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Abstract: RNA evolves by adding substructural parts to growing molecules. Molecular accretion
history can be dissected with phylogenetic methods that exploit structural and functional evidence.
Here, we explore the statistical behaviors of lengths of double-stranded and single-stranded segments
of growing tRNA, 5S rRNA, RNase P RNA, and rRNA molecules. The reconstruction of character
state changes along branches of phylogenetic trees of molecules and trees of substructures revealed
strong pushes towards an economy of scale. In addition, statistically significant negative correlations
and strong associations between the average lengths of helical double-stranded stems and their time
of origin (age) were identified with the Pearson’s correlation and Spearman’s rho methods. The
ages of substructures were derived directly from published rooted trees of substructures. A similar
negative correlation was detected in unpaired segments of rRNA but not for the other molecules
studied. These results suggest a principle of diminishing returns in RNA accretion history. We
show this principle follows a tendency of substructural parts to decrease their size when molecular
systems enlarge that follows the Menzerath–Altmann’s law of language in full generality and without
interference from the details of molecular growth.
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1. Introduction

Accretion brings together disparate parts to form bigger wholes in a process of growth
and innovation that is likely universal [1]. At the molecular evolution level and in the
course of typically millions to billions of years, component parts are added to growing
molecules, which also interact with other molecules to form complexes and higher-order
molecular and cellular structure [2]. In RNA, the mere existence of rare expansion segments
protruding in the molecules of selected lineages (e.g., bacterial and archaeal 5S rRNA [3])
suggests tendencies of molecular growth. However, accretion must be made explicit
with phylogenetic methods. The structure of RNA molecules has been used to improve
sequence alignments (e.g., [4]) or generate phylogenetic trees describing the evolutionary
relationship of organisms (beginning with [5–7]). However, the first use of structural
information to reconstruct the history of RNA accretion began as either ancestral character
state reconstructions (CSRs) along branches of a tree of life generated from rRNA [8] or
directly as trees of molecular substructures describing their gradual addition to growing
ribosomal molecules [9]. These novel approaches that embed “structure and function directly
into phylogenetic analysis” point the way to “how structures evolve from one to the other” [10].
Their original application to evolutionary studies on different time scales (e.g., initial studies
of mRNA and ITS rRNA to SRP RNA and rRNA [11–13]) was soon extended to the origin
and evolution of ancient RNA molecules: tRNA [14–17], 5S RNA [18], RNase P RNA [19],
SINE RNA [20], and rRNA [9,21]. In one remarkable example, the approach unfolded the
translocation (‘turnstile’) origin and co-evolving history of the RNA and proteins that make
up the entire ribosomal complex, the machinery responsible for protein biosynthesis [21].
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Operationally, geometrical or statistical features of substructures are coded into lin-
early ordered multistate characters, for example, with the help of a web server [22]. Ge-
ometrical characters include the length of single-stranded or double-stranded segments
of the RNA secondary structure. Statistical characters include the Shannon entropy of
the base-pairing probability matrix. Resulting data matrices are used to build trees of
molecules (wholes) and trees of substructures (parts) (methodology reviewed in [23]). The
trees are rooted with the Lundberg method, using either the ‘standard’ implementation,
which invokes Weston’s generality criterion of homology in nested patterns to distinguish
between ancestral and derived character states, or a maximum or minimum state ancestor
implementation that assumes conformational stability increases in evolution as RNA struc-
tures become canalized. Both implementations produce topologically isomorphic rooted
trees, mutually validating the phylogenetic optimization-based and process-based rooting
approaches [24]. More importantly, geometrical and statistical characters also produce tree
reconstructions that are congruent (e.g., [14]).

