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The quality of adaptive treatment planning depends on the accuracy of its underlying 
deformable image registration (DIR). The purpose of this study is to evaluate the 
performance of two DIR algorithms, B-spline–based deformable multipass (DMP) 
and deformable demons (Demons), implemented in a commercial software pack-
age. Evaluations were conducted using both computational and physical deformable 
phantoms. Based on a finite element method (FEM), a total of 11 computational 
models were developed from a set of CT images acquired from four lung and one 
prostate cancer patients. FEM generated displacement vector fields (DVF) were used 
to construct the lung and prostate image phantoms. Based on a fast-Fourier transform 
technique, image noise power spectrum was incorporated into the prostate image 
phantoms to create simulated CBCT images. The FEM-DVF served as a gold stan-
dard for verification of the two registration algorithms performed on these phantoms. 
The registration algorithms were also evaluated at the homologous points quantified 
in the CT images of a physical lung phantom. The results indicated that the mean 
errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational 
phantoms and 1.9 mm for the physical lung phantom. For the computational prostate 
phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm 
in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced 
by B-spline interpolations were observed in all the displacement profiles of the DMP 
registrations. Regions of large displacements were observed to have more registra-
tion errors. Patient-specific FEM models have been developed to evaluate the DIR 
algorithms implemented in the commercial software package. It has been found that 
the accuracy of these algorithms is patient-dependent and related to various factors 
including tissue deformation magnitudes and image intensity gradients across the 
regions of interest. This may suggest that DIR algorithms need to be verified for each 
registration instance when implementing adaptive radiation therapy. 
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I.	 Introduction

Anatomy revealed in a planning CT image may change during the course of radiation treatment 
due to factors such as patient breathing, setup errors, or patient weight loss.(1,2) Anatomical 
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changes may compromise the accuracy of dose calculation for each organ. As a result, the 
treatment plan developed may not provide necessary target coverage and organ-at-risk sparing. 
Adaptive radiotherapy (ART) aims to minimize the dosimetric impact of anatomical changes by 
reoptimizing the original treatment plan if its quality degrades.(3) A key step in the implemen-
tation of ART is to match each point on daily CT images to their correspondent points in the 
planning image. This process can be accomplished with deformable image registration (DIR) 
techniques.(4) DIR is to derive a transformation map by maximizing the intensity similarity 
between the two images being registered. Depending on the registration techniques used, the 
transformation map can be represented by different mathematical models such as affine trans-
form,(5) thin-plate spline,(6) or B-spline basis,(7) or adapted directly through optical flow-based 
equations.(8) Similarity metrics also can be represented in different forms including the sum of 
squared difference, cross-correlation, or normalized mutual information.(9,10) Like dose calcu-
lation algorithms, these DIR algorithms must be thoroughly evaluated before they are used in 
clinic for adaptive radiation therapy. 

Visual evaluation is common practice after performing an image registration. As a prelimi-
nary test, this evaluation is convenient and especially useful for software development.(11,12) 
Along this direction, many efforts have been made using landmarks or contours to estimate 
errors in the displacement vector field (DVF)(13,14) of DIR. For example, Hardcastle et al.(15) 
evaluated two registration algorithms with dice scores calculated on the contours drawn by 
physicians, and Brock et al.(16) evaluated 4D CT registrations reported from 21 institutions by 
comparing the computer-predicted displacement at each bifurcation point with the displacement 
computed from the oncologists’ annotations. Castillo et al.(17) developed an automatic method 
to identify and track landmark points in lung patient datasets. These studies provided quanti-
tative evaluation results on the performances of different DIR algorithms at these distinctive 
landmarks or their nearby regions. However, as reported by Kashani et al.(18) and Liu et al.,(19) 
large registration errors can be observed in regions of uniform image intensity, and the above 
evaluations are limited by the number of the objects being tracked; so errors estimated by the 
feature-guided evaluation methods may not be representative of the registration accuracy in 
voxels at a distance from those landmarks.(20) 

Since landmarks or contours are not always available in high-dose gradient regions, math-
ematical properties of the generated deformation maps may serve as an alternative metric to 
evaluate the quality of DIR in these regions. For example, Schreibmann et al.(21) evaluated 
the quality of image registrations by calculating the curl of their deformation maps. Zhong et 
al.(22) proposed the concept of unbalanced energy, calculated directly from DVF, to detect DIR 
errors. Bender and Tome (23) employed consistency metrics to evaluate the accuracy of the 
composed deformation maps. Klein et al.(24) used permutation and ANOVA tests to compare 
the relative performance of 14 nonlinear registration algorithms. These studies help evaluate 
the overall quality of different registrations and the derived information is valuable to clinic. 
However, as radiation dose was mapped by the derived DVF, subvoxel displacement errors may 
cause the accumulated dose over- or underestimated, especially when the dose was counted 
on individual particles during the dose mapping process.(25,26) Salguero et al.(27) demonstrated 
that registration errors greater than 1 mm can induce large dose errors in high-dose gradient 
regions, so the accuracy of the registration algorithm needs to be quantified at each image voxel 
in these regions. In addition, the performance of a registration algorithm should be evaluated 
for patient-specific registration scenarios that may involve different image qualities, anatomy 
patterns (e.g., size of homogeneous organs), and deformation magnitudes.

