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Abstract

Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process 

and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or 

transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of 

anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved-caspase 9. 

Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly 

increased cleaved caspase 3, 8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced 

Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate 

that Thy-1, in a manner dependent upon its GPI anchor and lipid raft localization, regulates 

apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 

deficient (Thy1−/−) mice displayed persistence of myofibroblasts in the resolution phase of 

bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis 
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resolution. Apoptosis of myofibroblasts is decreased in Thy1−/− mice in the resolution phase. 

Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in 

initiating myofibroblast apoptosis that heralds the termination of the reparative response to 

bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/

apoptosis should lead to novel therapeutic interventions for lung fibrosis.
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INTRODUCTION

Myofibroblast apoptosis is a fundamental mechanism during normal wound healing. During 

the resolution phase, this cell-specific apoptosis is triggered mainly by the extrinsic pathway 

via Fas receptor (Apo-1/CD95) trimerization, Bcl protein downregulation, and subsequent 

caspase cascade activation.1 Programmed cell death is characterized by marked changes in 

cellular morphology, including the appearance of membrane-bound apoptotic bodies, 

internucleosomal DNA fragmentation, as well as by cleavage of poly(ADP-ribose) 

polymerase (PARP).2 However, fibroblasts insensitive to apoptotic stimuli can induce 

accumulation of apoptosis-resistant myofibroblasts, a hallmark of pathological fibrosis.3–5,6

Mechanisms underlying the resolution of pulmonary fibrosis have been recently reviewed.7 

In recent years, increasing attention has been paid to understanding the apoptotic alterations 

leading to non-resolving and progressive fibrotic remodeling with the intention of 

developing targeted therapies for lung fibrosis. Thus, it was found that increased expression 

of Fas, a cell-surface death receptor in the tumor necrosis factor (TNF) receptor superfamily, 

is necessary to directly sensitize apoptosis-resistant fibroblasts.8 Furthermore, a recent study 

showed that TNF-α is an inducer of apoptosis that mediates lung fibrosis resolution.9 In 

addition, it has been described that functional FasL(+) immune cells could promote 

resolution of lung fibrosis,10 indicating that factors that interfere with the Fas/FasL 

interaction between T cells and myofibroblasts could abrogate immune surveillance during 

fibrosis. Taking together, these recent emerging studies strongly indicate that both 

preservation of apoptosis susceptibility in fibroblasts, and apoptosis induction in apoptosis-

resistant myofibroblasts have significant therapeutic potential.

Thy-1/CD90 is a glycophosphatidylinositol (GPI) anchored cell surface glycoprotein that 

modulates apoptosis signaling pathways in a variety of cell types including hepatic cells,11 

glomerular mesangial cells,12 and dermal fibroblasts.13 It has become evident that Thy-1-

mediated apoptotic mechanisms are cell type-dependent.14 For example, Thy-1 must 

aggregate in order to signal thymocyte apoptosis, whereas apoptosis of Thy-1(+) thymoma 

cells occurs through a mechanism requiring new transcription. We have found that Thy-1(−) 

myofibroblasts are resistant to apoptosis in response to collagen gel contraction.15,16 

Furthermore, Thy-1 deficient (Thy1−/−) mice develop more severe lung fibrosis than wild-

type (Wt) mice, associated with the accumulation of lung myofibroblasts.17 However, the 
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molecular mechanisms by which Thy-1 modulates fibroblast apoptosis and Thy-1’s 

importance during lung tissue remodeling remain to be characterized.

In this study, we evaluated the mechanisms whereby Thy-1 modulates apoptosis-related 

intracellular signaling pathways, and the role of membrane microdomain localization via the 

Thy-1-specifc GPI anchor in this process. We also studied the in vivo effect of Thy-1 during 

myofibroblast apoptosis by using Thy1 null mice. Our data demonstrate that Thy-1 surface 

expression is necessary and sufficient to promote apoptosis in lung myofibroblasts.

MATERIALS AND METHODS

Animals and Bleomycin-Induced Fibrosis

Adult Thy-1 knock-out (Thy1−/−)18, a kind gift of Kevin Kelley, Mt. Sinai School of 

Medicine, and Wt mice on C57BL/6 background (both genders) were utilized for this study. 

All mice were housed in the Association for Accreditation and Assessment of Laboratory 

Animal Care (AAALAC)-approved animal facility at the University of California San Diego, 

School of Medicine. To generate pulmonary injury and fibrosis, mice anesthetized (i.p.) with 

ketamine (80mg/kg)/xylazine (10 mg/kg) were orotracheally instilled with bleomycin (5 

U/kg BW, Tecoland Corporation) dissolved in sterile saline (100 μL) via MicroSprayer (MS-

IA-1C, Penn-Century) or sterile saline for controls.

Histopathological Evaluation

At each time-point after bleomycin instillation, lungs were fixed (10% formalin at a constant 

pressure of 20 cm H2O), and paraffin embedded. Five μm-thick sagittal sections of all lobes 

of fixed lungs were cut and subsequently stained for H&E and Masson’s trichrome staining 

to evaluate the lung fibrotic response.