The validity of phylogenetic accretion models has been tested against algorithmic
and theoretical models of rRNA and tRNA histories. A recent algorithm of rRNA growth
assumes the universal ribosomal core evolved by gradual insertion of “branch” helices onto
preexisting, coaxially-stacked, “trunk” helices, growing the rRNA molecules outwards
(onion-like) from the peptidyl transferase center (PTC) and leaving behind “insertion fin-
gerprint” constrictions in their junctions [25,26]. While the algorithm demands a single
molecular origin in the PTC and the absence of ‘trunk-to-branch’ roadblocks to outward
growth, there are at least 17 of those roadblocks in rRNA of the small and large ribosomal
subunits creating 19 possible ribosomal origins [27]. When these roadblocks are accounted
for, an additional older phase is added to the algorithmic model that incorporates translo-
cation structures of the large subunit responsible for ‘turnstile’ movement of the ribosomal
complex. This reconciles the phylogenetic [21] and algorithmic [25] models through com-
mon features: an ancestral and burst-like appearance of the PTC region, gradual addition
of layers to a growing exit tunnel, and 3D layering from a central core [2]. Remarkably,
when the age of helical rRNA segments of the phylogenetic and algorithmic models were
tested against theoretical minimal RNA rings that mimic ancestral biomolecules (likely
tRNAs), the ages of the phylogenetic model show a better match [28,29]. In silico-designed
RNA rings constitute constructs of optimization and synthetic systems for early prebiotic
evolution that can test whether tRNA substructures accreted to form rRNA and how those
substructures evolved into modern tRNA molecules (e.g., [30]). In fact, a very recent
study [31] shows that RNA rings constructs embedded in rRNA match the phylogenetic
accretion history of tRNA [14] and an origin of the molecule in the acceptor stem and upper
half of tRNA originally proposed 30 years ago [32,33], better than an origin by assembly
from either tRNA halves [34,35] or from three hairpin-like structures [36,37]. Finally, an
algorithmic model of accretion of large subunit rRNA based on A-minor interactions and
periphery-core ribosomal dismantling [38] was compatible with the history of A-minor
interactions of the phylogenetic model [21], despite artificially forcing peripheric translo-
cation structures to later accretion steps and forcing equally-likely terminal disassembly
steps towards an origin in the PTC [2].

In proteins, the length of structural domains decreases with increasing numbers of
domains in multidomain proteins [39]. Here, we explore if the lengths of double-stranded
(here labeled ‘helical’) and single-stranded (labeled ‘unpaired’) segments of growing RNA
molecules show a similar tendency. We show ancestral CSRs and phylogenetic mappings
of lengths in tRNA, 5S rRNA, RNase P RNA, and rRNA reveal the existence of a principle
of diminishing returns in RNA accretion history that resembles that found in proteins.
This principle describes a tendency of parts to decrease their size when systems enlarge
that follows the Menzerath–Altmann’s (MA) law of language, which portrays statistical
regularities across linguistic scales (e.g., phonemes, syllables, words).
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2. Materials and Methods

Data matrices and rooted phylogenetic trees describing the evolution of tRNA, 5S
rRNA, RNase P RNA, and rRNA were from published studies [9,14,18,19]. Original
data came from the Bayreuth tRNA database (now at: http://trnadb.bioinf.uni-leipzig.de
accessed on 26 May 2021), 5S rRNA Database (http://biobases.ibch.poznan.pl/5SData/
accessed on 26 May 2021), RNase P database (retired), and European rRNA database
(http://bioinformatics.psb.ugent.be/webtools/rRNA/ accessed on 26 May 2021). Table 1
summarizes some statistics of these datasets. Data matrices and rooted phylogenetic trees
of substructures describing the evolution of 19,184 structures of small subunit rRNA and
of 593 structures of large subunit rRNA were obtained from Ref. [21]. Here, we focus
on geometrical characters that describe the shape of the molecules by measuring, for
example, the length in nucleotides of each spatial component of secondary structure. These
components include double helical stems, hairpin loops, bulges and interior loops, and
unpaired segments such as 5′ or 3′ free ends, connecting joints, G:U base pairs, and multi-
loop sequences separating stems. Character homology was determined by the relative
position of substructures in the secondary structures. Character coding was based on
the length (number of bases or base pairs) and number of these substructures. Character
states were defined in alphanumerical format with numbers from 0 to 9 and letters A to Z.
Missing substructures were given the minimum state 0.

Table 1. Sequence and structural features of the RNA molecules analyzed 1.

Statistics tRNA 5S rRNA RNase P RNA rRNA

No. of molecules (taxa) 571 666 133 29
No. of sequence characters 99 (93) 149 (136) 692 (616) –
No. of structural characters 42 (42) 46 (46) 129 (110) 1540 (1030)
Reference [14] [18] [19] [9]

1 Characters that are phylogenetically informative are given in parentheses.

CSRs were implemented using Mesquite ver. 3.2 [40] and MacClade ver. 4.08 [41].
Bubble charts were generated with the ‘State Changes and Stasis’ command and used to
visualize the frequency of unambiguous changes between character states describing the
length of paired and unpaired segments of RNA.

The time of origin (age) of RNA helical and unpaired segments were derived from pub-
lished rooted trees of substructures of tRNA, 5S rRNA, RNase P RNA, and rRNA [9,14,18,19,21].
In the case of rRNA, only universal substructures in the rRNA core were included [21].
The chronology of substructures was summarized in Table S1. The average lengths of
RNA substructures were then plotted against their age and against the number of sub-
structures accumulating in evolution to test for significant linear correlations with the
Pearson’s correlation and Spearman’s rho methods. Absences were excluded when calcu-
lating substructural size. We also used a special case of the MA law, which describes how
the length of substructures y(x) decreases monotonically with the size of the RNA molecule
x, measured by the number of substructures it contains,

y(x) = Ae−cx (1)

with A and c representing fitting parameters. Data were fitted to a straight line by plotting
ln y(x) = ln A − cx and fitting parameters with F statistics. We report dependencies that are
most useful for biological interpretation.