Computational modeling can help evaluate registration performance under various simu-
lated scenarios.(28,29) For example, Wang et al.(30) used a set of B-spline–based mathematical 
phantoms to evaluate their demons algorithm, and Liu et al.(19) evaluated their DIR algorithms 
using the computational phantom NCAT. While the NCAT phantom has organs assigned with 
uniform intensity, the deformation of each organ was realistically modeled with B-spline func-
tions. Furthermore, DIR algorithms could be verified with more realistic images acquired from 
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deformable physical phantoms.(19,31-33) Recently Nie et al.(34) used a set of computer-simulated 
deformable phantoms and a physical pelvic phantom to evaluate different DIR algorithms, and 
demonstrated the impact of different deformations on the performance of these algorithms. Their 
computational phantoms were generated by the commercial software ImSimQA (Oncology 
Systems Limited, Shrewsbury, UK). The global deformation of these phantoms was interpolated 
from the thin-plate splines which were guided by a set of manually selected control points.(35)  
Consequently, mass volume may not be preserved during the spline interpolation, and the 
resultant organ deformation may not be physically realistic.

In this study, we will first develop more realistic computational phantoms from CT images 
of lung and prostate patients. The images of the prostate phantoms were enhanced by the simu-
lated CBCT noise. The reality of the phantom deformations is achieved through an in-house 
developed finite element modeling framework where tissue elasticity and volume change in 
each element were characterized by Young’s modulus and Poisson ratio, and the global defor-
mation was controlled by the conservation of tissue elasticity energy and external work. Taking 
these phantoms as a ground truth, we will investigate parameter settings for the DIR algorithms 
implemented in Velocity Advanced Imaging (VelocityAI), a commercial DIR software package, 
and compare the performance of these DIR algorithms for five cancer patients under different 
deformation scenarios. In addition, we will also develop a motor-controlled deformable physical 
phantom to verify these algorithms. 

 
II.	 Materials and Methods

A. 	 Image registration software package
The VelocityAI software package (v2.6.2; Velocity Medical Solutions, Atlanta, GA) offers a rigid 
registration and three choices for 3D deformable registration algorithms: “Deformable Demons” 
(Demons), “Deformable Single-Pass” (DSP), and “Deformable Multi-Pass” (DMP). DMP uses 
DSP with preprogrammed choices for grid settings for each pass. Specifics of the grid settings 
are unknown to the authors as VelocityAI is a commercial, proprietary software. However, it is 
known that DMP uses mutual information as its similarity metric and B-splines for interpolation. 
Operators also have the option of limiting the registration space to a region of interest (ROI). 
Registration can be performed intra- and intermodality for CT, CBCT, and MRI, and its derived 
DVF can be exported as a binary file with three-dimensional values for each voxel.

The purpose of this study is to evaluate the DMP and Demons algorithms implemented in 
VelocityAI. Different from DMP, DSP allows users to choose different grid settings ranging 
from “coarse” to “fine”. However, due to the lack of a ground truth, these settings are hardly 
to be used in clinic. In this study, we will first use the developed computational phantoms to 
evaluate different grid settings for DSP and compare their registration results with those derived 
from the DMP algorithm, and then we will focus on the comparison between DMP and Demons 
for different scenarios of organ deformation.

B. 	 Evaluation of image registration algorithms with lung CT images

B.1  Development of computational lung phantoms 
4D CT datasets used in this study were selected from four lung cancer patients under a retrospec-
tive protocol approved by the Institutional Review Board of our institution (IRB#: 6203). For 
each case studied, the 3D image of the 4D CT at the end inhalation (EI) phase was considered 
the primary image. Computational phantoms were developed based on the primary images 
using a finite element modeling (FEM) system. The mathematical implementation of this system 
was described in our previous study.(29) With this system, tetrahedral meshes were generated 
and scaled to match each of the image domains. Diaphragm, spinal cord, and ribs on each side 
were manually segmented from the CT images. Tetrahedral nodes located in diaphragm regions 
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were selected as driving nodes, and those in spinal cords and side ribs were fixed as boundary 
constraints. Young’s moduli were set to 1 MPa for ribs, 1 kPa for lung, and 10 kPa for other 
soft tissue. The Poisson ratio was 0.38 for lung and 0.49 for other elements.(36) With different 
forces assigned to the driving nodes, the displacement vectors of other anatomical structures 
were computed using the FEM modeling system.