Detection of Myofibroblast Apoptosis in vivo

Co-localization of cleaved caspase-3, an apoptosis marker, and α-SMA, a myofibroblast 

marker, was conducted to confirm myofibroblast apoptosis by immunofluorescence. Five 

μm-thick OTC-embedded samples were cut and then fixed using 4% formaldehyde, 

permeabilized in 0.2% Triton X-100 for 5 minutes, and blocked with 10% normal goat 

serum. Primary antibodies for alpha smooth-muscle actin (aSMA; 1:200; Ab21027, Abcam), 

cleaved-Caspase 3 (1:200; #9661, Cell Signaling) along with AlexaFluor-labeled secondary 

antibodies (Life Technologies) were used. Images were acquired at 20x (Plan-fluor, 0.5 

N.A.) or 60x (Plan-apochromat, 1.4 N.A.) magnification with a fluorescence microscope. 

Myofibroblasts expressing high levels of aSMA and/or cleaved caspase-3 were counted in 

six different random high-powered fields of the lung in each mouse, 5–6 mice per group.

Cell Culture

Rat fetal lung fibroblasts, which are entirely Thy-1–negative (RFL6; American Type Culture 

Collection, Manassas, VA), were cultured in Ham’s F12 K nutrient mixture (F-12K) media 

containing 10% FBS and 1% penicillin/streptomycin. Mouse embryonic fibroblasts (MEFs) 

were isolated from C57BL/6 mice and sorted for Thy-1 expression using FITC-labeled 

Thy-1.2-specific antibodies as previously described.19 Sorted MEFs were cultured in 
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Dulbecco’s modified Eagle’s medium (DMEM; Cellgro, Manassas, VA) supplemented with 

10% FBS, in a humidified incubator with 5% CO2. Two different batches of sorted Thy-1 

subpopulations of MEFs were used in this study and yielded similar results.

Cell Transfection

RFL-6 cells were stably transfected with the mammalian expression vector pcDNA3.1 Zeo+ 

containing the full-length murine Thy-1.2 (CD90.2) cDNA (RFL-6 Thy-1+) or empty vector 

(EV) (RFL-6 Thy-1−) as previously described.20 The expression of Thy-1 at levels similar to 

those in naturally occurring Thy-1(+) fibroblasts was confirmed by FACS analysis.19,21 For 

Thy-1 GPI anchor studies, RFL-6 cells were transfected with wild type-human Thy-1 

(hThy-1) or human Thy-1-hinge TR3, a chimeric construct in which the GPI anchor of 

hThy-1 was replaced with the GPI addition sequence of TRAIL receptor 3.22 Absence of 

Thy-1 protein in untransfected and EV-transfected RFL-6, and appropriate levels of 

expression in Thy-1- and Thy-1 mutant-transfected cells have been demonstrated 

previously.22, 23

Antibodies and Reagents for in vitro Assays

Soluble human recombinant FasL (rhFasL) (Kamiya Biomedical Company, Seattle, WA); 

staurosporine (ACROS Organics, Pittsburgh, PA); caspase 8 inhibitor II (EMD Millipore, 

Billerica, MA); protein G-agarose (Roche Diagnostics, Indianapolis, IN); Z-FA-FMK 

(negative control for caspase inhibitors), FITC Rat anti-mouse CD90.2, FITC Rat IgG1, κ 
Isotype, Annexin V apoptosis detection kit and APO-Direct kit (BD Pharmingen, San Jose, 

CA); rabbit anti-PARP antibody, rabbit anti-caspase 3 antibody, rabbit anti-cleaved caspase 3 

antibody, rabbit anti-cleaved caspase 8 antibody and rabbit anti-cleaved caspase 9 antibody 

(Cell Signaling Technologies, Danvers, MA); anti-mouse Thy-1 (AbD Serotec, Oxfordshire, 

UK), and anti-α actin polyclonal antibody (Santa Cruz Biotechnology, Dallas, TX).

Cell Treatments

Cells were grown to 80% confluence in culture dishes and made quiescent in culture media 

supplemented with 0.4% FBS for 24 hours. Fresh 0.4% FBS culture media was added before 

stimulation with indicated concentrations of rhFasL or Staurosporine for 16 hours. For 

caspase 8 inhibition experiments, Thy-1 (+) RFL-6 cells were pretreated with or without 

caspase 8 specific inhibitor for 30 minutes followed by treatment with rhFasL or 

staurosporine.

Apoptosis Assay

RFL-6 Thy-1 (+) and RFL-6 Thy-1 (−) cells were rendered quiescent in cultured media 

supplemented with 0.4% FBS for 24 hours, then treated with the indicated concentrations of 

rhFasL for 16 hours. After treatment, adherent and non-adherent cells were harvested by 

centrifugation and stained with Annexin V and PI, resuspended in 500 μl binding buffer and 

analyzed by flow cytometry.
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DNA Fragmentation and TUNEL Assays

The APO-Direct assay kit was used as per the manufacturer’s protocol. Briefly, cells were 

cultured at a density of 0.4×106 cells in six-well dishes and treated with 50 ng/mL of rhFasL 

for 16 hours. Labeled cells were counted in a flow cytometer and analyzed using Cell Quest 

software (San Jose, CA).