3. Results
3.1. Ancestral CSRs from Trees of Molecules

The reconstruction of the history of character state changes along branches of optimal
phylogenetic trees requires a phylogeny and an initial evolutionary hypothesis [42]. This
scheme follows the rationale used by Dayhoff et al. [43] to generate substitution matrices
that describe amino acid change in protein sequence alignment data (e.g., the well-known

http://trnadb.bioinf.uni-leipzig.de
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PAM and BLOSUM matrices). These ‘step-matrix’ substitution models, which can be
regarded as matrices of mutation frequencies in protein sequences, are therefore directly
inferred from phylogenetic data. Here, we follow the same rationale.

Phylogenetic characters that describe the length of helical and unpaired segments
of RNA molecules are multistate characters. Their transformation is constrained by the
simplest of minimally-connected character state graphs (CSGs) with n − 1 edge connec-
tions that are non-reticulated, where n represents the number of character states. These
linear graphs with vertices of degree 2 define landscapes of character state transforma-
tion (‘transformation series’) that can be represented with alphanumeric strings and are
therefore amenable to straightforward computation. Linearly connected characters of
this type are known as ordered characters or Wagner characters. They are widely used to
describe serial homologies and have more resolving power and are less prone to resolution
artefacts than other type of widely used characters, such as unordered characters typical of
sequence analyses [44].

We applied a generalized maximum parsimony framework to trace character change
in published trees of molecules and produce step-matrices of transformation costs from
the structure of tRNA, 5S rRNA, RNase P RNA, and rRNA (from both small and large
subunits of the ribosome). All of these RNA molecules have very ancient evolutionary
origins. The relative frequencies of change derived from CSRs were plotted in bubble
diagrams (Figure 1), which can be converted to transformation types with functions de-
scribed by Wheeler [45] to reconstruct refined phylogenetic trees (e.g., [9]) following the
rationale introduced by Mickevich [46]. Bubble diagrams represent matrices of trans-
formation costs between character states, which assign probabilities to every possible
change. They can be considered refined models of character evolution derived directly
from phylogenetic data [41].

1 
 

 
Figure 1. Bubble charts describing the average frequency of changes between character states in helical and unpaired
segments of the tRNA, 5S rRNA, RNase P RNA, and rRNA molecules. Most computations involve changes describing
minimum unambiguous character state reconstructions (blue bubbles). Areas of bubbles are proportional to frequency
of change. Character states A through P represent states 10 through 25 according to the alphanumeric coding scheme of
NEXUS files compatible with phylogenetic software.
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The bubble diagrams of Figure 1 reveal that changes in all molecules occurred most
frequently in single steps, regardless of whether they occurred in paired (mostly helical)
segments of the molecules or in unpaired regions. The notable double diagonal patterns
result from changes occurring from character x to character x + 1 or vice versa. Helical
regions included all segments that form canonical base pairs (typical Watson–Crick pairs
between G, C, A, and U) and non-canonical base pairs (e.g., G:U wobble pairs typical of
RNA molecules) in the secondary structure of RNAs. Unpaired regions included those
in junctions, bulges, and loops of the molecules. Since character transformations are
additive in ordered characters, character state reconstructions generated from individual
structural features belonging to helical and unpaired segments produced bubble diagrams
with contributing relative transformation costs. For example, the difference of changes in
step-matrices of helical segments versus those that excluded non-canonical G:U wobble
base pairs were accounted for by the step-matrix of changes in the wobble pairs (data
not shown).

We also found a clear differential behavior of helical and unpaired regions. In helical
regions, losses were consistently favored over gains for average lengths of paired segments
of less than nine base pairs with a reverse trend for longer segments. We note, however,
that the reverse trend was almost absent in the short tRNA and 5S rRNA molecules,
with exceptions in 7-to-8 character state changes for tRNA and 9-to-10(A) to 12(C)-to-
13(D) state changes for 5S rRNA. However, and despite consistent reductive tendencies of
helical segments, changes favored retention of G:U wobble base pairs (data not shown).
Conversely, the reverse trend was clear for the large RNase P RNA and rRNA molecules,
with exceptions in 11(B)-to-10(A) state changes for RNase P RNA and 18(I)-to-19(J) state
changes for rRNA molecules. The forward and reverse trends were also evident in the
less frequent multistep transformations. For example, the 3-to-0, 2-to-0, and 1-to-0 state
changes of tRNA, typically involving the loss of the variable arm of the molecule, are only
counteracted by a less frequent 0-to-3 tendency of expansion. A more balanced multistep
gain-and-loss interplay is evident in the larger RNase P RNA and rRNA molecules. This
probably reflects a diversity of expansion segments in these larger molecules. Thus, small
helical RNA segments tend to become smaller while large segments tend to become larger
for all RNA molecules explored.

