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Abstract

Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection
in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is
little information about host response to DENV infection. Here, mechanisms accounting for IFN-c production and effector
function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-c expression was greatly
increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-c2/2 mice,
DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when
compared with wild type-infected mice. IL-12p402/2 and IL-182/2 infected-mice showed decreased IFN-c production,
which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in
infected IL-12p402/2 mice resulted in complete inhibition of IFN-c production, greater DENV-2 replication, and enhanced
disease manifestation, resembling the response seen in DENV-2-infected IFN-c2/2 mice. Reduced IFN-c production was
associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS22/2 mice had elevated lethality, more
severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-c production
and consequent NOS2 induction are of major importance to host resistance against DENV infection.
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Introduction

Dengue fever (DF) and its severe forms, dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS), are mosquito-

borne diseases caused by one of four serotypes of Dengue virus

(DENV-1–4). Fifty to 100 million cases of DF are estimated

annually mostly in tropical and subtropical regions of the world [1–

3]. According to the World Health Organization (WHO), around

500,000 patients develop the severe forms of dengue and 20,000

deaths are estimated to occur each year. DHF is defined by the

WHO as fever with hemorrhagic manifestations, thrombocytope-

nia, and hemoconcentration or other signs of plasma leakage [2].

Treatment of DF and of the severe forms of dengue infection is

largely supportive. The large number of infected individuals, the

lack of clinical or laboratory markers that indicate which patients

will develop severe disease and the lack of specific treatment place

an enormous burden on health systems of low income countries [2].

The pathogenesis of DENV infection remains poorly under-

stood and involves a complex interplay of viral and host factors.

Risk factors for severe disease include age [1,4], viral serotype

[1,5] and genotype [1,6,7], and the genetic background of the host

[1,8], among others. Retrospective and prospective human studies

have demonstrated that secondary infection by a heterologous

serotype is the single greatest risk factor for DHF/DSS [9–11].

However, severe disease may also occur after primary infection

[5,12,13]. In both cases, there appears to be a correlation between

disease severity and viral load [9–13]. In addition, the immuno-

pathogenesis of DENV probably involves the effects of cytokines

on both infected and bystander immune cells, hepatocytes, and

endothelial cells [2,3,13]. There are several studies which show
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enhanced levels of IFN-c in dengue-infected humans but the precise

role of IFN-c in clinical dengue is somewhat controversial [14–16].

There are studies which suggest that levels of this cytokine may

correlate positively with disease in humans [16], but other studies

have shown that increased IFN-c production correlated with higher

survival rates in DHF patients [15]. In experimental systems, non-

adapted viruses usually are unable to reach high viral loads, except

in mice deficient for IFN receptors, suggesting that IFN-c and its

receptors are necessary for host resistance to Dengue infection [17–

19]. However, the major cell types producing IFN-c, mediators

controlling production of this cytokine and major effector

mechanisms triggered by IFN-c are not known.

Optimal IFN-c production in various infections models in mice

is controlled by cytokines, especially IL-12 and IL-18 [20,21]. The

IFN-c produced may then upregulate inducible nitric oxide

synthase (NOS2), resulting in high levels of NO production by

dendritic cells and macrophages [22]. NO is known to possess

potent antiviral activities [22]. Therefore, in order to examine the

role played by these molecules during dengue disease we

conducted infection experiments in mice infected with an adapted

strain of DENV-2. This unique DENV-2 strain was chosen

because it was previously shown to induce in immunocompetent

mice a disease that resembles severe dengue cases in humans [23–

25], what does not happen with most non-adapted strains usually

utilized in experimental settings [2,3]. We show that disease is

more severe and there are higher viral loads after DENV-2

infection of IFN-c-deficient mice. Furthermore, we demonstrate

that the combined action of IL-12 and IL-18 is necessary for

optimal IFN-c production and control of DENV-2 infection.

Finally, we show that IFN-c controls expression of NOS2 and NO

production after DENV-2 infection and that NO production is

crucial for resistance of the murine host to infection with DENV.

Methods

Ethics Statement
This study was carried out in strict accordance with the Brazilian

Government’s ethical and animal experiments regulations. The

experimental protocol was approved by the Committee on the

Ethics of Animal Experiments of the Universidade Federal de Minas

Gerais (CETEA/UFMG, Permit Protocol Number 113/09). All

surgery was performed under ketamine/xylazine anesthesia, and all

efforts were made to minimize suffering. The guidelines followed by

this Committee are based on the guidelines of Animal Welfare Act

(AWA) and associated Animal Welfare Regulations (AWRs) and

Public Health Service (PHS) Policy.

Animals
Mice deficient for IFN-c and NOS-2 were obtained from The

Jackson Laboratory and were bred and maintained at the

Gnotobiology and Immunology Laboratory of Instituto de

Ciências Biológicas. Mice deficient for IL-12p40 were kindly

provided by Dr. J. Magran through Dr. L. V. Rizzo (Instituto de

Ciências Biomédicas (ICB), University of São Paulo, São Paulo,

Brazil) and were bred and maintained at the Gnotobiology and

Immunology Laboratory of Instituto de Ciências Biológicas. Mice

deficient for IL-18 [26] were kindly provided by Dr. F.Q. Cunha

and were bred and maintained at the Gnotobiology and

Immunology Laboratory of Instituto de Ciências Biológicas. Mice

deficient for IL-23p19 [27] were bred and maintained at the

animal facility of the Transgenose Institute (CNRS, Orleans). All

mice were on C57BL/6J genetic background (back-crossed at least

10 times) and wild-type control C57BL/6J (WT) mice were used,

except for IL-18-deficient mice, that were on the BALB/c

background and were compared to their proper WT littermates.

For experiments, 7–10 weeks old mice were kept under specific

pathogen–free conditions, in filtered-cages with autoclaved food

and water available ad libitum.