For lung patient 1 (denoted Lung1), the selected nodes were assigned with the forces of 0.8, 
1.6, 2.4, and 3.2 kPa, and these forces got the diaphragm moved superiorly by about 1, 2, 3, 
and 4 cm. The force-induced organ deformation can be visualized through the overlay of the 
patient’s original image set and its deformed image set, as shown in Fig. 1. For lung patient 
2 (denoted Lung2), the forces of 0.8, 1.2, and 2.0 kPa caused diaphragm deformation by 1.8, 
2.7, and 4.2 cm, respectively. These phantoms will be used to evaluate the impact of motion 
magnitudes on registration accuracy. 

To evaluate the impact of patient-specific anatomy on DMP registrations, CT images of two 
additional lung patients (Lung3 and Lung4) were included to develop more computational phan-
toms. 1.8 and 2.1 kPa forces were assigned to the tetrahedral nodes located in their diaphragm 
regions, and their lateral ribs and spinal cords were kept stationary as boundary conditions. As 
a result, their simulated diaphragm deformation is limited to 3 cm. Consequently, there are total 
four phantoms, including Lung1 and Lung2, having their diaphragms deformed about 3 cm. 

The displacement vectors of the tetrahedral nodes generated by the FEM modeling system 
were interpolated to generate a DVF for each primary image. Secondary images were constructed 
from the primary image sets using the FEM-generated DVFs. Slice spacing and image size were 
kept consistent with the primary image sets with voxel sizes of ~ 1 mm in the X and Y directions, 
and 3 mm in the Z direction. The FEM-generated DVFs were considered the gold standards to 
evaluate registrations performed from the primary images to the FEM-simulated images.  

(a)

(c)

(b)

Fig. 1.  The original CT image (red) and its deformed image (green) of Lung12cm: (a), (b), and (c) are the coronal, sagittal, 
and transverse cuts of their overlaid images, respectively.
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B.2 � Computational phantom-based evaluations of DSP with different  
grid resolutions

DSP and DMP share the same registration algorithm with their difference mainly in that DSP 
allows the user to choose the B-spline grid resolution from 1 to 9, with 1 being the coarsest 
and 9 being the finest. The exact grid spacing of each level is unknown due to the proprietary 
nature of the software. One can compose a set of DSP registrations to form a multiresolution 
registration chain. For example, images would be registered first using the coarsest setting, and 
then that result would be fed to the next stage of finer grid spacing. 

In order to evaluate the DSP registration algorithm, chains of registrations with different grid 
resolutions were performed on the two lung patients (Lung1 and Lung2) with four diaphragm 
deformations (1.8 cm, 2.0 cm, 2.7, and 3.0 cm). For each dataset, six representative compositions 
of typical grid resolutions were investigated, including three single grid resolutions of 1, 5, and 
9, as well as three resolution compositions of 1→5, 1→9, and 1→5→9. The resulting DVFs 
were compared against the corresponding FEM-generated gold standard DVFs to estimate the 
registration errors at each image voxel. The DMP algorithm was also applied and evaluated 
using the same dataset for comparison. 

B.3  Computational phantom-based evaluation of DMP and Demons
To evaluate the DMP algorithm which was suggested as the default by the manufacturer, the 
performances of DMP and Demons registrations were compared based on the developed FEM 
models. Both DMP and Demons in VelocityAI had no customizable grid settings and were 
run with the default parameters. Their registrations were performed by deforming the primary 
image sets to match the secondary image sets. The registration error, e, at a point x was quanti-
fied by:

	 	 (1)

where the first and second terms are the DVFs generated by the FEM modeling and DIR algo-
rithms, respectively. 

Both DMP and Demons registrations were performed on seven deformable models, developed 
from Lung1 and Lung2 to identify the potential trend of registration errors that are associated 
with different displacement magnitudes; then the two algorithms were evaluated with models 
developed from four different patients to detect any patient-specific errors. Registration errors 
are generally large in the superior and inferior ends of image borders because there is often no 
corresponding anatomy between two input images. However, the effect is clinically insignificant 
since the treatment lesions and relevant organs of interest are typically located near the center 
of the images. Thus, such border regions (2 cm on each end) were excluded from analysis in 
this study. Boolean masks of the patient body and lung region were created to confine the error 
analysis to these relevant voxels.