In sharp contrast, gains were consistently favored over losses of average lengths
of unpaired regions, with frequencies decreasing with nucleotide length. This behavior
counters the stabilizing effect of helical regions of RNA. It depicts the ‘frustrated’ energetics
of base pairing that drives the structural stability and folding of RNA (also invoked
by the original model of character change). Again, changes occurred most frequently
in single steps, though 2-step changes adding or eliminating 2–3 unpaired nucleotides
were particularly significant for 5S rRNA and those adding 2–3 nucleotides for RNase
P RNA. Single-step growth is typical of bulges and hairpin loops. Thus, helical and
unpaired regions tend to become larger by expansion of unpaired segments in all RNA
molecules explored.

We note that a number of multi-step changes occurred at low frequency in the step-
matrices, especially in the larger RNase P RNA and rRNA molecules. As expected, the
incidence of these clouds diffusing from the double diagonal patterns of the bubble plots
increased with average length of RNA. The number of array entries with significant
frequencies of change was 20, 61, 97, and 316 for helical segments and 60, 75, 91, 370 for
unpaired segments of tRNA, 5S rRNA, RNase P RNA, and rRNA, respectively. In all
cases, entries represented about 30–50% of the array total. Larger molecules provided more
opportunities for insertions–deletions causing changes in the length of paired and unpaired
regions of the molecules. However, calculating expected cost-change graphs for multistate
characters of these kinds is difficult. It depends on tree shape and character state frequency
of leaves (taxa) as well as their number [47].
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3.2. Ancestral CSRs from Trees of Substructures

To confirm patterns of change derived from trees of molecules, we traced character
change in published trees of substructures describing the evolution of the small and large
rRNA molecules [21]. Patterns in bubble diagrams were expected to be distinct from those
of Figure 1 since the shapes of trees of substructures are extremely pectinate and those
of trees of molecules are not. Indeed, most frequent changes were not single-step and
changes occurred mostly for character states > 4 (Figure 2). Despite these differences, small
helical RNA segments tend to become smaller for both the small and large subunit rRNA
while large segments tend to become larger through multi-step transformations mostly
for large subunit rRNA. In particular, we note how the number of large bubbles on the
right-hand side of the paired diagonals of the plots outnumber those on the left-hand side
at high character state values for the large ribosomal rRNA. Thus, the large subunit rRNA
tends to extend large helical segments while small subunit rRNA shows a more significant
reductive tendency.
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Figure 2. Bubble charts describing the average frequency of changes between character states in
helical segments of the rRNA molecules from the small and large subunit of the ribosome. Diagrams
were obtained by tracing changes along branches of trees of substructures obtained from Ref. [21].

3.3. Phylogenetic Tracings of the Length of Helical and Unpaired Segments

The time of origin of RNA substructural components can be obtained directly from the
highly unbalanced phylogenetic trees of substructures and given as a ‘node distance’ (nd), a
distance in nodes from the hypothetical ancestor on a relative scale from 0 (origin of the RNA
molecule) to 1 (the present molecule) [9]. These ages can be ‘painted’ onto three-dimensional
atomic models of RNA to generate evolutionary heat maps. Since individual ages represent
‘time events’, an evolving molecule at time of origin ti is made up of substructures with
origins preceding ages≤ ti. Thus, the evolutionary heat maps constitute models of molecular
evolution that portray the gradual addition of substructures to evolving molecules. We note
that the time of origin of RNA segments is not a result of the model of character state change
that is used to reconstruct phylogenetic trees, since changes can occur at equal frequencies
in large or small substructures and in different parts of the trees. For example, tracing
character state changes in the branches of trees of rRNA substructures dispelled the idea
of longer stems being attracted to the base of the trees since changes in the length of stems
were spread throughout branches of the trees (Figure S1).