Immunoblotting

At the end of respective cell treatments, cells were washed with cold PBS twice and lysed 

with 1X SDS reducing sample buffer containing protease inhibitors. Cell lysates were 

collected in siliconized tubes and sonicated for 20 seconds three times. After centrifugation 

at 4,000×g for 1 minute at 4°C, cell lysates were stored at −80°C in aliquots until use. Equal 

volumes of cell lysate were loaded on SDS-PAGE gels under reducing conditions. After 

electrophoresis, proteins were transferred to PVDF membranes at 100V for 1 hour at 4°C. 

To block nonspecific protein binding sites, the membranes were incubated with 5% non-fat 

milk in Tris-buffered saline/Tween-20 (0.1%) for 1 hour at room temperature. Membranes 

were incubated with primary antibodies in Tris-buffered saline/Tween-20 (0.1%) overnight. 

Membranes were washed extensively before being incubated with appropriate peroxidase-

conjugated secondary antibodies for 1 hour at room temperature. Immunodetection was 

performed by chemiluminescence.

Isolation of Lipid Rafts and Immunoprecipitation

Membrane fractionation and immunoprecipitation were performed as previously 

described.24 Proteins from membrane fractionation were analyzed by immunoblotting. For 

immunoprecipitation, 10-cm plates of RFL-6 Thy-1 (+) and RFL-6 Thy-1 (−) cells were 

washed twice with cold PBS, scraped in 1 ml of modified Lysis buffer (50 mM Tris-HCl, pH 

7.5, 10 mM 150 mM NaCl, 1 mM EGTA, plus mammalian protease inhibitor cocktail) and 

homogenized in a dounce homogenizer. Precleared samples were incubated with primary 

antibody for Fas for 1 to 3 hours then precipitated by incubating with protein G-agarose 

overnight. Pellets were washed once in lysis buffer followed by washes in buffers 1 (50 mM 

Tris-HCl, pH 7.5, 500 mM NaCl, and 0.2% Triton X-100) and 2 (10 mM Tris-HCl, pH 7.5, 

and 0.2% Triton X-100). Immunoprecipitated proteins were analyzed by immunoblotting.

Immunofluorescence Staining

RFL-6 Thy-1 (+) cells were cultured on coverslips in 12 well plates, grown to 70% 

confluence, made quiescent with culture media supplemented with 0.4% FBS for 24 h, and 

stimulated with 50ng/mL rhFasL for 16 hours. Cells were washed with 2X serum free 

medium and incubated with FITC-Rat anti-Thy-1.2 (1:20) or Rat IgG1 κ isotype as control. 

Then cells were fixed with 3.7% formaldehyde for 15 minutes, washed with sterile PBS, 

blocked in 5% normal goat serum, and incubated with mouse IgM or Mouse anti-Fas (1:50) 

followed by Texas Red X-conjugated secondary antibody (1:40). Coverslips were washed 

and mounted using Gelvatol mounting medium25 on glass microscope slides and examined 

with an Olympus FV 1000 Spectral Confocal fluorescence microscope. Images were 

acquired with a digital camera and analyzed with Velocity analysis software (PerkinElmer, 

Waltham, MA).
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Data Analysis and Statistics

Data are presented as the mean ± SEM and statistical differences in the mean values for 

animal (n=10) and cell culture studies (n=3) were determined by using a one-way ANOVA 

test with posthoc analysis using Tukey’s multiple comparison test using GraphPad Prism 

4.0.

RESULTS

Thy-1 Expression Promotes Fibroblast Susceptibility to Apoptosis

The ability of Thy-1 to promote apoptosis was assessed in RFL-6 Thy-1 (+) and RFL-6 

Thy-1 (−) cells. At 10 ng/ml, rhFasL was insufficient to induce apoptosis in either cell type. 

However, an increased number of apoptotic cells was observed in RFL-6 Thy-1 (+) cells in 

response to 50 and 100 ng/ml rhFasL (from ~15% to 35% as demonstrated by Annexin V/PI 

assay). The number of apoptotic cells remained unchanged in RFL-6 Thy-1 (−) cells at the 

same concentrations of rhFasL (Figure 1A). To verify Annexin V/PI data, we measured 

apoptosis using a terminal nucleotidyl transferase–mediated nick end labeling assay for 

DNA fragmentation, an irreversible event that commits the cell to die, using the APO-

DIRECT Kit, in identically treated cells. Findings are similar to those from the Annexin V 

assay (Figure 1B). These results indicate that Thy-1 can promote apoptosis in fibroblasts.

Thy-1 Expression Increases the Activation of Caspase 3 and 8

In order to understand the mechanisms by which Thy-1 promotes apoptosis in fibroblats, 

RFL-6 Thy-1 (+) and RFL-6 Thy-1 (−) cells were treated with the indicated concentrations 

of rhFasL for 16h, and then processed for immunoblotting. As shown in Figure 2A, cleavage 

of caspase 3 was not detected in untreated and 50 ng/mL rhFasL-treated RFL-6 Thy-1 (−) 

cells. In RFL-6 Thy-1 (+) cells, there was a significant increase in cleavage of caspase 3 

(two small ~ 19 kDa and 17 kDa fragments) in response to 50 and 100 ng/mL rhFasL. 