B.4  Physical phantom-based evaluation of DMP and Demons 
A motor-controlled lung phantom was developed to simulate respiration-induced deformation. 
Phantom characterization is beyond the scope of this work; but briefly, the insert was made 
of heterogeneous sponge with average density equivalent to lung density in CT images. The 
inferior end of the phantom was deformed 2.5 cm to simulate a diaphragm movement. A 4D CT 
dataset including the phases of the end inhalation (EI) and end exhalation (EE) was acquired 
for this phantom. Registrations were performed from EI to EE using both DMP and Demons 
algorithms. Registration errors were quantified with the ROIs set to the lung region, as well 
as to the entire image volume. Further, the influence of different window/level settings was 
investigated. The selected window settings included 250, 500, 1000, and full range with the 
levels set to the half of the corresponding window values.  
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The registrations of the phantom images were evaluated with 37 landmarks. These landmarks 
were sponge features automatically identified in the phantom’s EE image. Specifically, the image 
was scanned voxel by voxel until one was found with intensity greater than a given threshold. 
Once this voxel was found, a subprocess utilized a spanning tree algorithm(37) to find all the 
directly neighboring voxels with a new threshold that had lower intensity than the first. The first 
threshold ensured that only objects whose intensity rose above it would be chosen. The second 
threshold was set lower to include more periphery voxels and form a complete feature. Once the 
feature was delineated, its center of mass was determined to define the feature’s spatial location. 
All voxels within an already defined object were then ignored in the remaining scans.

A deformable image registration was performed from the EI image to the EE image, and 
its resultant DVF was then used to construct a warped image from the EI image. The process 
used to identify the features on the EE image was repeated on this warped image. At this point, 
two sets of features were determined: one on the EE and another on the warped EI images. 
The correspondence of these features was established based on their size and center-of-mass 
coordinates, and was then visually reviewed with their overlaid images. The distance between 
the corresponding center-of-mass coordinates in the EE image and in the warped EI image was 
determined, indicating the displacement error of the registration at the center.  

C. 	 Evaluation of image registration algorithms with prostate CT images

C.1  Development of computational prostate phantoms
The primary CT image sets were acquired from prostate cancer patients using a retrospective 
protocol approved by the IRB of our institution. One image set with an empty bladder was 
selected to create a deformable prostate phantom, where bladder expansion was simulated 
through equally distributed forces applied outward on a set of tetrahedral nodes located in the 
inside of the bladder. Two different forces were added to these boundary nodes to create two 
deformed image sets, termed P1

CT and P2
CT, resulting in a 6 mm and an 8 mm isotropic expansion 

of the bladder radius in the lateral direction. The resultant displacements of all the tetrahedral 
nodes were interpolated to get displacements in the entire image domain. The interpolated 
displacement fields were used to deform the primary image to generate deformable prostate 
phantoms with known deformation fields. 

C.2  Prostate phantoms for evaluation of image registrations between CT and CBCT
To evaluate DMP performance between CT and CBCT image registrations, simulated CBCT 
images were created by incorporating simulated CBCT noise into the FEM-generated benchmark 
models. Specifically, with the two FEM-simulated deformation fields, the primary prostate CT 
image was warped to create two deformed images. To create simulated CBCT images, Pi

Noise 
( i = 1,2), Poisson noise was incorporated into the deformed images in a manner similar to 
Murphy et al.(38) Specifically, the deformed CT image was transformed to its spectrum space 
using a Fast Fourier Transform (FFT) in MATLAB (The MathWorks, Inc., Natick, MA). Based 
on Jaffray and Siewerdsen’s study of CBCT performance characteristics,(39) the noise power 
spectrum (NPS) was approximated by the function 

	 	 (2)

with λ = 0.15 mm, where k is the wave number in the Fourier domain.(38) The FFT image was 
then multiplied by the NPS and converted back to the image domain using an inverse FFT. The 
resultant image Pi

Noise contains the simulated CBCT noise. If a registration performed from the 
primary prostate CT image to Pi

CT or Pi
Noise is accurate, its DVF should be equal to the FEM-

generated deformation field.
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C.3  Evaluation of registrations between prostate CT and CBCT images 
The evaluation of prostate image registrations was performed in the same way as for the lung 
cases (i.e., a voxel-by-voxel comparison to the FEM simulated DVF for constructed image 
phantoms). This was done for registrations from the primary CT to Pi

Noise and Pi
Noise (i = 1,2, 

respectively), where Pi
Noise was used to assess the impact of CBCT noise on image registra-

tions. For this reason, average errors and displacement profiles of these Pi
Noise registrations were 

compared to the Pi
CT registrations. The calculated errors were averaged in the entire patient 

volume, as well as in the prostate, bladder, and rectum regions. 