Plots describing how the lengths of substructures of the RNA molecules vary with
their corresponding time of origin were generated for the four RNA types examined in this
study (Figures 3–6). In all cases, there were statistically significant negative correlations
between the two variables for the helical segments of the RNA molecules (Table 2). With
an exception in 5S rRNA, Pearson’s coefficients showed significant negative correlations
(p < 0.001) with strong association strengths (r ranging from −0.80 to 0.97). Note that
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Pearson’s correlations are independent of making assumptions of normality either in
the marginal distributions or in the bivariate surface with reasonable sample sizes of
n > 20. While n values were lower for tRNA and 5S rRNA, the null hypothesis that
the data were normally distributed was not rejected for all RNA types (Kolgomorov–
Smirnov test; D = 0.15–0.21, p = 0.60–0.94) except for rRNA (D = 0.15, p < 0.01). Given that
Pearson’s correlation is extremely sensitive to outliers, the nonparametric Spearman’s rho
test confirmed significant association (p < 0.001) for helical segments of all RNA examined,
including rRNA. We also detected statistically significant correlations between length and
time for unpaired segments of 5S rRNA (p < 0.05), RNase P RNA (p < 0.001) and rRNA
(p < 0.001), being negative in rRNA (Table 2). In contrast, no significant positive correlation
was observed for tRNA. These association patterns were supported by both Pearson’s
coefficient and Spearman’s rho analyses (Table 2)
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Figure 3. Diminishing returns in the history of tRNA accretion. (a) the times of origin of helical
substructures of the tRNA molecules are traced onto an atomic model in a three-dimensional heat
map. The location of a putative ancestral insertion is indicated in the molecule; (b) a plot describing
how the average lengths of tRNA helical segments decrease with time of origin while unpaired
regions do not.
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Figure 4. Diminishing returns in the history of 5S rRNA accretion. (a) The times of origin of helical
substructures of the 5S rRNA molecules are traced onto an atomic model in a three-dimensional heat
map (bottom). The location of a putative ancestral insertion of the S1 helix into coaxially stacked
helical segments S2 and S5 are shown in two atomic model views (top). Only the ancient S1 and S3
helices are colored according to their ages, to showcase how the more recent S2 helix has separated the
initial helical structures; (b) a plot describing how the average lengths of 5S rRNA helical segments
decrease with time of origin while unpaired regions do not.
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segments decrease with time of origin while unpaired regions do not.
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Figure 6. Diminishing returns in the history of rRNA accretion. (a) The times of origin of helical
substructures of the rRNA molecules of the small and large subunits of the ribosome are traced onto
an atomic model in a three-dimensional heat map. The central ratchet of the small subunit embodied
in the h44 helix is the oldest substructure of the entire rRNA ensemble. Other substructures of the
ancient ribosomal core involved in ribosomal dynamics are located in locations close to the surface of
the ribosome; (b) a plot describing how the average lengths of rRNA helical and unpaired segments
of small and large subunits of the ribosome decrease with evolutionary time. The inset shows how the
significant decrease of average lengths also manifests when plotting against number of accumulating
RNA substructural segments.

Table 2. Correlation analyses of average segment lengths against their time of origin using standard
Pearson’s coefficients (r) and non-parametric Spearman’s rho (ρ) 1.

Type Segments Slope R2 df 2 Pearson’s
r Spearman’s ρ

tRNA Helical −5.48 0.947 8 −0.97 ** −1.00 **
Unpaired 0.56 0.009 30 0.09 −0.01

5S rRNA Helical −1.72 0.559 6 −0.75 −0.90 **
Unpaired 1.73 0.230 22 0.47 * 0.44 *

RNase P RNA Helical −10.26 0.785 23 −0.89 ** −0.90 **
Unpaired 5.57 0.578 59 0.71 ** 0.78 **

rRNA Helical −34.65 0.642 148 −0.80 ** −0.87 **
Unpaired −13.02 0.168 148 −0.41 ** −0.60 **

1 Null hypothesis testing with p-values: * p < 0.05, ** p < 0.001; p-values for ρ are two-tailed. 2 df, degrees of freedom.
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3.3.1. tRNA

Figure 3 shows that the lengths of helical ‘arm’ segments of tRNA monotonically
decrease with time as the molecule evolved from the ancient acceptor arm by gradual
addition of segments: TΨC, anticodon, DHU, and variable arms, in that order. Note
that base pairs in the acceptor and TΨC helical arms are coaxially stacked and that an
insertion fingerprint constriction is clearly evident in the main junction of the molecule
(Figure 3a). This suggests outward growth of tRNA according to the algorithmic ‘onion’
model advanced for rRNA [25,26] and an origin of the molecule in the acceptor and TΨC
arms that is compatible with the phylogenetic-based model [14] and the ancestral origin of
the ‘top half’ of the molecule [32,33]. In contrast, no clear correlation was observed in the
scatterplot between the length of unpaired regions of tRNA and their corresponding times
of origin (Figure 3b). The differential behavior between helical and unpaired segments
mimics the frustrated patterns observed in bubble diagrams describing the frequencies of
character state change (Figure 1). These frequencies showed small helical RNA segments
becoming smaller and large segments becoming larger. In contrast, unpaired segments
revealed only tendencies of growth. It is noteworthy that tRNA contains a significant
number of modified bases and that these modifications had an early evolutionary origin
compared to destabilizing G:U wobble base pairs [14]. Their origin appears to be associated
with the multiloop structure and the unpaired bases between the acceptor and TΨC helical
arms, all of which are younger than the 5′-terminal free-end of the tRNA molecule. Since
destabilizing modified bases and G:U wobble base pairs are coded separately, it remains to
be determined if their existence affects any tendencies of diminishing returns that would
be present in unpaired regions of the molecules.