Treatment with staurosporine resulted in increased cleavage of caspase 3 in Thy-1 (+) cells 

(Figure 2A lower panel). To further confirm this result, sorted Thy-1 (+) and Thy-1 (−) MEF 

cells were treated with rhFasL or staurosporine, and cleavage of caspase 3 and 8 was 

assessed. We found that Thy-1 expression was associated with increased levels of cleaved 

caspase 3 and 8 in Thy-1(+) MEFs (Figure 2B). Our results suggest that Thy-1 promotes the 

activation of the apoptotic extrinsic pathway.

Inhibition of Caspase-8 Decreases the Cleavage of Caspase 3 and Decreases the 
Susceptibility to Apoptosis Induced by rhFasL in RFL-6 Thy-1 (+) Cells

Thy-1 expression at the cell surface seems to be enough to promote apoptosis susceptibility 

in fibroblasts via the extrinsic pathway. To further confirm the participation of caspase 8 

activation in the apoptotic process, RFL-6 Thy-1 (+) cells were pretreated with different 

concentrations of a specific caspase-8 inhibitor for 30min followed by 50ng/mL rhFasL 

treatment for 16h (Figure 3A). Pretreatment with caspase 8 inhibitor inhibited rhFasL-

induced activation of caspase 3 in RFL-6 Thy-1 (+) cells in a dose-dependent manner. In 

addition, RFL-6 Thy-1 (+) cells were pretreated with 20μM of caspase 8 inhibitor negative 

control or caspase 8 inhibitor for 30 min followed by 50ng/mL rhFasL treatment for 16h. 
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Caspase 8 inhibitor effectively reduced the basal level of apoptosis in untreated cells, and 

abolished rhFasL-induced apoptosis (Figure 3B).

Thy-1 Inhibits Expression of the Anti-apoptotic Proteins Bcl-2 and Bcl-xL and Promotes 
Mitochondrial Pathway Mediated Apoptosis Indicated by Cleavage of Caspase 9

We next wanted to assess whether Thy-1 promotes apoptosis via the intrinsic pathway as 

well. As showed in Figure 4A, Thy-1 expression results in significant decrease in the basal 

expression levels of Bcl-2 and Bcl-xL. In response to staurosporine treatment, Thy-1 

expression leads to significantly greater cleaved caspase 9 than in untreated control samples 

(Figure 4B). To define whether the activation of caspase 9 is caspase 8-dependent, Thy-1 (+) 

MEF cells were pretreated with caspase 8 inhibitor, and cell lysates were analyzed for 

cleaved caspase 9 as shown in Fig 4C. The results showed that caspase 8 inhibition does not 

alter caspase 9 activation. All together, these data imply that Thy-1 is able to independently 

activate the extrinsic and intrinsic apoptotic pathways in fibroblasts.

PARP Cleavage in Response to rhFasL and Staurosporine-Induced Apoptosis

PARP is a well-known substrate for cleaved caspase-3 during apoptosis. In order to prove 

the activation of caspase-3 in cells expressing Thy-1, we determined the extent of PARP 

cleavage in relation to Thy-1 expression and apoptotic stimuli. We showed that Thy-1 

expression slightly increased the basal level of cleaved PARP (Figure 5A). Treatment with 

rhFasL at the indicated concentrations caused increased PARP cleavage in Thy-1 (+) RFL-6 

cells in a dose-dependent manner, whereas Thy-1 (−) RFL-6 cells did not show induction of 

cleaved PARP under the same conditions. Likewise, treatment with staurosporine (1μM) 

increased the expression of cleaved PARP only in Thy-1 (+) MEF fibroblasts similarly to the 

response to rhFasL (Figure 5B). These results indicate that expression of Thy-1 is sufficient 

to sustain caspase-3 activity leading to PARP cleavage.

Thy-1-Mediated Susceptibility to Apoptosis Requires GPI Anchorage

Many of the signaling effects of Thy-1, such as modulation of Src family kinases and focal 

adhesion kinase phosphorylation depend upon its glycosylphosphatidylinositol (GPI) anchor 

and lipid raft localization(20) We wanted to determine whether Thy-1’s GPI anchor was 

needed to induce susceptibility to apoptosis in lung fibroblasts. Transfection of RF-L6 cells, 

which are Thy-1 negative, with a human Thy-1 construct resulted in increased susceptibility 

to apoptosis similar to that seen with the murine construct (Figure 6, gray-shaded bars). To 

determine whether the Thy-1-specific GPI anchor is required, we transfected RFL-6 cells 

with a human Thy-1-hinge TR3 vector, a chimeric construct in which the GPI anchor of 

hThy-1 was replaced with the GPI anchor addition sequence of TRAIL receptor 3, which 

has previously been shown to segregate to distinct membrane microdomains.26 The 

expression of this chimeric Thy-1 construct failed to induce FasL-mediated apoptosis 

(Figure 6, black filled bars). Similar findings were seen in response to staurosporine (Data 

not shown). These results indicate that Thy-1 requires its specific GPI anchor in order to 

induce susceptibility to apoptosis in lung fibroblasts.
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Thy-1 Colocalizes with Fas