Virus
An adapted Dengue virus 2 (DENV-2) strain was obtained from

the State Collection of Viruses, Moscow, Russia [23]. Briefly, the

virus had undergone two passages in the brain of BALB/c suckling

mice. Five days after infection, brains of moribund mice were

harvested for preparing 10% (w/v) brain suspension in modified

Eagle’s medium (MEM). After that, eight sequential passages

through BALB/c mice of different ages (1–4 weeks old) by

intraperitoneal (i.p.) injection were performed. Two sequential

passages were carried out for each age group of. After each

passage, the brains of the moribund mice were harvested for

preparing 10% brain suspension and then used for the next

passage. The last passage of DENV-2 strain P23085 was

performed in neonatal mice to produce stocks which were stored

as 10% brain suspension at 270uC. Sequences of portions of E

and NS1 genes of the adapted virus were deposited previously at

GenBank under the accession number AY927231 [22]. Virus

adaptation was performed in a biosafety level-3 (BSL-3) facility of

the SRC VB «Vector», Russia, Koltsovo. After adaptation,

monolayers of Aedes albopictus C6/36 cell line were infected with

DENV-2 strain P23085 at a multiplicity of infection (MOI) of

0.05 PFU/cell and incubated at 28uC for 5–7 days. The cultured

medium was harvested after cytopathic effect was noticed and cell

debris removed by centrifugation. The virus supernatant was

collected and stored at 270uC until use. The cultured medium of

mock-infected monolayers of Aedes albopictus C6/36 cell line was

used as control of the infection. To calculate virus titer, expressed

as LD50, in the harvested cultured medium, groups of ten mice

were inoculated i.p. with serial dilutions of the virus and lethality

recorded. The titer of our DENV-2 stock was 105 LD50/ml of

suspension, as calculated in 8–10-week-old BALB/c mice. 1LD50

corresponded to 20 PFU of the adapted DENV-2 strain.

Author Summary

Dengue fever and its severe forms, dengue hemorrhagic
fever and dengue shock syndrome, are the most prevalent
mosquito-borne diseases on Earth. It is caused by one of
four serotypes of Dengue virus (DENV-1–4). At present,
there are no vaccines or specific therapies for dengue and
treatment is supportive. Host response to infection is also
poorly understood. Here, using a DENV-2 strain that causes
a disease that resembles the severe manifestations of
Dengue in humans, we demonstrate that IFN-c production
is essential for the host to deal with infection. We have also
shown that IFN-c production during DENV infection is
controlled by the cytokines IL-12 and IL-18. Finally, we
show that one of the mechanisms triggered by IFN-c
during host response to DENV infection is the production
of Nitric Oxide, an important virustatic metabolite. Mice
deficient for each of these molecules present marked
increase in DENV replication after infection and more
severe disease. Altogether, this study demonstrates that
the IL-12/IL-18-IFN-c-NO axis plays a major role in host
ability to deal with primary DENV infection. These data
bear relevance to the understanding of antiviral immune
responses during Dengue disease and may aid in the
rational design of vaccines against DENV infection.

IFN-c and Dengue Infection
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Experimental procedure
For infection experiments, the virus-containing cell-supernatant

was diluted in endotoxin-free PBS and injected i.p. into mice. For

the evaluation of lethality, mice were inoculated i.p. with DENV-2

virus and lethality rates evaluated every 12 h. The various other

parameters were evaluated at 3, 5 or 7 days after i.p. inoculation of

the virus. In all experiments using genetically deficient mice,

experiments with the relevant WT controls were performed in

parallel. Non-infected (NI) animals were inoculated with suspen-

sion from non-infected cell supernatant diluted in a similar

manner. In the experiments involving genetically deficient mice,

the NI group represents the pooled results obtained from the

analysis of deficient mice and WT non-infected mice. Results were

pooled for ease of presentation.

In some experiments IL-18 was neutralized by daily i.p.

injection of 250 mg of recombinant human IL-18BP per animal

(hIL-18 bp), starting 1 hour after DENV-2 inoculation until day 4

after virus inoculation. The dose was chosen based in a previous

study [28]. Control animals received PBS. The hIL-18 bp isoform

was a kind gift of Dr. Amanda Proudfoot from Merck-Serono

Pharmaceuticals (Geneve, Switzerland).

Cell culture and in vitro infection studies
Murine bone marrow cells were isolated from femurs and were

differentiated into myeloid DCs after culturing at 26106 cells/ml

for 10 days in RPMI supplemented with 10% FBS and 4% J558L

cell-conditioned medium as a source of GM-CSF as described

[29]. DCs were plated in 96-well microculture plates (at 26105

cells/well in DMEM supplemented with 2 mM L-glutamine and

261025 M 2-ME) and for infection, cells were incubated with

50 mL of the cell supernatant suspension containing DENV-2 at

0,01 MOI in the presence or not of recombinant murine IFN-c
(100 U/ml). Negative controls were stimulated with sterile cell

supernatant obtained from mock infected cells.

Titration of virus
Mice were assayed for viral titers in spleen. For virus recovery in

spleen, the organ was collected aseptically and stored at 270uC
until assayed for DENV-2 virus. Tissue samples were weighed,

grounded by using a pestle and mortar and prepared as 10% (w/v)

homogenates in minimal essential medium (MEM) without fetal

bovine serum (FBS). Viral load in the supernatants of tissue

homogenates assessed by direct plaque assays using LLC-MK2

cells cultured in agarose overlay. Briefly, organ homogenates were

diluted serially and a 0.4 ml volume placed in duplicate into each

of 6-wells of LLC-MK2 cell monolayers and incubated for 1 h. An

overlay solution containing 26 MEM and 1% agarose in equal

volumes was added to each well and the cultures incubated for 7

days. Cultures were stained with crystal violet for enumeration of

viral plaques. Cell monolayers incubated with tissue homogenates

of not infected mice were used as control for the assay. The results

were measured as plaque forming units (PFU) per gram of tissue

weight. The limit of detection of the assay was 100 PFU/g of

tissue.

Measurement of cytokine/chemokine concentrations
The concentration of cytokines (TNF-a, IFN-c, IL-6, IL-12p40,

IL-12p70 and IL-18) in serum or tissue samples was measured

using commercially available antibodies and according to the

procedures supplied by the manufacturer (R&D Systems,

Minneapolis, except for IL-18, manufactured by BD Pharmingen).

Serum was obtained from coagulated blood (15 min at 37u, then

30 min a 4uC) and stored at 220uC until further analysis. One

hundred milligrams of tissues (liver and spleen) was homogenized

in 1 ml of PBS containing anti-proteases (0.1 mM phenylmethil-

sulfonyl fluoride, 0.1 mM benzethonium chloride, 10 mM EDTA

and 20 KI aprotinin A) and 0.05% Tween 20. The samples were

then centrifuged for 10 min at 3000 g and the supernatant

immediately used for ELISA assays. The detection limit of the

ELISA assays was in the range of 4–8 pg/ml.

Quantification of nitrite in cell supernatants
Cell-free culture medium was obtained by centrifugation and

assayed for nitrite content, determined by the Griess method [30].

For this assay, 0.1 ml of culture medium was mixed with 0.1 ml of

Griess reagent in a multiwell plate, and the absorbance at 550 nm

read 10 min later. The NO2
2 concentration (mM) was determined

by reference to a NaNO2 standard curve.