3.3.2. 5 S rRNA

Similar patterns of diminishing returns exist in the lengths of helical segments of 5S
rRNA, albeit less pronounced than those observed in tRNA (Figure 4). These segments were
on average longer than those of tRNA, suggesting a weaker evolutionary push towards
economy in this regulatory RNA molecular type perhaps linked to its regulatory function
on outer layers of the ribosome or a later origin of the molecule. The phylogenetic model
of accretion history [19] revealed that the oldest S1 and S3 helical stems were separated
in evolution by the younger S2 stem, which emerges from the central three-way junction
of the molecule together with the more recent S4 and S5 stems (Figure 4a). Thus, the
molecule expanded by pulling apart the ancient basal S1 and apical S3 helices. The culprit
may have been a putative ancestral insertion, perhaps linked to the expansion segment of
archaeal rRNA sequences observed by Luehrsen et al. [48]. Remarkably, helices S2 and S5
are coaxially stacked.

They hold a clearly identifiably insertion fingerprint connecting the S1, S2, and S5
helices and forming the family C structure [49] of the central junction. In contrast with
tRNA, this putative insertion is not ‘branch-to-trunk’, so it does not comply with outward
rRNA growth of the algorithmic ‘onion’ model [25,26]. Instead, the molecule appears to
accrete inwardly through basipetal ‘trunk-to-branch’ growth using mechanisms such as
helix reformation, tandem duplication, or structural grafting [2]. Statistically significant
positive correlations between length and time for unpaired segments were also detected,
suggesting that unpaired regions became larger as the helical regions became smaller with
time (Figure 4b).

3.3.3. RNase P RNA

An analysis of RNase P RNA, the catalytic subunit of the ribonucleoprotein endonu-
clease that cleaves precursor tRNA, also revealed patterns of diminishing returns in the
lengths of helical segments of this larger and much more complex molecule (Figure 5). The
significant negative correlation between length and time manifested in significant larger
slopes than those of tRNA or 5S rRNA (Figure 5b). Thus, the push towards economy of
growing helical segments appeared stronger in RNase P RNA. This stronger push was
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counteracted by a positive significant correlation between the length of unpaired segments
and time that also appeared stronger than that observed in tRNA and 5S rRNA. Thus, the
frustrated dynamics of stabilizing helical segments and destabilizing unpaired regions was
significant in the RNase P RNA molecule and is compatible with CSR analyses that showed
gains were consistently favored over losses of average lengths of unpaired regions. As with
5S rRNA, the oldest P12 helical segment of the ‘specificity domain’, which is the longest of
the molecule, was separated from the oldest P1, P2, P3, and P4 segments making up the
universal pseudoknot and core of the catalytic domain by a number of helical segments of
much more modern origin. This core includes helices of the central 6-way junction that
connects the catalytic and specificity domains. Thus, both 5S rRNA and RNase P RNA
share an initial growth pattern that is distinct from the outward growth of the primitive
tRNA molecule.