 
III.	Res ults 

A. 	 Evaluation of image registrations using lung CT phantoms

A.1  Computational lung phantoms
Figure 1 demonstrates an example for the case of Lung12cm where the center of the diaphragm 
surface was moved up by 2 cm and the other internal structures were deformed by the FEM 
model. The overlay of the original image (red) and the FEM deformed (green) image was shown 
in Figs. 1(a) – 1(c). Similarly, computational phantoms were developed for the four lung cancer 
patients with a set of different deformation magnitudes.   

A.2  Evaluation of DSP with different grid settings
DSP registrations with different B-spline grid settings were performed on the computational 
phantoms Lung12cm, Lung13cm, Lung21.8cm, and Lung22.7cm. All the grid settings defined in the 
Materials & Methods section B.2 (above) were tested, and the resultant displacement errors 
were averaged in the patient volume with the results shown in Fig. 2.

As shown in Fig. 2, DMP outperformed DSP with these selected settings for Lung12cm, 
while a slight improvement of DSP over the DMP algorithm was observed in Lung21.8cm where 
the average displacement error was improved by 0.2 mm. For the cases of large diaphragm 
motions, Lung13cm and Lung22.7cm, the DMP performed better for all six settings, and in some 
cases the differences were larger than 3.0 mm. In general, the performance of the DMP was 
comparable or superior to that of the DSP with the selected B-spline grid settings. It is notice-
able that, for DSP, the R1 resolution registrations have less error than R9 registrations, which 
is particularly true for large deformation cases Lung13cm and Lung22.7cm. It is primarily due to 

Fig. 2.  Average displacement errors (± standard deviation) for different B-spline grid settings. Rx denotes a DSP regis-
tration with the grid resolution x, and R(x → y) represents the composition of the DSP registrations with the resolution 
chain x → y.



184    Stanley et al.:  Evaluation of deformable image registration algorithms	 184

Journal of Applied Clinical Medical Physics, Vol. 14, No. 6, 2013

the nature of the local optimization algorithms, where the optimization is trapped in one of the 
local minima. Therefore, it is suggested that low resolution be used, especially in the presence 
of large deformation, followed by gradually finer resolutions for detailed anatomy alignments. 
This may suggest that grid resolutions should be adapted for different patient images, as well 
as different deformation scenarios.

A.3  Evaluation of DMP and Demons registrations 
DMP registrations were performed on the computational phantoms developed from Lung1 and 
Lung2 at different deformation magnitudes. Figure 3(a) shows the profiles for the superior–
inferior (SI) components of the displacement vectors derived from the registrations of Lung1. 
These profiles correspond to the SI-line in Fig. 3(b) that passes through the tumor volume of 
Lung1. The position z = 0 mm indicates the most superior slice of the image. It is evident that 
the DMP displacements are dipping above and below the gold standard sinusoidally due to the 
B-spline interpolation of the DMP algorithm. 

The registration errors in the lung as well as in the patient body for DMP and Demons 
algorithms were summarized in Table 1. It was observed that the mean displacement error was 
larger for larger diaphragm motion. In all seven cases, the Demons registrations are slightly 

Fig. 3.  Superior–inferior (SI) displacement profiles derived from DMP registrations for Lung1: (a) the profiles contain 
displacements from the gold standard DVFs and DMP DVFs at diaphragm deformation of 1, 2, and 3 cm; (b) the SI line 
illustrated in Lung1’s primary CT image is corresponding to the displacement profiles in (a). The tumor region is marked 
with two red lines on both the image and profile figures.

(a)

(b)
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better than DMP inside the lung, but are much worse outside the lung region for Lung2. The 
patient-to-patient differences are illustrated further in the next section.

A.4 � Evaluation of DMP and Demons registrations with different patients and 
regions of interest

Four patients were simulated with their diaphragm deformed about 3 cm in magnitude to cre-
ate computational phantoms, and both the DMP and Demons algorithms were applied to these 
phantoms. The mean errors for the DMP registrations are between 1.3 and 2.6 mm, but the 
performance of the Demons registrations varies largely among these patients (Table 2). 

Compared to DMP, Demons has larger errors on the chest wall and breast regions. Inside 
the lung, Demons has a slightly better performance than DMP in all the cases listed in Tables 1 
and 2 except Lung4 (Fig. 4), where a large amount of homogeneous tissues present a major 
challenge to the Demons registrations (Fig. 4(c)).