Evaluation of blood parameters
Blood was obtained from the brachial plexus in heparin-

containing syringes at the indicated times. The final concentration

of heparin was 50 u/ml. Platelets were counted in a Coulter

Counter (S-Plus Jr). Results are presented as number of platelets

per ml of blood. For the determination of the hematocrit, a sample

of blood was collected into heparinized capillary tubes and

centrifuged for 10 min in a Hematocrit centrifuge (HT, São Paulo,

Brazil).

Transaminase activity
Aspartate transaminase activity was measured in individual

serum samples, using a commercially available kit (Bioclin, Belo

Horizonte, Brazil). Results are expressed as the U/dL of serum.

Real Time PCR
Total RNA was isolated from Spleen of mice for evaluation of

NOS2 mRNA expression. RNA isolation was performed using

Illustra RNAspin Mini RNA Isolation Kit (GE Healthcare). The

RNA obtained was resuspended in diethyl pyrocarbonate treated

water and stocked at 270uC until use. Real-time RT-PCR was

performed on an ABI PRISM 7900 sequence-detection system

(Applied Biosystems) by using SYBR Green PCR Master Mix

(Applied Biosystems) after a reverse transcription reaction of 2 mg of

total RNA by using M-MLV reverse transcriptase (Promega). The

relative level of gene expression was determined by the comparative

threshold cycle method as described by the manufacturer, whereby

data for each sample were normalized to hypoxanthine phosphor-

ibosyltransferase and expressed as a fold change compared with

non-infected controls. The following primer pairs were used:

hypoxanthine phosphoribosyltransferase, 59-GTTGGTTACAGGCCA-

GACTTTGTTG-39 (forward) and 59-GAGGGTAGGCTGGCC-

TATAGGCT-39 (reverse); and nos2, 59- CCAAGCCCTCACC-

TACTTCC -39 (forward) and 59- CTCTGAGGGCTGACA-

CAAGG -39 (reverse).

FACS analysis
Spleen cells were evaluated ex vivo for extracellular molecular

expression patterns and for intracellular cytokine expression

patterns. Briefly, spleens were removed from infected mice at

the indicated timepoints. Then cells were isolated, and immedi-

ately stained for surface markers, fixed with 2% formaldehyde and

then permeabilized with a solution of saponin and stained for

30 min at room temperature, using conjugated anti-IFN-c
monoclonal antibodies. Preparations were then analyzed using a

FACScan (Becton Dickinson), and 50 000 gated events on total

lymphocyte/monocyte population were acquired for later analysis.

IFN-c and Dengue Infection
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Figure S1A shows the gating strategy utilized for IFN-c+

population analysis in CD4+ cells. Briefly, lymphocyte/monocyte

population was isolated in gate R1. At this region, the cell

population positive for the surface marker of interest was isolated

(R2) and among cells in this region, IFN-c+ cells were obtained

(R3). Analogous strategies were utilized for the other several

populations studied. The antibodies used for the staining were rat

immunoglobulin controls, anti-CD4-PE, anti-CD8-PE, anti-

NK1.1-PE, anti-CD3- PE-Cy5 and anti-IFN-c-FITC (all from

Biolegend Inc). Analysis was conducted using the software Flow Jo

7.2 (Tree Star Inc).

Histopathology and immunohistochemestry
A portion of liver was obtained from killed mice at the indicated

time points, immediately fixed in 10% buffered formalin for

24 hours and tissues fragments were embedded in paraffin. Tissue

sections (4 mm thick) were stained with hematoxylin and eosin

(H&E) and examined under light microscopy or collected in serial

sections on glass slides coated with 2% 3-aminopropyltriethylsilane

(Sigma Aldrich, St. Louis, MO). The latter sections were

deparaffinized by immersion in xylene, and this was followed by

immersion in alcohol and then incubation with 3% hydrogen

peroxide diluted in Tris-buffered saline (TBS) (pH 7.4) for

30 minutes. The sections were then immersed in citrate buffer

(pH 6.0) for 20 minutes at 95uC for antigen retrieval. The slides

were then incubated with the rabbit polyclonal anti-NOS2 (N-20,

sc-651, Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1:100;

at 4uC overnight in a humidified chamber. After washing in TBS,

the sections were treated with a labeled streptavidin-biotin kit

(LSAB, K0492, Dako, Carpinteria, CA). The sections were then

incubated in 3,39-Diaminobenzidine (K3468, Dako) for 2 to

5 minutes, stained with Mayer’s hematoxylin and covered.

Negative controls were obtained by the omission of primary

antibodies, which were substituted by 1% PBS-BSA.

Statistical analysis
Results are shown as means 6 SEM. Differences were

compared by using analysis of variance (ANOVA) followed by

Student-Newman-Keuls post-hoc analysis. Differences between

lethality curves were calculated using Log rank test (Graph Prism

Software 4.0). Results with a P,0.05 were considered significant.

Results

IFN-c production is necessary for host resistance to DENV
primary infection

An initial set of experiments were carried out to assess the

kinetics of IFN-c production and major IFN-c producing cell types

after DENV-2 infection. As shown in Figure 1, there was an

increase in serum and splenic levels of IFN-c from the 5th day of

infection (Figure 1A). Levels of IFN-c enhanced further at day 7 in

both serum and spleen (Figure 1A). In spleen, IFN-c staining was

detected in about 10% of total cells in the 5th day after inoculation

and reached about 15% at the 7th day post infection (Figure 1B

and Figure S1B). CD32NK1.1+ NK cells and CD3+NK1.1+ NKT

populations presented increased proportions of IFN-c staining at

the 5th day post infection (Figure 1B and Figure S1E and S1F). In

addition, there was increase in expression of IFN-c on all cell

populations analyzed at day 7 after infection (Figure 1B).

Significantly, over 30% of CD4+ T cells, 25% of CD8+ T cells,

40% of CD32NK1.1+ NK cells and CD3+NK1.1+ NKT cells

were IFN-c+ at day 7 after infection (Figure 1B and Figures S1C–

F). When the gate was set at IFN-c+ cells, the majority of IFN-c+

cells were CD8+ T cells (3063%) and CD4+ T cells (2561%).