3.3.4. rRNA

The patterns of diminishing returns in the lengths of helical segments of rRNA of the
small and large subunits of the ribosome were the strongest of the ancient RNA molecules
analyzed (Figure 6). This was evident by the largest negative slope of all statistically
significant negative correlations observed between the length of helical segments and their
times of origin (Table 2). Thus, the push towards economy in stems appears to increase
with molecular size, being maximal in rRNA. In sharp contrast with the behavior of other
RNA types, a similar pattern of diminishing returns was also observed for unpaired seg-
ments of rRNA, suggesting a very strong push towards economy of resources manifesting
throughout the entire molecules of the ribosomal subunits. The three oldest helical sub-
structures of small subunit rRNA involved the most ancient h44 stem, the main component
of the ratchet mechanism that links decoding functions of the small subunit and peptide
synthesis functions of the large subunit, the h11 stem, and the h34 stem that is important
for translocation and tRNA interactions. An analysis of rRNA atomic structure revealed
that they were separated from each other by a number of helical segments of much more
modern origin, which pushed them to distal regions of the secondary structure model. The
placement of coaxially stacked helices in these newer growing regions revealed that the
ribosome expanded without roadblocks according to the outward growth model [25,26],
with one crucial exception, the h32-h33-h34 B-type three-way junction [27,50]. The h33
and h34 stems of the junction are coaxially stacked and hold functionally important pivot
points of the small subunit. They also hold a fingerprint of a putative ancestral insertion,
which attaches the newer h22 branch to the older trunk (see atomic model in [27]). This
blocks outward growth and suggests a possible instance of RNA grafting or other related
mechanism [2] of the kind proposed for the 5S rRNA above. A similar structural analysis
of large subunit rRNA revealed that the oldest H76, H41-42, and H38 stems were again
dispersed throughout the molecule by helical segments of much modern origin [27,50].
Six ‘trunk-to-branch’ roadblocks to outward growth separated these primordial structures
(insertion fingerprints B3, B4, B5, B8, B9 and B11 illustrated in [50]), which could involve
seven separate evolutionary origins of the molecule. These roadblocks include the 5-way
junction making up the PTC biosynthetic core (insertion fingerprint B11; atomic model
in [50]). Despite these possible divergent origins, no significant jumps in the lengths of
helical or unpaired segments of the molecules were detected in the plots (Figure 6b). If
large RNA pieces were recruited into the growing ribosomal ensemble, they did not change
the patterns of diminishing returns of rRNA.

3.3.5. Showcasing the Familiar Form of the MA Law

The existence of an inverse relationship between the lengths of helical stems and their
time of origin (age) suggests an evolutionary principle of diminishing returns when RNA
substructures accumulate in time as the molecules grow in evolution. Because extant RNA
molecules do not appear in evolution fully formed, their structures grow in evolution by
accumulating substructures. As they grow, they become bigger. The principle makes them
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accrete gradually smaller stems as they grow. Because the time of origin of substructures is
correlated with stem accumulation, we can plot lengths of RNA segments in logarithmic
scale against number of segments making a molecule at some point in time. The insert of
Figure 6b presents one such plot for helical segments of the rRNA molecules. Parameter
fitting in these plots showcases the familiar form of the MA law we described in Equation
(1) for all RNA molecular types examined (Table 3). A right-tailed F-test showed that the
regression model was statistically significant (F = 8.08–378.6; p < 0.0001–0.02) and exhibited
R coefficients (0.709–0.893) typical of strong associations (Table 3).

Table 3. Summary table of correlation data between stem length and number of stems in RNA
molecules showing fitting parameters (A and c), coefficient of determination (R2), coefficient of
multiple correlation (R), F-value and p-value for RNA molecules examined 1.

Type A c R2 R F-Value p-Value

tRNA 13.56 (±1.34) 0.490 (±0.09) 0.797 0.893 31.46 (1,8) 0.0005
5S rRNA 8.66 (±1.06) 0.028 (±0.01) 0.502 0.709 8.08 (1,8) 0.02

RNase P RNA 15.69 (±1.31) 0.133 (±0.02) 0.696 0.834 52.58 (1,23) <0.0001
rRNA 33.52 (±2.72) 0.012 (±0.01) 0.719 0.848 378.6 (1,148) <0.0001

1 Standard error (SE) for parameters A and c and degrees of freedom (df ) values for right-tailed regression analyses
are listed in parentheses.

4. Discussion

Early in the 1900s, Paul Menzerath proposed a qualitative generality of language
in which the duration of the articulation of sounds shortens in long syllables [51]. The
generality, which Menzerath summarized by the motto “the greater the whole, the smaller its
constituents” [52], was supported by many linguistic and phonetic relationships, including
relationships between word frequency and word length in messages. A functional type
law describing the generality was later elaborated mathematically by Gabriel Altmann [53],
and later confirmed by the statistical analysis of the linguistic and phonetic relationships of
many languages. The law was even found embedded in music [54] and vocal communica-
tion outside humans [55]. More recently, the law was extended to genomes [56–58] and the
organization of protein structural domains in proteomes [39], showing that the principle
behind the MA law is general and not restricted to language. Here, we extend the statistical
regularities of the law to RNA structure within a framework of molecular evolution.

When analyzing proteins, a large majority of molecules contain more than one struc-
tural domain [59]. This allows for evaluating at a proteome level how the lengths of
domains are affected by domain number and test with standard approaches if an MA
law exists in protein structure [39]. In sharp contrast, RNA molecules such as tRNA or
the rRNAs molecules that make up the ribosome are ‘monolithic’ in the sense that there
is no significant variation in the number of parts of their central structural cores. This
monolithic quality makes it difficult to test if an MA law exists in extant RNA. To overcome
this limitation, we use phylogenetic information to trace molecular history and generate
chronologies that describe how substructural parts have been gradually added to the
evolving RNA molecules.