Based on our data so far, Thy-1 and Fas seems to work together to induce apoptosis in lung 

fibroblasts. To gain insights into the mechanisms of their interaction, we examined the 

transcriptional effect of rhFasL on Fas protein expression in lipid rafts isolated from RFL-6 

Thy-1 (+) cells. We found that Thy-1 does not affect basal expression of Fas, but there is a 

slight increase in Fas in response to FasL stimulation in both Thy-1- and Thy-1+ fibroblasts 

(Figure 7A). A specific CD95 Fas band clearly co-immunoprecipitates with mThy-1.2 in 

response to FasL stimulation (Figure 7B). Confocal microscopy demonstrates colocalization 

of Thy-1 with Fas receptor after treatment with rhFasL in RFL-6 Thy-1 (+) cells (Figure 

7C). Thus, our results indicate that the close interaction between Thy-1 and Fas in lipid rafts 

regulates fibroblast apoptosis.

Thy1−/− Mice Display Persistent Fibrotic Remodeling and Compromised Injury Resolution

To test the relevance of the in vitro results in lung fibrosis, we examined fibrotic remodeling 

in Thy1−/− and Wt mice following single-dose intratracheal bleomycin instillation (a self-

limited fibrotic response). Histopathological examination (H&E staining) of tissue slides 

indicated persistent, non-resolving fibrosis in Thy-1−/− mice, whereas Wt mice demonstrated 

restoration of normal appearing histology in most observed areas, at day 56 after Bleomycin 

instillation. Thy1−/− mice were characterized by an obvious fibroproliferative response, 

enhanced cellularity, alveolar septal thickening, architectural distortion, and severe alveolar 

destruction (data not shown). There was a highly significant increase in lung collagen 

deposition, as determined by increased trichrome staining (Figure 8A&B) and Western 

blotting (Figure 8C) in Thy1−/− lungs relative to Wt lungs. These results demonstrated that 

mice lacking Thy-1 failed to resolve lung fibrosis, suggesting that Thy-1 is extremely 

important for normal tissue remodeling following bleomycin-induced lung injury.

Decreased Fibroblast Apoptosis Associated with Myofibroblast Accumulation in Mice 
Lacking Thy-1

Immunohistochemical detection of cleaved caspase-3 and aSMA (Figure 9A) was performed 

to assess myofibroblast apoptosis in Thy1−/− vs. Wt mice after bleomycin instillation. At 28 

days after bleomycin, myofibroblasts appeared throughout the lungs of Thy1−/− and Wt 

mice. Quantitative data showed that 36.8 ± 5.3% vs 30.4 ± 6.3% cells/hpf stained positive 

for aSMA in Thy1−/− and Wt mice, respectively. However, the number of aSMA-stained 

cells positive for cleaved caspase-3 [CL-caspase3(+)/aSMA(+) apoptotic myofibroblasts] 

was significantly less in Thy1−/− mice than in Wt mice (Figure 9B). At Day 56, there 

remained aSMA(+) myofibroblasts along with persistently abnormal lung architecture in 

Thy1−/− mice, whereas Wt mice demonstrated disappearance of aSMA staining in most 

observed areas.

DISCUSSION

This study provides new evidence that expression of Thy-1 in lipid rafts and colocalization 

with Fas promote lung fibroblast susceptibility to apoptosis, whereas fibroblasts lacking 

Thy-1 are resistant to apoptosis, via caspase 9- and caspase 8-dependent pathways. 

Activation of caspases for apoptosis requires the Thy-1-specific GPI anchor. These findings 
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suggest that localization of Thy-1 to specific lipid raft microdomains places Thy-1 in 

proximity to the downstream signaling molecules that regulate apoptosis. Our in vivo study 

demonstrates that Thy-1 is essential for disappearance of aSMA(+) fibroblasts and 

resolution of fibrosis following bleomycin-induced lung injury in the single-dose model, 

indicating that absence of Thy-1 was associated with an apoptosis-resistant myofibroblast 

phenotype, and persistence/progression of lung fibrosis.

Apoptosis is typically executed by caspase activation and regulated by the Bcl-2 protein 

family. It is thought that Bcl-2 and Bcl-xL inhibit FasL-induced apoptosis because they 

prevent the release of cytochrome c from mitochondria and subsequent activation of 

caspase-9; however, inhibition of apoptosis by Bcl-2 affects other pathways in addition to 

cytochrome c, caspase-9 and its activator Apaf-1.27 The association of between Bcl-2 family 

members and development of pulmonary fibrosis has been reviewed elsewhere.28 In this 

study, the expression of Bcl-2 and Bcl-xL was decreased in response to Thy-1 expression, 

and could lead to caspase cascade activation of apoptosis pathways from caspase 9 to 

effector caspase 3 and PARP. Considering the possibility of crosstalk between the extrinsic 

and intrinsic pathways in response to Fas,29–31 we also measured the activation of caspase 8, 

a downstream effector of the death receptor–mediated extrinsic apoptotic pathway. Notably, 

cleavage of caspase-8 and 3 were significantly increased after rhFasL and staurosporine 

treatment in Thy-1(+) cells. Caspase 8 inhibition reduced rhFasL-mediated apoptosis, 

confirming that caspase 8 cleavage is upstream of caspase 3 cleavage, indicating activation 

of the extrinsic pathway dependent on Thy-1. However, caspase 8 inhibition did not alter the 

cleavage of caspase 9, suggesting that the caspase 9 activation is likely to be independent of 

the caspase 8-mediated extrinsic apoptotic pathway. Therefore, the data here demonstrate 

that Thy-1 mediates apoptotic signaling via both caspase 9- and caspase 8-dependent 

pathways.