To investigate the role played by IFN-c during DENV

infection, WT and IFN-c-deficient (IFN-c2/2) mice were

inoculated DENV-2 and lethality rates and disease course

evaluated. As seen in Figure 1C, 100% of IFN-c2/2 mice were

dead before the seventh day of infection, and only 15% of WT

mice had succumbed to infection. This early lethality of IFN-c2/2

mice was characterized by more severe manifestation of disease

after DENV infection. Three days after infection, IFN-c2/2 mice

already presented reduced platelets counts (Figure 1D), and at the

5th day of infection, there was marked thrombocytopenia

(Figure 1D) and significant increase in hematocrit values

(Figure 1E) in IFN-c2/2 mice when compared to WT mice. In

addition to the alterations seen in hematological parameters, there

was enhanced production of pro-inflammatory cytokines after

infection. As shown in Figures 1F and 1G, there were no

detectable levels of TNF-a and IL-6 in serum of WT mice at day 5

after DENV-2 infection. However, both cytokines were signifi-

cantly elevated in serum of infected IFN-c2/2 mice (Figures 1F

and 1G). Infected-IFN-c2/2 mice showed hepatic injury, as

assessed by increased AST activity in plasma of IFN-c2/2 mice in

the 5th day of infection (Figure 1H). There was also marked

changes in liver architecture. WT mice inoculated with DENV-2

had little changes in liver, as assessed by histology. In contrast,

there were signs of congestion and hepatocyte degeneration and

necrosis in infected IFN-c2/2 mice (Figure 1I). In addition to the

greater disease severity observed, IFN-c2/2 mice presented

greater viral replication after infection than in WT mice. At the

3rd day of infection, IFN-c2/2 mice presented a 10 fold increase in

DENV-2 viral loads in spleen and DENV-2 titers in spleen of

infected-IFN-c2/2 mice were above 1.5 log greater than in

infected-WT mice in the 5th day of infection (Figure 1J).

Therefore, the data depicted here show IFN-c is expressed and

plays an important role in host defense against DENV infection.

IL-12 and IL-18 control IFN-c production during DENV
infection

Our next objective was to evaluate the roles of IL-12 and IL-18

in controlling IFN-c production by the murine host during DENV

infection. After DENV-2 infection, there were detectable levels of

both IL-12p70 and IL-12p40 in the spleen of WT mice already in

the 3rd day of infection (Figure 2A). The concentration of both

cytokines was increased in the 5th and remained above

background levels at the 7th day of infection (Figure 2A). This

early production is consistent with a putative role of IL-12 in

inducing IFN-c production. Consistently with the latter possibility,

there was a drastic reduction in IFN-c production after DENV-2

infection of IL-12p402/2 mice, which are deficient for both IL-12

and IL-23 production (Figures 2B and 2C). In keeping with the

relevance of IFN-c during dengue infection and reduced IFN-c
production, there was enhanced lethality rates (Figure 2D),

increased thrombocytopenia (Figure 2E) and enhanced hemocon-

centration (Figure 2F) after DENV-2 infection of IL-12p402/2

mice. There were higher concentrations of TNF-a (Figure 2G) and

IL-6 (Figure 2H) in spleen and more severe hepatic injury in IL-

12p402/2 than WT mice after infection (Figure 2I and 2J).

Finally, IL-12p40 deficiency resulted in greater loads of DENV-2

in spleen at the 7th day after infection, when compared with WT-

infected mice (Figure 2K). The reduction of IFN-c production and

the more severe disease seen in IL-12p402/2 mice seem to be

specifically due to IL-12 deficiency as IL-23p192/2-deficient mice

produced similar amounts of IFN-c after DENV-2 infection

(Supplementary Figure S2A) and presented a disease of similar

intensity (Figure S2B and S2C) and unaltered viral loads (Figure

S2 D) when compared to infected-WT mice.

IFN-c and Dengue Infection
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Another cytokine shown to induce IFN-c production during

infections is IL-18 [21]. In the present study, IL-18 concentra-

tions rose rapidly in liver at the 3rd day of DENV-2 infection, but

returned to basal levels in the subsequent timepoints evaluated

(Figure 3A). There was marked reduction of IFN-c production in

spleen and serum of DENV-2-infected IL-182/2 mice when

compared with WT infected mice (Figure 3B and 3C,

respectively). Available IL-182/2 mice were in the BALB/c

background which we have previously shown to be more

susceptible to DENV2-induced disease and lethality [24]. Indeed,

all WT mice in the BALB/c background were dead by day 10 of

DENV-2 infection using an inoculum that caused little lethality in

C57Bl/6 mice (compare Figures 3D and 1C). All IL-182/2 mice

also succumbed to infection but mice died earlier than WT

controls after DENV-2 infection (p = 0.0237) (Figure 3D).

Although the degree of thrombocytopenia was similar in both

strains of mice (Figure 3E), hemoconcentration was greater in IL-

182/2 than WT infected mice (Figure 3F). Levels of TNF-a
(Figure 3G) and IL-6 (Figure 3H) and severity of liver injury

(Figure 3I and 3J) occurred to a greater extent in spleens of IL-

182/2 than WT infected mice (Figure 3G and 3H). Significantly,

enhanced clinical disease and earlier deaths were accompanied

by elevation in viral loads in spleen of IL-182/2 mice

(Figures 3K).