Even for one patient, different regions could be registered with different qualities. As shown 
in Figs. 5(a) and 5(b), errors from DMP and Demons registrations are overlaid on top of the 
corresponding image for Lung22.7cm, where large errors from the Demons registration can be 
observed on chest wall. Similarly, Figs. 5(c) and 5(d) show the errors of the two registration 
algorithms overlaid with the coronal cuts of the primary CT image for Lung13cm. Both DMP 
and Demons have large errors in the regions near the lateral chest wall and the diaphragm as 
pointed by the arrows in Figs. 5(c) and 5(d). These images show the effect of large volumes of 
homogenous tissue on the respective algorithms.

Overall, the average displacement errors of the DMP and Demons registrations in the lung 
region ranged from 1 mm to 3.3 mm. In all cases except one, the DMP algorithm produced 
slightly worse registrations than the Demons algorithm in the lung, but it still provided DVFs 
with comparable accuracy. There were notable differences between the DMP and Demons 
registrations outside of the lung region. The Lung2 case demonstrated significantly reduced 
displacement errors for both the breast tissue and chest wall region when the DMP algorithm 
was used. Here, displacement errors exceeded 4 cm in the breast tissue for the Demons algo-
rithm, but were only 1–2 mm for DMP in the same area.

Table 1.  Average displacement errors (mm) and standard deviation for DMP and Demons registrations evaluated with 
computational phantoms of different deformation magnitudes.

	 Image Set 	 Patient Volume	 Lung
	(motion magnitude)	 DMP	 Demons	 DMP	 Demons

	 Lung1 (10 mm)	 1.0±0.7	 0.8±0.5	 0.9±0.5	 0.7±0.4
	 Lung1 (20 mm)	 1.1±0.8	 0.9±0.7	 0.9±0.6	 0.7±0.4
	 Lung1 (30 mm)	 1.3±1.1	 1.1±1.0	 1.0±0.7	 0.8±0.6
	 Lung1 (40 mm)	 1.6±1.5	 1.4±1.6	 1.2±1.1	 1.1±1.2
	 Lung2 (18 mm)	 2.1±0.8	 5.2±5.7	 2.1±0.8	 2.1±0.9
	 Lung2 (27 mm)	 2.2±1.2	 5.2±5.4	 2.4±1.1	 2.3±1.2
	 Lung2 (42 mm)	 3.1±1.7	 5.9±5.6	 3.3±2.1	 3.0±1.4
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(a) (b)

(c) (d)

Fig. 4.  Computational lung phantom Lung4 with large areas of homogeneous tissue: (a) the original image set; (b) the 
FEM simulated image set; (c) image warped by Demons DVF, and (d) image warped by DMP DVF.

Table 2.  Average displacement errors (mm) and standard deviations for DMP and Demons registrations evaluated 
with different patient images.

	 Image Set 	 Patient Volume	 Lung
	(motion magnitude)	 DMP	 Demons	 DMP	 Demons

	 Lung1 (30 mm)	 1.3±1.1	 1.1±1.0	 1.0±0.7	 0.8±0.6
	 Lung2 (27 mm)	 2.2±1.2	 5.2±5.4	 2.4±1.1	 2.3±1.2
	 Lung3 (30 mm)	 2.6±1.7	 2.1±1.3	 2.4±1.3	 1.9±0.7
	 Lung4 (30 mm)	 2.4±2.3	 30.0±18.1	 1.7±1.0	 9.3±6.3
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B. 	 Evaluation of DMP and Demons algorithms with a physical phantom 
DMP and Demons registrations were performed from EI to EE for the physical phantom. The 
centers of the 37 previously defined landmark objects were automatically tracked. The spatial 
difference between the centers in the EE image and those in the warped EI image was counted 
as the registration error. When the registrations were performed over the entire image volume, 
their average displacement errors were 1.9 and 1.6 mm for the DMP and Demons algorithms, 
respectively. However, when restricted to the lung regions, the Demons algorithm failed to 
produce a visually acceptable registration, resulting in more than 10 mm mean error, while the 
DMP had its average displacement error reduced to 1.8 mm.

Note that the default parameters in DMP were set for patient images which were largely 
different from the physical phantom. To address this issue, the image intensity window was 
limited during the DMP registration, based on the manufacturer’s suggestion. Table 3 summarizes 
average displacement errors for registrations at different window intensity settings. The average 
of the displacement errors for all the registrations that used customized contrast settings was 
0.97 ± 0.51 for the lung region, and 1.25 ± 0.58 for the image domain. The best registrations 
were in the ROI-constrained registrations with lower window settings,  and .  