The presence of the GPI anchor affects the conformation and subcellular localization of 

Thy-1. To determine whether the GPI anchor is required for Thy-1-mediated apoptosis, we 

used a construct in which the GPI anchor of CD90.2 was replaced with a sequence from the 

transmembrane domain of CD8 (Thy-1-CD8), which is known to lack the inhibitory effects 

of wild type Thy-1 on neurite outgrowth.20, 32 Thy-1 lacking the GPI anchor does not 

localize to the same membrane microdomains as wild-type Thy-1, suggesting the GPI 

anchor is necessary for localization of Thy-1 to specific lipid raft microdomains,32 however, 

mutant chimeric Thy-1 proteins are insufficiently specific to rule out other structural effects 

unrelated to specific GPI function. Expression of Thy-1-CD8 in Thy-1 (−) cells did not 

increase rhFasL-mediated apoptosis, unlike expression of Wt Thy-1, suggesting that the GPI 

anchor and lipid raft localization of Thy-1 is necessary for Thy-1-mediated apoptotic 

signaling.

To determine whether the GPI anchor specific to Thy-1 is required, we replaced the GPI 

anchor of human Thy-1 with the GPI addition sequence of TRAIL receptor 3 and we 

transfected RFL-6 cells with human Thy-1-hinge-TR3.22 The specific GPI sequences for 

Thy-1 and TRAILR3 have previously been shown to segregate to distinct membrane 

microdomains.33 The results showed that the expression of Thy-1-hinge-TR3 rendered cells 

insensitive to rhFasL-mediated apoptosis compared with wild-type hThy-1 expression, 
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confirming that the Thy-1-specific GPI anchor and its specific membrane subdomain 

localization is required for its pro-apoptotic effects.

Lipid rafts are tightly packed, liquid-ordered phase microdomains in plasma membranes and 

participate in various cellular functions, including cell survival and cell death.34,35 Thy-1 is 

localized in specific lipid raft subdomains, and its localization is important to its biological 

functions. Fas-mediated apoptosis involves translocation of Fas and downstream signaling 

molecules into lipid rafts, a process that can be pharmacologically modulated. Engagement 

of FasL leads to trimerization of Fas and clustering of its intracellular death domain, which 

in turn leads to the recruitment of the cytoplasmic Fas-associated death domain. The cascade 

of caspases is then set off and this ultimately leads to cell death. In Thy-1(+) cells rhFasL 

treatment induced the colocalization of Thy-1 with Fas as demonstrated by confocal 

microscopy.

The role of Thy-1 for fibroblast apoptosis in tissue remodeling was examined in Thy1−/− 

mice vs. Wt mice after bleomycin instillation. In vivo data revealed persistence of both 

myofibroblast and collagen accumulation with abnormal lung architecture in Thy1−/− mice, 

whereas Wt mice showed normal or near-normal alveolar structure at day 56. Thy-1 loss 

could contribute, at least in part, to fibroblast resistance to Fas-induced apoptosis seen in 

pathological fibrosis and aging lungs.21,36,37 Several recent studies of organ fibrosis strongly 

support this role for Thy-1 in myofibroblast apoptosis and tissue remodeling. Thy-1/β3 

integrin-induced apoptosis of dermal fibroblasts is mediated by up-regulation of FasL 

expression.13 Another study has reported that Thy-1 up-regulates FasL expression via Src 

family kinases.38 Thy-1/β3 integrin interaction also triggers tyrosine phosphorylation of 

focal adhesion proteins promoting focal adhesion formation and cell attachment.39 

Relevance of this process to human fibrotic lung disease was highlighted by a recent study 

describing Thy-1’s role as a molecular mechanosensor. In that study, normal human 

fibroblasts were shown to undergo apoptosis when shifted from a physiologically stiff (18.7 

kPa) to a soft (1.8 kPa) extracellular matrix substrate; however Thy-1(−) myofibroblasts 

from lungs of individuals with Idiopathic pulmonary fibrosis (IPF) were resistant to 

apoptosis induced by decreased matrix stiffness.40 These studies indicate that Thy-1 

functions via its subcellular localization or molecular interactions to facilitate cellular 

susceptibility to apoptosis. Moreover, there is the possibility that additional molecules may 

modify Thy-1/β3 integrin interaction.41

An additional important finding of this study is that Thy1−/− mice have persistent, non-

resolving fibrosis following single-dose intratracheal bleomycin, unlike the spontaneously 

resolving fibrosis seen in Wt mice. The myofibroblast resistance to apoptosis associated 

with progressive fibrosis is more characteristic of progressive fibrotic disorders in humans, 

such as IPF. Therefore the Thy1−/− model may be a more relevant preclinical model for 

testing antifibrotic therapeutics.