The phenotype of either IL-122/2 or IL-182/2 mice were not

as severe as the phenotype of IFN-c2/2 mice. For example,

whereas viral loads were already approximately 2 log greater at

day 5 in IFN-c2/2 mice, this was not the case in IL-122/2 or IL-

182/2 mice (Figures 2J and 3J). Indeed, IFN-c production was not

abolished in IL-122/2 or IL-182/2 mice and viral loads were only

significantly different from WT at day 7 after infection (see

Figures 2J and 3J). In order to block simultaneously the action of

both IL-12 and IL-18, IL-12p402/2 mice were treated with IL-

18 bp at doses shown to block IL-18 action [28]. Treatment of IL-

12p402/2 mice with IL-18 bp also resulted in total abrogation of

IFN-c levels in serum (Figure 4A) or spleen (Figure 4B) of infected

mice. Treatment of IL-12p402/2 with IL-18 bp also resulted in

marked enhancement of viremia already at day 5 after infection

(Figure 4C), results which are similar to those obtained in IFN-c2/2

mice (Figure 1I) and substantially different from results observed at

day 5 in IL-12p402/2 mice or mice treated with IL-18 bp alone

(Figure 4C). Moreover, treatment of IL-12p402/2 with IL-18 bp

resulted in thrombocytopenia, which was similar to that observed in

IL-12p402/2 or IL-18 bp-treated mice (Figure 4D), and hemo-

concentration, which was greater than in the other groups

(Figure 4E). Levels of IL-6 in plasma were also further enhanced

by the treatment of IL-12p402/2 mice with IL-18 bp than in either

condition alone (Figure 4F). The enhanced viral load and greater

Figure 1. IFN-c-deficient mice are highly susceptible to DENV infection. (A) WT mice were inoculated with 10LD50 of DENV-2 and at the
indicated timepoints, the following parameters were assessed: IFN-c concentration in serum (left panel) and spleen (right panel), measured by ELISA
(A); IFN-c intracellular staining in splenic cells, assessed by FACS analysis (B). (C–J) WT and IFN-c2/2 mice were inoculated with 10LD50 of DENV-2 and
at the indicated timepoints, the following parameters were assessed: lethality rates after infection (C); platelet counts (D) and hematocrit (E) in blood;
TNF-a (F) and IL-6 (G) concentration, measured by ELISA, and AST activity (H), measured by colorimetric assay, in serum; Liver injury, assessed by
Hematoxylin & Eosin staining (five days after infection) (I); Viral loads recovered from the spleen, by plaque assay (J). Results are expressed as mean 6
SEM (except for J, expressed as median) and are representative of at least two independent experiments. N = 5 mice per group * P,0.05 vs. NI.
# P,0.05 vs. WT. NI: Not infected. ND: Not detected. dpi:day post-infection.
doi:10.1371/journal.pntd.0001449.g001
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disease severity already at day 5 resulted in greater lethality rates in

IL-12p402/2 mice treated with IL-18 bp than in either condition

alone or WT mice (Lethality rate at day 7: WT mice, 0%; IL-18

bp-treated mice, 0%; IL-12p402/2 mice, 33%; IL-12p402/2

mice+IL-18 bp, 83%, n = 6). In concert, the data presented above

suggest that IL-12 and IL-18 act together to induce optimal IFN-c
production during dengue infection in mice.

IFN-c-mediated protection to DENV infection involves
elevation of NOS2-mediated NO production

Nitric Oxide production by phagocytes is a well known effector

mechanism induced by IFN-c during host response to infections

[22]. To assess whether this pathway is relevant in host response to

DENV infection, we evaluated NOS2 expression after DENV-2

infection. As shown in Figure 5A, there was increase in NOS2

mRNA expression in spleen already at day 5 day but expression

rose rapidly at day 7 after DENV2 infection of WT mice

(Figure 5A). Evaluation of NOS2 staining in the liver by

immunohistochemistry showed significant NOS2 expression,

virtually only in infiltrating leukocytes, at day 7 after infection

(Figure 5B, C). Consistently with the ability of IFN-c to induce

NOS2, there was no production of NO by dendritic cells infected

with DENV-2, in vitro (Figures 5D). However, treatment of

dendritic cells with IFN-c prior to infection resulted in production

of significant amounts of NO (Figure 5D). In addition, expression

of NOS2 was greatly decreased in spleen of IFN-c2/2 mice after

DENV-2 infection (Figure 5E). As IL-12 and IL-18 cooperate for

optimal induction of IFN-c (results above), we evaluated whether

treatment of IL-12p402/2 mice with IL-18 bp would also results

in reduced NOS2 expression in spleen. As seen in Figure 5E,

concomitant absence of both IL-12 and IL-18 led to impaired

NOS2 expression in spleen that was quantitatively similar to

results obtained in IFN-c2/2 mice (Figure 5E).

To assess the role played by NOS2-induced NO during DENV

infection, NOS22/2 mice were inoculated with DENV-2 and

lethality rates and hematological alterations monitored. As shown

in Figure 6A, NOS22/2 mice were markedly susceptible to

DENV infection, as all knockout animals but none of WT mice

were dead by the 10th day of infection. Thrombocytopenia

(Figures 6B) was more intense earlier but hemoconcentration was

similar in both groups (Figure 6C). There was enhanced splenic

production of TNF-a (Figure 6D) and IL-6 (Figure 6E) and greater

Figure 2. IL-12 controls production of IFN-c and host resistance to DENV infection. (A) WT mice were inoculated with 10LD50 of DENV-2
and at the indicated timepoints, IL-12p70 (left panel) and IL-12p40 (right panel) concentration in spleen were determined by ELISA. (B–K) WT and IL-
12p402/2 mice were inoculated with 10LD50 of DENV-2 and at the indicated timepoints, the following parameters were assessed: IFN-c concentration
in spleen (B) and serum (C), measured by ELISA; lethality rates after infection (D); platelet counts (E) and hematocrit (F) in blood; TNF-a (G) and IL-6 (H)
concentration, measured by ELISA, and AST activity (I), measured by colorimetric assay, in serum; Liver injury, assessed by Hematoxylin & Eosin
staining (seven days after infection) (J); Viral loads recovered from the spleen, by plaque assay (K). Results are expressed as mean 6 SEM (except for J,
expressed as median) and are representative of at least two independent experiments. N = 6 mice per group. * P,0.05 vs. NI. # P,0.05 vs. WT. NI:
Not infected. ND: Not detected. dpi:day post-infection.
doi:10.1371/journal.pntd.0001449.g002
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hepatic injury (Figure 6F and 6G) after DENV-2 infection of

NOS22/2 than WT mice. Importantly, viral loads in spleen after

DENV-2 infection were significantly greater in NOS22/2 than

WT mice (Figures 6H). Of note, all alterations seen in NOS22/2-

infected mice were not due to reduction in IFN-c production after

infection. Indeed, IFN-c levels in spleen and serum were similar in

WT and NOS22/2 infected mice (Figures 6I and 6J). Therefore,

NOS2-derived NO production is driven by IFN-c and is essential

for host protection during DENV primary infection.

Discussion

The major findings of the present study can be summarized as

follows: 1) IFN-c production is essential for host resistance to

DENV infection. NK and NKT cells are the sources of IFN-c
during the early periods of infection and are followed by CD4+

and CD8+ T cells, which are the main producers at the peak of

host response to infection; 2) production of IL-12 and IL-18

precedes IFN-c and optimal IFN-c production relies on the

combined action of IL-12 and IL-18; and 3) IFN-c is essential for

NOS2 induction and NOS2 plays an important role in controlling

virus replication. These studies, therefore, indicate that IL-12/IL-

18-induced IFN-c production and consequent induction of NOS2

are essential for murine host response to DENV infection.

