the DEG in high and low milk-yielding

cattle using Agilent microarrays. The Venn diagram highlights the 582 DEG (55.1% of total) which are

discovered SNP candidate genes discovered by our multi-breed study in buffaloes. The colored bar in

indicates the group of SNP candidates in each category. Green color indicates 247 candidate genes

common to high and low-yield specific groups, derived from specific SNPs in both the groups. Yellow

and red color indicates the specific high-yield (139) and low-yield (196) candidate genes respectively.

The overlap of the DEG and in each of these category were found to statistically significant in Hyper-

geometric test (p-value < 0.005).
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that majority of the milk-yield and milk-fat QTL candidate genes are found among the

discovered group. The SNP candidate genes specifically found in the low-yield specific

group includes ABCG2, CSN2, CSN3, IL12RB2, SRC, STAT5B etc. The classic milk proteins

such as CSN2, CSN3 (members of casein family), STAT5B etc. are prominent indicators of

milk yield parameters (Lee et al., 2014). Interestingly, in the low-yield specific group, there

were several genes related to immunological properties of milk. For example, ABCG2 gene is

responsible for the active secretion of clinically and toxicologically relevant substrates into

the milk and soluble CD14 in colostrum and milk acts as a sentinel molecule and an

immune modulator, which provide innate responses against bacterial infections in the calf

(Olsen et al., 2007; Ibeagha-Awemu et al., 2008). IL12RB2 gene is another example in this

category. Thus the low-yield specific group not only contained genes directly implicated in

milk yield, but also comprised of genes that contribute to major immunological properties

of milk. On the other hand, high-yield specific candidate genes included ARFGEF1, GH1,

DGAT1, IRF9, PRL etc., which are hallmark genes for milk yield in cattle. Interestingly, Shi

et al. (2012) have recently shown that the polymorphism of several of these genes affects the

milk composition in different water buffalo breeds.

GO enrichment analysis showed several transcriptional regulation related terms in the

low-milk yield group, and we highlighted the 140 genes responsible for this observation.

Recently, a gene network analysis of human mammary transcriptome data highlighted

crucial nodes such as NR1H3 and PPARA genes (Mohammad & Haymond, 2013).

Notably, these genes are present in our results, and it was reported that PPARA and its

target genes has been shown to be involved in fatty acid uptake/oxidation, and promotes

energy balance during early lactation in cattle (Schlegel et al., 2012).

The pathway enrichment analysis pointed towards several known pathways

implicated in mammary biology such as JAK-STAT signalling, Wnt signalling, epidermal

growth factor related pathways (ErbB signalling, VEGF signalling) etc. (Watson &

Burdon, 1996; Rossiter et al., 2007; Hardy et al., 2010; Turashvili et al., 2006). In the low

milk-yield specific group, Oxidative phosphorylation pathway was the most enriched

pathway, which may contribute to the energy balance during different functional states

of mammary gland (Nelson, Butow & Ciaccio, 1962). Interestingly, there were two

pathways common to high and low milk-yield groups. Considering that the input genes

for the pathway analysis were different, Toll-like receptor signalling and MAP kinase

signalling pathways were enriched by diverse set of genes belonging to the two groups.

Very interestingly, O’Neill, Golenbock & Bowie, (2013) have extensively reviewed

Toll-like receptor signalling pathway, and suggested the possible dual outcomes of this

pathway. Two important families of transcription factors that are activated downstream

of TLR signalling are nuclear factor-�B (NF-�B) and the interferon-regulatory factors

(IRF3/7), and the major consequence of NFKB mediated signalling is the production

of interleukins, while the IRFs induces type I interferon (O’Neill, Golenbock & Bowie,

2013). Notably, RELA (a member of NFKB complex) was present among low-specific

candidates and IRF3 was present in the high milk-yield specific group. Of note, TLR-4

mediated excess interleukin production has shown to cause lactation insufficiency in

mice (Glynn, Hutchinson & Ingman, 2014). On the other hand, increased interferon level
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was observed in breastfeeding infants compared to non-breast feeding group, which

confers enhanced protection against viral infection for the infant (Melendi et al., 2010).

However, more studies need to be performed in this direction, as evidenced by limited

number of studies.

Comparison of gene expression and SNP candidate genes offers a great extent of

biological insights (Quan et al., 2014). Recently, Cui et al. (2014) observed differential

gene expression in various susceptibility genes related to milk protein and fat level in

Holstein friesen cattle. In our case, the buffalo SNP data were identified based on cattle

as the reference genome, and the gene expression data were from cattle. However, we

excluded the putative generic SNPs in buffalo breeds (found common to both high and

low-yield groups) at the initial stage of analysis which makes the comparison relevant,

even though the genome and transcriptome data are from buffalo and cattle species

respectively. In the comparison, we found a strong presence of high or low-yield specific

SNP containing genes among the DEG. This observation not only underlines the strategy

of comparison but also provides positive indication for the reliability of the identified

SNPs which need to be investigated in additional datasets.

CONCLUSION
In this study, we have highlighted issues related to SNPs detection using a single tool

and propose selection of reproducible SNPs using Multicom approach, which facilitates

detection of reproducible SNPs with a higher discovery rate. Focussed analysis on the high

and low milk-yield SNPs in buffalo breeds, uncovered SNPs specific for high or low

milk yield. A substantial number of reported genes in QTL region of cattle genome is

present in results. Further, the enrichment analysis uncovered several transcriptional

regulator candidates in low-milk yield group. Surprisingly, pathway analysis shared

pathways like TLR receptor signalling, along with several known and specific pathways

in high and low-milk yield groups. Finally, SNP candidate genes in buffalo breeds account

for were splendidly found in differentially expressed genes from the cattle species.

On the whole, these results not only highlighted SNPs related to high and low-yield

buffalo, but also sheds light to methodological improvement, functional insights and

cross species genome-phenome comparison. Of course, outcomes of this study need to

be validated in independent samples which in turn contribute for the better genomic

selection in buffalo breeds.
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