In summary, this study characterized the mechanism of Thy-1 mediated apoptosis in lung 

(myo)fibroblasts, critical effector cells in fibrosis resolution. This modulation of Thy-1 was 

dependent on lipid raft integrity and the Thy-1 specific GPI anchor. The in vivo results 

strongly support a regulatory role for Thy-1 in initiation of (myo)fibroblasts apoptosis that 
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heralds the termination of the reparative response to lung injury. Thy-1-mediated pro-

apoptotic effects could either halt the progression or speed the resolution of lung fibrosis via 

the pro-apoptotic effects. Therefore, it is possible that Thy-1 re-expression through targeted 

gene therapy or molecular mimicry could restore apoptosis susceptibility in apoptosis-

resistant lesional fibroblasts in pulmonary fibrosis and other fibrotic diseases.
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Figure 1. Thy-1 expression promotes fibroblast susceptibility to apoptosis
A. RFL-6 Thy-1 (−) and Thy-1 (+) fibroblasts were treated with the indicated concentrations 

of rhFasL for 16h, and then cells were harvested and stained with Annexin V and PI and 

apoptosis quantified by flow cytometry. Results are representative of three independent 

experiments. Upper panels: Dot plots of FACS analysis with FITC-Annexin V and PI. The 

lower-left quadrants of the dot plot panels represent live cells (Annexin V−/PI−); the lower-

right quadrants of the panels quadrants represent early apoptotic cells (Annexin V+/PI−); the 

upper-right quadrants of the panels quadrants represent later apoptotic cells (Annexin V+/PI

+). Lower panel shows a quantitative representation of the flow cytograms. Each bar 

represents the mean±SEM of early + late apoptosis for at least three experiments. * denotes 

p<0.0001 compared with controls. B. Effect of Thy-1 on apoptosis in Thy-1 (−) and Thy-1 

(+) fibroblasts. Cell treatments are the same as above. After treatment, cells were stained 

with FITC-dUTP, terminal nucleotidyl transferase–mediated nick end labeling assay. The 

growing cells were treated with rhFasL for 16 h and the extent of apoptosis was assessed by 

APO-Direct assay kit. The analyses were done using Cell Quest software; bar represents the 

mean±SEM of at least three experiments. * p<0.0001 compared with controls.
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Figure 2. The effect of Thy-1 expression on the activation of caspase 3 and 8 in response to 
apoptosis inducers
A. Upper panel: Thy-1 (−) and (+) RFL6 cells were treated with the indicated concentrations 

of rhFasL for 16h. Lower panel: Thy-1 (−) and (+) RFL6 cells were treated with the 

indicated concentrations of staurosporine. Cell lysates were subjected to Western blot 

analysis using cleaved caspase-3 and caspase-8 antibody. Procaspase 3 (full length or FL-

caspase 3) and cleaved caspase 3 (CL-caspase 3) expressions are representative of three 

independent experiments. The cleaved Caspase-3 Rabbit mAb detects endogenous levels of 

the large fragment (17/19 kDa) of activated caspase-3. B. Sorted Thy-1 (−) and Thy-1 (+) 
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MEF were rendered quiescent and then treated with the 50 ng/mL rhFasL and 1μM 

staurosporine for 16h, and then cells were harvested and analyzed by Western blots for 

caspase activation. Pictures are representative of three independent experiments. β-actin is 

used as internal control.
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Figure 3. Inhibition of caspase-8 decreases cleaved caspase 3 and abolishes the induction of 
apoptosis by rhFasL in Thy-1 (+) cells
A. Caspase-8 inhibitor was added to a final concentrations indicated for 30 min and then 

Thy-1 (+) RFL-6 were treated with 50ng/mL rhFasL for 16h. Immunoblotting with anti-

cleaved caspase-3 identifies caspase-3 cleavage products in Thy-1 (+) RFL-6. B. Thy-1 (+) 

cells were pretreated with 20μM of caspase 8 inhibitor negative control or caspase 8 specific 

inhibitor for 30 min followed by 50ng/mL rhFasL for 16h, and then cells were collected and 

stained with Annexin V and PI followed by flow cytometry as described in Methods. Bar 

graph shows average of three independent experiments of FACS analysis with FITC-
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Annexin V and PI. * p<0.0001 compared with control inhibitor-treated control. ** p<0.0001 

compared with hrFasL-treated cells pretreated with caspase 8 inhibitor. FL denotes full 

length, CL is cleaved caspase.
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Figure 4. The effect of Thy-1 expression on the expression of anti-apoptotic proteins, Bcl2 and 
Bcl-xL and the activation of caspase 9
A. Basal level of Bcl2 and Bcl-xL expression by immunoblotting in Thy-1 (−) and (+) RFL6 

cells. * p<0.05 compared with Thy-1 (−) RFL-6. Thy-1 (−) and (+) RFL-6 cells were treated 

with 50ng/mL rhFasL and 1μM Staurosporine and immunoblotted using anti-cleaved 

caspase-9. B. Thy-1.2 (+) MEFs were treated with 50ng/mL rhFasL and staurosporine for 16 

hours, cell lysates were collected for analysis of cleaved caspase 9. C. Thy-1.2 (+) MEFs 

were pretreated with 20μM negative control or caspase 8 specific inhibitor for 30 min 

followed by 50ng/mL rhFasL and staurosporine for 16 hours, cell lysates were collected for 
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analysis of cleaved caspase 9. Results are representative of three independent experiments. 