Previous studies support a protective role played by IFN-c
during host response to DENV infection. For example, Shresta

and coworkers have shown that IFN-c receptor-deficient mice

were more susceptible to DENV-induced lethality than WT-

infected mice, despite no differences in viral loads in several target

organs between both groups [17]. The increased susceptibility was

enhanced further when type I IFN receptor was also absent, and

deficiency in both cytokine receptors resulted in disseminated viral

replication [17]. In this respect, IFN receptors-deficient mice

(AG129 strain) are known to be permissive for replication of

DENV clinical isolates in peripheral tissues and CNS, and

represent a well established experimental model of DENV

infection [17–19]. In the present work, we have demonstrated

that IFN-c is produced as early as the fifth day of infection in WT

mice and lack of IFN-c action culminated in early lethality to a

sublethal inoculum. These data establish IFN-c as essential for

Figure 3. IL-18 controls production of IFN-c and host resistance to DENV infection. (A) WT mice were inoculated with 10LD50 of DENV-2
and at the indicated timepoints, IL-18 concentration in liver were determined by ELISA. (B–K) WT and IL-182/2 mice were inoculated with 10LD50 of
DENV-2 and at the indicated timepoints, the following parameters were assessed: IFN-c concentration in spleen (B) and serum (C), measured by ELISA;
lethality rates after infection (D); platelet counts (E) and hematocrit (F) in blood; TNF-a (G) and IL-6 (H) concentration in spleen, measured by ELISA;
AST activity in serum (I), measured by colorimetric assay; Liver injury, assessed by Hematoxylin & Eosin staining (seven days after infection) (J); Viral
loads recovered from the spleen, by plaque assay (K). Results are expressed as mean 6 SEM (except for J, expressed as median) and are representative
of at least two independent experiments. N = 6 mice per group. * P,0.05 vs. NI. # P,0.05 vs. WT. NI: Not infected. ND: Not detected. dpi:day post-
infection.
doi:10.1371/journal.pntd.0001449.g003
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host control of DENV replication and resistance to infection. The

correlation between increased IFN-c production and higher

survival rates in DHF patients [15] also supports this idea.

Of note, enhanced viral replication in IFN-c-deficient mice was

associated with more severe disease manifestation, as showed by

enhanced hematological alterations and hepatic injury. More

severe disease was also noticed in DENV-infected AG129 mice,

characterized by paralysis and elevated hematocrit [17]. Impor-

tantly, Gunther and colleagues have demonstrated in a human

challenge model of DENV infection that only sustained IFN-c
production was associated with protection against fever and

viremia during the acute phase of illness [31]. These data suggest

that IFN-c is important to prevent worsening of disease. In

humans, epidemiological studies have shown that a substantial

number of patients with severe disease have evidence of a previous

infection with a distinct serotype [1–3,9–11,32]. Several hypotheses

have been raised to explain this immune-mediated enhancement of

disease severity. For example, it has been hypothesized that

subneutralizing levels of antibodies facilitate the entry of viral

particles in permissive cells (a phenomenon termed antibody-

dependent enhancement - ADE), enhancing viral load, and

exacerbating disease manifestation [33]. Experimental DENV

models support this hypothesis and suggest that disease severity is

directly associated with enhanced viral replication during infection

[34,35]. Of note, infected IFN-c-deficient mice, as well as IL-

12p402/2 and IL-182/2 infected mice, presented elevated viral

loads, in parallel with elevated hematocrits, thrombocytopenia, and

liver injury. Therefore, we may suggest that the worse outcome seen

in mice with reduced IFN-c production after infection is due to

inability in control of DENV replication, leading to viral burden

and enhancement of disease.

Figure 4. IL-12 and IL-18 act in synergism to induce IFN-c
production and resistance to DENV infection. WT and IL-12p402/2

mice (n = 5 mice per group), treated or not with IL-18 bp (daily i.p.
injection of 250 mg of protein), were inoculated with 10LD50 of DENV-2
(i.p) and, 5 days after infection, The following parameters were assessed:
IFN-c concentration in spleen (A) and serum (B) , measured by ELISA; viral
loads recovered from the spleen, measured by plaque assay (C); platelets
counts (D) and hematocrit (E) in blood; IL-6 concentration in serum,
measured by ELISA (F); Results are expressed as mean 6 SEM (except
for A, expressed as median) and are representative of at least
two independent experiments. N = 5 mice per group. * P,0.05 vs. NI.
# P,0.05 vs. WT. NI: Not infected. ND: Not detected.
doi:10.1371/journal.pntd.0001449.g004

Figure 5. IFN-c controls NOS2-mediated NO production during
DENV infection. (A–C) WT mice were inoculated with 10LD50 of DENV-
2 and at the indicated timepoints, the following parameters were
assessed: NOS2 RNA expression in spleen, determined by qPCR (A);
NOS2 staining in liver, assessed by IHC at the 7th day of infection (B, C).
(D) Bone marrow derived dendritic cells were infected with DENV-2
(MOI 0,1 PFU/cell) in the presence or not of IFN-c, and at the indicated
timepoints, NO production was quantified by Griess reaction. (E). WT,
IFN-c2/2 and hIL-18 bp-treated IL-12p402/2 mice (daily i.p. injection of
250 mg of protein, n = 5 mice per group) were inoculated with 10LD50 of
DENV-2 (i.p) and in the fifth day of infection NOS2 RNA expression was
determined by qPCR. Results are shown as fold increase over basal
expression in control mice (A, E); number of positive cells per mm2 of
liver (B); and mM of nitrite in medium (D). Results are expressed as mean
6 SEM and are representative of at least two independent experiments.
N = 5 mice per group. * P,0.05 vs. NI. # P,0.05 vs. WT. In (E), * P,0.05
vs. DENV-2 infected cell, and # for P,0.05 vs. medium or IFN-c-treated
cells. dpi:day post-infection.
doi:10.1371/journal.pntd.0001449.g005
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Mice in which IFN-c production was decreased or deficient had

a significant increase in levels of pro-inflammatory mediators after

DENV infection. Indeed, both TNF-a and IL-6 production were

enhanced in DENV-2 infected IFN-c2/2, IL-12p402/2, and IL-

182/2 mice, when compared with WT controls. Increased levels

of these cytokines have been associated with severity of dengue

manifestation in humans [36–38]. Hence, enhanced TNF-a
release by T cells during secondary stimulation with DENV

antigens was found in hospitalized patients with more severe

disease evolution [39]. In addition, the ratio of TNF-a-producing

to IFN-c-producing T cells among peripheral blood mononuclear

cells from dengue-vaccine recipients was shown to be greater after

in vitro stimulation with antigen from heterologous dengue

serotypes [39], suggesting that increased amounts of TNF-a alters

response to infection and may result in more-severe disease

manifestation. Findings in murine experimental models support

this idea [40]. Altogether, these findings in humans suggest that

IFN-c production is associated with protective responses to DENV

infection and that severe disease may occur due to absence of

proper IFN-c release and to enhanced TNF-a production during

response, although it remains to be shown if enhanced TNF-a
production seen in DENV infected IFN-c2/2 mice was due to T

cells or to any other cellular population.