Figure 6 shows the EE image overlaid with the warped EI image using the DMP registra-
tions with the intensity windows of 250 and 500, respectively. The mismatched part of the 
tumor for the registration  can be observed in the overlaid images. The results show that 
the intensity window could impact the DMP registrations, and is worth investigating further 
in future studies.

(a) (b)

(c) (d)

Fig. 5.  Color overlay of displacement errors with CT image sets. The figure contains an axial cut of image set Lung22.7cm 
overlaid with the errors of (a) DMP registration and (b) Demons registration. Also shown is a coronal slice of Lung13cm 
overlaid with (c) DMP and (d) Demons registration errors. Error values seen in the color bar (d) are given in mm.  
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Fig. 6.  Physical phantom image sets: (a) the physical phantom; the overlay of EE and warped EI images registered with 
(b) 250 window setting and (c) 500 window setting. The green image is the EE image and the red one is the warped EI 
image. The large circular object represents the tumor. 

(a)

(b) (c)

Table 3.  Average displacement errors and standard deviations of DMP registrations.

	Mean Error (mm)	 DMP Registration

	Intensity Window	 250	 500	 1000	 1500	 Unlimited 
	 Image Domain	 1.3±0.6	 1.3±0.5	 1.1±0.5	 1.3±0.7	 1.9±0.8
	 Lung Region	 0.8±0.4	 0.8±0.4	 1.2±0.7	 1.1±0.5	 1.8±0.6
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C. 	 Evaluation of DMP and Demons registrations with prostate CT images

C.1  Computational prostate phantoms
Figures 7(a) and 7(b) show the original and computationally deformed prostate images. The 
expansion of the bladder and the deformation of its nearby structures can be observed in the 
elliptical region marked in the axial and coronal images, respectively. With the method described 
in the Material and Methods section C.2 (above), simulated CBCT noise was incorporated into 
the deformed image (Fig. 7(b)) to derive a simulated CBCT image (Fig. 7(c)).

(a) (b) (c)

(d) (e) (f)

Fig. 7.  Computational prostate phantom and simulated CBCT image sets. The axial cuts of (a) the original image set,  
(b) the deformed image set, and (c) the deformed image with simulated CBCT noise added. The subfigures (d)-(f) are the 
coronal views of (a)-(c), respectively.
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C.2 � Evaluation of DMP and Demons registrations using computational prostate 
phantoms

Table 4 lists the errors for the DMP and Demons registrations. For DMP, the average registration 
errors were 1.9 and 2.1 mm across the whole patient volume, and 1.2–2 mm for prostate and 
rectum. The errors in bladder, 4.6 mm on average, were relatively large primarily due to the 
large initial deformation with low image gradients in the bladder. For the Demons registrations, 
without noise added, the displacement errors across the whole patient body were large, 10.3 mm 
and 7.8 mm for P1

CT and P2
CT, respectively (the first and second rows in Table 4). The large errors 

were mostly observed in the outer tissue regions near the skin surface, while regions of clinical 
interest, including the prostate and rectum, yielded registration errors between 2.2–3.2 mm. 

For the simulated CBCT images, the Demons algorithm was not able to produce visually 
satisfactory results and its registration errors were greatly increased. The impact of the simulated 
noise on DMP was small, with slight variations observed from region to region. Table 4 lists 
the average displacement errors for all the DMP and Demons registrations. 

Figure 8(a) shows the sagittal view of P1
CT. Figures 8(b) and 8(c) are its corresponding images 

generated by the DMP and Demons registrations. Their displacement error maps overlaid on 
P1

CT are shown in Figs. 8(e) and 8(f). The sagittal views illustrate the errors of these registration 
algorithms in the homogenous fatty tissue, as well as higher contrast medial tissues.

 

Table 4.  Average displacement errors (mm) and standard deviation for DMP and Demons registrations for pelvic 
images.

	 Whole Patient	 Prostate	 Rectum	 Bladder
	Image Set	 DMP	 Demons	 DMP	 Demons	 DMP	 Demons	 DMP	 Demons

	 P1
CT	 2.1±0.7	 10.3±11.5	 1.9±0.5	 3.2±1.2	 1.9±0.5	 2.2±0.9	 2.8±1.5	 3.7±1.8

	 P2
CT	 1.9±1.0	 7.8±8.3	 1.2±0.6	 2.4±1.3	 2.0±0.8	 2.4±1.0	 4.6±3.1	 5.0±3.4

	 P1
Noise	 2.1±0.8	 18.5±18.1	 1.7±0.5	 12.3±10.5	 1.8±0.6	 12.8±11.2	 3.1±1.7	 16.3±13.9

	 P2
Noise	 1.8±0.9	 19.4±20.7	 1.0±0.6	 13.2±11.7	 2.4±1.0	 13.3±12.0	 5.0±3.4	 18.3±14.5
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Fig. 8.  The FEM constructed image P1
CT (a) ; the prostate CT images (b) and (c) warped by DMP-DVF and Demons-DVF; 

(d) overlay of the warped prostate CT images in (a) and (b); (e) and (f) are the displacement errors (mm) of the DMP 
registration and the Demons registration overlaid on a sagittal view of the FEM constructed image P1

CT.