FL is full length CL is cleaved caspase.
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Figure 5. The effect of Thy-1 expression on PARP cleavage
A. Thy-1 (−) and (+) RFL6 cells were treated with the indicated concentration of rhFasL 

followed by immunoblotting using antibody against PARP. B. Thy-1 (+) MEFs were 

rendered quiescent and then treated with the 50ng/mL rhFasL and 1μM staurosporine for 16 

hours. PARP cleavage was analyzed by anti-PARP. Three independent experiments were 

performed with similar results.
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Figure 6. The GPI anchor of mouseThy-1.2 and the Thy-1-specific GPI anchor of human Thy-1 
are required for Thy-1-mediated apoptosis
Three RFL-6 cell lines (EV, hThy-1 and hThy-1-TR3 RFL-6) were used in this experiment 

were treated with 50 ng/mL rhFasL for 16 hours. Bar graphs show average of three 

independent experiments. Prism two-tailed t test was used for statistical analysis and * 

p<0.05 compared with untreated control. ** p<0.01 compared with rhFasL-treated Thy-1 

RFL-6. FL is full length CL is cleaved caspase.
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Figure 7. Interaction of Thy-1 with Fas-mediated signaling pathway and lipid raft integrity are 
required for the activation of caspase 3
A. Membrane fractionation and immunoisolation of lipid rafts was performed as described 

in Methods. Total cell lysates prepared from Thy-1.2 (+) RFL-6 were used for IP with anti-

Fas or normal mouse IgM as described experimental procedures. Proteins from the 

immunoprecipitates were detected by Western blotting using anti-mouse Thy-1.2 antibody 

(upper panel) or anti- Fas antibody (lower panel). B. Cell lysates were collected from 

Thy-1.2 (−) and Thy-1.2 (+) RFL-6 followed by immunoblotting. C. Cells were cultured on 

coverslips as shown in Materials and Methods and colocalization of Thy-1 with Fas in Thy-1 
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(+) RFL-6 was performed. Staining shows Thy-1.2 (A and D, green) and Fas (B and E, red) 

associated with the plasma membrane. Yellow color indicates colocalization of Thy-1.2 and 

Fas after apoptosis induction by 50 ng/mL rhFasL (C and F).
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Figure 8. Failure of resolution of bleomycin-induced lung fibrosis in Thy1−/− mice, leading to 
persistent extracellular matrix accumulation
Mice were instilled with bleomycin (5 U/kg) by orotracheal MicroSprayer MS-IA-1C (Penn-

Century). The lung tissue was collected at each time-point, fixed (10% formalin), embedded 

(paraffin), and stained with Masson’s Trichrome after intratracheal instillation of bleomycin, 

revealing collagen accumulation with persistently abnormal lung architecture in Thy1−/− 

mice at day 56, whereas Wt mice demonstrated restoration of normal appearing histology in 

most observed areas. A. Masson’s Trichrome stain, 10X. B. Quantification of collagen 

staining (% increase over Wt saline). C. Immunoblots of Col I, in Wt and Thy1−/− mice over 

time after bleomycin instillation. * p<0.05 when compared to Wt Ctrl group.
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Figure 9. Decreased apoptosis of lung myofibroblasts in Thy1−/− mice and accumulation in the 
fibrotic resolution phase
Lung tissue was collected at indicated time points. 5 μm OCT-embedded frozen tissue 

sections were fixed with 4% PFA and processed for double immunostaining of αSMA 

(myofibroblasts, green) and CL-Casp3 (apoptosis, red). Nuclei were counterstained with 

DAPI (blue). Wt mice displayed strong apoptotic signaling in αSMA (+) cells at day 28. 

Thy1−/− mice had persistent αSMA (+) cells throughout the lungs. A. double 

immunostaining of αSMA (green) and CL-Casp3 (red). B. Apoptotic cells as % of total 

αSMA(+) cells. One-way ANOVA and Newman-Keuls multiple comparisons tests were 

used to calculate statistical significance. *p<0.05 when compared to Wt Ctrl group.
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Figure 10. The model of Thy-1 mediated apoptosis pathway induced by FasL
Stimulated Thy-1 increases in the activation of caspase 8, 3 and 9 followed by PARP 

activation. The action of caspase 9 activation is likely to be independent of caspase 8- and 3-

mediated apoptotic pathway as indicated in the figure. Caspase 8 inhibition can reduce 

caspase 9 activation mediated by FasL but not by staurosporine, indicating that the anti-

apoptotic proteins such as Bcl-2 and Bcl-xL are involved. The expression of Bcl-2 and Bcl-
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xL is decreased Thy-1 (+) cells. Decreased levels of Bcl-2 and Bcl-xL will induce activation 

of the mitochondrial pathway.
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