Interestingly, enhanced viral load have also been associated

with increased pro-inflammatory response during mouse exper-

imental infection by West Nile virus [41], another important

flavivirus that is pathogenic to humans. The latter findings

support the hypothesis that increased virus replication in the

absence of IFN-c production leads to increased pro-inflamma-

tory mediators response. TNF-a blockade in experimental

models of DENV infection resulted in prevention of disease

[19,23] and TNF-a action has been implicated in increased

vascular permeability after infection in experimental settings

[13]. Of note, inhibition of other pro-inflammatory mediators

produced in the evaluated experimental model of DENV

infection, including PAF and MIF, is associated with reduced

production of TNF-a and IL-6 and milder disease manifestation,

reduced hypotension and vascular permeability after DENV

infection [13,24,25]. Hepatic injury was also enhanced in IFN-

c2/2 mice infected with DENV. Data from our laboratory

suggest that enhanced liver injury during experimental DENV

infection involves both productive viral infection of hepatocytes

and immunopathological mechanisms, such as enhanced leuko-

cyte arrest and activation in hepatic tissue (our unpublished data,

manuscript in preparation). Therefore, the elevation of pro-

inflammatory cytokine production and consequent liver injury

Figure 6. NOS2-deficient mice are more susceptible to DENV infection. WT and NOS22/2 mice were inoculated with 10LD50 of DENV-2 and
at the indicated timepoints, the following parameters were assessed: lethality rates after infection (A); platelet counts (B) and hematocrit (C) in blood;
TNF-a (D) and IL-6 (E) concentration in spleen, measured by ELISA; AST activity in serum (F), measured by colorimetric assay; Liver injury, assessed by
Hematoxylin & Eosin staining (seven days after infection) (G); Viral loads recovered from the spleen, by plaque assay (H). IFN-c concentration in spleen
(I) and serum (J) measured by ELISA; Results are expressed as mean 6 SEM (except for H, expressed as median) and are representative of at least two
independent experiments. N = 6 mice per group. * P,0.05 vs. NI. # P,0.05 vs. WT. NI: Not infected. ND: Not detected. dpi:day post-infection.
doi:10.1371/journal.pntd.0001449.g006
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seen in the absence of IFN-c appears to account for the worse

outcome after DENV infection in mice.

Several studies have demonstrated the IFN-c-inductive role

played by IL-12 and IL-18 during experimental models of viral

infections [20,21,42]. Here, we have shown that IL-12 and IL-18

were produced early after DENV infection. The kinetics of

production of these cytokines was compatible with their inductive

role of IFN-c production. In support of the latter possibility, IL-

12p402/2 and IL-182/2 mice presented marked reduction in

IFN-c production after DENV infection. In addition, absence of

one of these cytokines led to worsening of dengue disease, despite a

small delay in peak of DENV-induced alterations. Of note, only

during simultaneous blockade of both IL-12 and IL-18, there was

complete abrogation of IFN-c production. Interestingly, IL-122/2

mice treated with IL-18 bp presented marked enhancement of

splenic viral loads already at the 5th day post DENV-2 infection

and disease seen in these mice was very similar to that found in

infected IFN-c2/2 mice. Thus, IL-12 and IL-18 act synergistically

to induce IFN-c production during DENV infection. Of note, IL-

18 production has been shown to be dependent on inflammasome

complex activation [43], suggesting that this molecular scaffold

may play a role in the control of IFN-c production and in host

resistance to DENV infection.

IL-18 is known to augment IL-12-induced IFN-c production by

T and NK cells [20,21,42,44], and absence of IFN-c in infected

mice is known to abolish both NK cell and CTL responses during

viral infections [42,44]. Our data suggest that, upon infection, NK

and NKT cells are the cell populations involved in early IFN-c
production and that CD8+ and CD4+ T cells are the main IFN-c
producers at later moments of response to infection (7th day). IFN-

c production by CD4+ T cells during experimental DENV

infection has been previously demonstrated [45]. In addition, CD8

T cell activation has been associated to protection to DENV

primary infection in mice [46,47]. Our data showing a significant

increase in IFN-c+ NK and NKT cells and the finding that IFN-

c2/2 mice succumb very early to infection suggest a important

role for these cell populations in mediating resistance to DENV

infection during its initial phases. Of note, NK cell activation early

after experimental DENV infection has been previously demon-

strated [44]. Interestingly, increased percentages of NK cells and

of activated NK cells were also associated with milder DF, whereas

reduced cell counts, low percentages and lack of activation

markers (comparable to healthy controls) were associated with

evolution to DHF in patients [48,49]. Altogether, these observa-

tions suggest that sequential and coordinated IFN-c production by

these lymphocytes populations during DENV infection is an event

of extreme importance for host resistance to disease.

However, it remains to be shown the antigenic specificity of

these IFN-c-producing lymphocytes in the studied experimental

settings. In addition, whether these cells are poly-functional and

secrete other cytokines or present other effector functions remain

to be studied. In this regard, it has been demonstrated that

development of subclinical secondary infection in school children

is associated with increased proportions of DENV-specific TNF-a,

IFN-c and IL-2-producing CD4+ and CD8+ T cells [50],

suggesting that poly-functional responses correlate with protection

to severe disease manifestation. On the contrary, cytokine-

producing T cells (especially TNF-a and/or IFN-c) were

associated with DHF development in patients and these DHF

associated, cytokine-producing T cells were shown to be negative

for CD107a staining, suggesting that these lymphocyte populations

represent mono-functional or oligo-functional T cells [51].

Therefore, assessment of the pattern of T cell cytokine production

and of the mechanisms controlling such polyfunctionality (whether

IL-12 and or IL-18 are involved in such control) may provide

important information regarding protective versus pathogenic

responses to DENV infection and may bear relevance during

development of vaccinal strategies. At the moment, these subjects

have been matter of ongoing analysis in our experimental infection

model.

Apart from promotion of NK and CTL responses, IFN-c seems

to be important for viral clearance by induction of NO production.