(a)

(c)

(e)

(b)

(d)

(f)
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IV.	D ISCUSSION

When adaptive radiation therapy is implemented in clinic, it becomes necessary to quantify the 
accuracy of its underlying deformable image registrations. In this study, we developed compu-
tational phantoms from lung cancer patient CT images to evaluate the performance of the DSP 
algorithm configured with a variety of B-spline grid setting options. The results revealed that 
the best performance of the DSP registrations was comparable to DMP. The DMP algorithm 
had average displacement errors ranging from 1.0 ~ 3.3 mm for the diaphragm compressions 
of 1 ~ 4 cm. This is comparable to the results of a multi-institution deformable registration 
accuracy study (MIDRAS).(16) In the MIDRAS, the institutions that used the B-spline–based 
registrations reported 1.6 to 3.0 mm errors when using a set of physician-identified landmarks 
as gold standards. In contrast to the landmark method, the computational phantom-based evalu-
ation method uses simulated tissue deformation maps as benchmark models, which allow DIRs 
to be evaluated in a voxel-by-voxel manner, and this method can overcome the limitations of 
the landmark-based evaluation such as observation uncertainty, lack of image features, or slice 
thickness-induced round-off errors. 

The accuracy of the DMP algorithm was found to be dependent on the magnitude of tissue 
deformation, as well as individual patient images. As shown in Table 1, the registration errors 
increased for larger diaphragm deformations. This observation is similar to that reported by Liu 
et al.(19) in which their in-house developed DIR algorithm was evaluated with a computational 
phantom (NCAT) and a physical liver phantom. However, the capability of their DIR algorithm 
could be underestimated because the NCAT phantom has uniform intensities assigned to each 
organ and, therefore, the DIRs performed on this phantom would not be as accurate as those 
performed on real patients. In contrast, the computational phantoms in this study, derived 
from actual patient CT images, do not have this limitation. It also further allows registration 
algorithms to be evaluated under patient-specific clinical scenarios.

With the patient-specific phantoms, the evaluation results showed that DMP registration 
outperformed Demons outside the lung, but inside the lung the DMP registrations were slightly 
worse. Both the DMP and Demons registrations demonstrated large errors in the lower lobe of 
the right lung and at the boundaries between the lung, diaphragm, and chest wall, as marked 
in Figs. 5(c) and 5(d). At these boundaries, the simulated deformation fields were large, and 
such large deformation combined with the homogeneity of tissue could be a major source of 
registration errors.(40) 

For the prostate cases, DMP had smaller registration errors than Demons in the prostate. For 
the Demons algorithm, significant errors were observed in regions of low contrast tissue. With 
the simulated CBCT noise added, the accuracy of the Demons algorithm degraded significantly 
in all of the structures evaluated in this study, while the DMP algorithm remained robust. The 
average errors across the prostate, the rectum, and the patient volume indicate that the simulated 
CBCT noise did not have a major impact on the DMP registration. This confirms the results 
from Murphy et al.(38) where the simulated CBCT noise had no statistically significant impact 
on the B-spline–based image registrations.

It should be noted that, while different deformation scenarios can be simulated, limitations 
still exist for the computational phantom-based method. For example, on the 4D lung images 
it is common that motion artifacts differ among phase images. Furthermore, the differences of 
the organ filling, such as the rectum feces and gas, between the treatment planning CT and daily 
CBCT images creates one of the major challenges for deformable registrations. The impact of 
such artifacts and differences has not yet been investigated. As a supplementary verification, 
the physical phantom was employed in this study to evaluate these DIR algorithms. However, 
the deformation of real patients is much more complex than the physical phantom deformation. 
Patient-specific verifications are still needed for clinical use of these DIR algorithms.
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V.	C onclusions

In this study, patient-specific FEM models have been developed and used as the gold standard to 
evaluate DIR algorithms implemented in the VelocityAI software package. It has been found that 
the accuracy of these algorithms is patient-dependent, and related to various factors including 
the tissue deformation magnitudes and image intensity gradients across the regions of interest. 
This may suggest that DIR algorithms need to be verified for individual deformation instances 
when implementing adaptive radiation therapy.
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