It has been shown that NOS2 expression is increased upon DENV

infection in humans and that this expression in peripheral blood

monocytes of DF patients was found to correlate with the late

acute phase of disease and preceded the clearance of DENV from

monocytes [52]. Hence, NO production was associated with less

severe form of dengue disease in humans [53]. Here, we

demonstrate that NOS2 expression is increased during DENV

infection and that this expression is controlled by IFN-c
production, once IFN-c2/2 and IL-12p402/2 mice treated with

IL-18 bp presented reduced NOS2 expression. In addition, IFN-c
stimulation was necessary for NO production by DENV-infected

DCs, in vitro. Importantly, blockade of NOS2 action was associated

with enhanced viral loads after infection, and more severe disease

manifestation, even in the presence of high levels of IFN-c. Of

note, NO is able to inhibit DENV replication in human cells in vitro

[54,55], an effect associated with inhibition of DENV associated

polymerase activity [54–56]. Thus, NOS2-mediated NO produc-

tion is pivotal for resistance to DENV infection and this seems to

be a major pathway involved in IFN-c-mediated resistance to

disease. However, in the absence of NOS2, animals die with a

slower kinetics than IFN-c2/2 mice, suggesting that mechanisms

in addition to NOS2-mediated NO production may be relevant

for IFN-c-mediated host protection to infection. This could

involve the presence of CTL responses and NK cells, but not

NKT cells, which seem to play detrimental role in experimental

DENV infection [57]. These IFN-c-dependent and NOS2-

independent mechanisms are currently being investigated in our

laboratory.

However, other studies have demonstrated a pathogenic role for

NO during DENV infection. Utilizing human cell lines and

experimental mouse infection, it has been shown that overproduc-

tion of NO could lead to endothelial cell damage, and cross-reactive

antibodies against endothelial cells, present during DENV infection,

were found to induce cell damage in an NO-dependent manner

[58]. For example, Yen and coworkers have found that tissue

hemorrhage after experimental DENV infection was dependent

upon reactive nitrogen species production by endothelial cells. This

event was associated with increased endothelial cell apoptosis during

infection [59]. Although NOS2 inhibition resulted in reduced

hemorrhage, viral replication was not evaluated. In addition, the

increased hemorrhage displayed after NO production seemed to be

an endothelial cell-associated phenomenon and was potentiated by

TNF-a and reactive oxygen species (ROS). On the contrary, IFN-c-

mediated NO inhibition of viral replication was demonstrated

especially in leukocytes population both in human and mouse

settings [52–56]. Our results showed that NOS2 staining during

DENV-2 infection in the present model was mainly associated to

leukocytes. These findings suggest that NO may have a dual role

during DENV infection and that this is associated with the cell

populations involved in NO production and on the presence of

additional inflammatory mediators. NO production by infected

leukocytes may be associated to control of viral replication and

prevention of disease evolution, while NO production by endothe-

lial cells, especially in the presence of TNF-a and ROS, would favor

cell death and more severe disease manifestation. Additional

experiments evaluating cell-specific NOS2-deficient mice will help
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in answering the latter hypothesis and aid in defining other roles of

NO in the context of experimental dengue.

In conclusion, we have demonstrated that IFN-c production is

essential for host resistance to DENV infection. IFN-c production

upon infection is controlled by concomitant production of IL-12

and IL-18 and the IFN-c-dependent mechanisms associated to

resistance to dengue disease involve NOS2 up-regulation and

consequent NO production. In the absence of these molecules,

there is enhancement of viral burden and more severe manifes-

tation of dengue disease. Thus, IFN-c induction helps to

orchestrate immune response maturation, control of viral

replication and regulation of inflammatory response during host

response to DENV infection, defining the outcome of dengue

disease. Despite extrapolation of this experimental scenario to

human infection requires further investigation, we may suggest

that strategies that improve the production of IFN-c-mediated

immunity by the host could be useful during the control of primary

infection by Dengue virus.

Supporting Information

Figure S1 Gating strategy utilized for analysis and
representative histograms of IFN-c production after
DENV-2 infection. WT mice were inoculated with 10LD50 of

DENV-2 and at the indicated timepoints, IFN-c intracellular

staining in splenic cells was assessed by FACS analysis utilizing the

following gating strategy (A) Lymphocyte/monocyte population

was isolated among total events as the region R1. 50,000 events at

R1 were collected for analysis (left panel). At this region, the cell

population positive for IFN-c staining defined as total IFN-c+-cells

(middle panel - R2). Right panel A contains representative

histograms of total IFN-c+-cells in each group analyzed. (B) At

region R1 in panel A, CD4+ cells were isolated (R3 in left panel B),

and the cell population positive for IFN-c staining among them,

defined as CD4+ IFN-c+-cells (middle panel B - R4). Right panel B

contains representative histograms of CD4+ IFN-c+-cells in each

group analyzed. (C) At region R1 in panel A, CD8+ cells were

isolated (R5 in left panel C), and the cell population positive for

IFN-c staining among them, defined as CD8+ IFN-c+-cells (middle

panel C – R6). Right panel C contains representative histograms

of CD8+ IFN-c+-cells in each group analyzed. (D) At region R1 in

panel A, cells were sorted by their staining for CD3 and NK1.1

(left upper panel D). CD3+ NK1.1+ cells were isolated (R7 at the

upper left panel D), and the cell population positive for IFN-c
staining among them, defined as CD3+ NK1.1+ IFN-c+-cells

(upper middle panel D – R9). Upper right panel D contains

representative histograms of CD3+ NK1.1+ IFN-c+-cells. CD32

NK1.1+ cells were isolated (R8 at the upper left panel D), and the

cell population positive for IFN-c staining among them, defined as

CD32 NK1.1+ IFN-c+-cells (bottom left panel D - R10). Bottom

middle panel D contains representative histograms of CD32

NK1.1+ IFN-c+-cells. Groups analyzed were Not infected animals

(dotted line), animals in the 5th day post infection (dashed lines)

and animals at the 7th day post infection (continuous line). Grey

filled histograms represent Isotype-stained cells. NI: Not infected.

dpi: days post-infection.

(TIF)

Figure S2 IL-23 does not participate in IFN-c-mediated
resistance to DENV infection. (A–D) WT and IL-23p192/2

mice were inoculated with 10LD50 of DENV-2 and at the seventh

day of infection, the following parameters were assessed: IFN-c
concentration in serum (A), measured by ELISA; platelet counts

(B) and hematocrit (C) in blood; Viral loads recovered from the

spleen, by plaque assay (D). Results are expressed as mean 6 SEM

(except for D, expressed as median) and are representative of at

least two independent experiments. N = 4 mice per group.

* P,0.05 vs. NI. # P,0.05 vs. WT. NI: Not infected. ND: Not

detected.

(TIF)
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