First, we previewed a diminishing returns principle in character state changes along
the branches of phylogenetic trees of molecules and trees of substructures. We used
CSR methodologies to build bubble charts describing the average frequency of changes
between character states in helical and unpaired segments (Figures 1 and 2). We observed
that small helical RNA segments tend to become smaller while large segments tend to
become larger in evolution. One possible explanation for this differential behavior is
structural ‘canalization’ mechanisms that preferentially freeze change in older and longer
helical regions through optimization of coaxial stacking and other higher order structural
stabilizing interactions (e.g., junctions, A-minor motifs, tetraloops). In contrast, gains were
consistently favored over losses of average lengths of unpaired regions, with frequencies
decreasing with nucleotide length. Such differential evolutionary behavior of helical stems
and unpaired regions depicts the well-known frustrated energetic folding landscape of
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RNA [60] but revealed strong pushes toward an economy of size. Second, we constructed
plots describing how the lengths of helical stem and unpaired substructures of tRNA, 5S
rRNA, RNase P RNA, and rRNA varied with their corresponding times of origin (ages),
which were derived directly from trees of substructures (Figures 3–6). In all cases, there
was a significant negative correlation and strong association between the lengths of helical
stems and their age (Table 2). A similar negative correlation existed for unpaired segments
of rRNA, but not for the other molecular types.

Since the inverse relationship follows “a principle of least effort or some not yet known
principle of balance recompensating lengthening on one side with shortening on the other” [53],
we converted plots of substructural length versus time into plots of substructural length
versus number of substructures in RNA molecules to match the typical form of the MA
law. The general mathematical formulation of the law assumes a constant decrease of the
length of ‘constituent’ parts, y(x), with increases of the size or length of ‘whole’ constructs x,
according to Equation (2)

y(x) = Axbe−cx (2)

with A, b, and c representing fitting parameters. Note that the general formulation explains
dependencies between the size-structure of parts and wholes of a system by adding the
effect of system’s hierarchy typical of multilevel structure characteristic of language and
biological organization. Two special cases of the general formulation are generally used
to fit parameters [53]. When c = 0, the general law takes the most commonly used form
because it follows a power-law that enables fitting parameters in log-log plots. This is
the formulation used for example in the analysis of structural domains of proteins [59].
Alternatively, when b = 0, y(x) decreases monotonically with the system’s size measured by
its length or number of parts, with parts and constructs being contiguous in the hierarchy
of system’s organization. We use this formulation (see Equation (1)) to fit parameters of
the law to RNA accretion history by simply defining x as the number of substructures
making up molecules. Parameter fitting showed that the regression model was statistically
significant and exhibited correlations typical of strong associations (Table 3). These results
strongly support a MA law in the evolving structure of RNA.

Torre et al. [61] suggested language laws have physical origins. Interestingly, our re-
sults directly link a processual mechanism (molecular evolution) to the MA scaling patterns
that control the size of RNA substructures. In [59], we interpreted fitting parameters with
a persistence function, a heuristic argument for a principle of diminishing returns. The
persistence of a molecular system (P) was defined by two terms. The first term was a cost
describing the energy–matter investment in the molecule (PC), which depends on x and
the average length of substructures. The second term described the flexibility–robustness
of the molecular system (PFR), which depends on A, x, and slope b. The derivative of P
with respect to x, when set equal to zero, gives the power law form of the MA law, with
intercept A, which can be considered the length of the first molecular construct and an
upper bound for the MA law’s shortening principle. A is also a parameter that establishes
a flexibility—robustness stratum. Mathematical elaboration also showed that the PFR/PC
ratio is only controlled by exponent b, with steeper slopes implying increases in trade-offs
benefitting flexibility–robustness over economy in a frustrated landscape of molecular
persistence. While the proteome data used to fit the power law version of the MA law
in [59] was extant, we here use RNA history data that was reconstructed, which can be de-
fined as time series of molecular constructs harboring increasing numbers of substructures.
When molecules grow in evolution, the size of each molecular construct grows slower
than linearly by the addition of an additional substructure, with this extra substructure
being smaller than the preceding one by some fraction. We find the connection between
the special case of the MA law (Equation (1)) and evolutionary time is directly embedded
in its exponential decay function. Exponential decay occurs when quantity N, such as
RNA length, decreases at a proportional rate such that it satisfies the ordinary first order
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differential equation dN/dt = −λN, with λ representing an exponential decay constant.
Solving the equation results in Equation (3)

N(t) = N0 e−λt (3)

where N(t) is the quantity at time t, N0 = N(0) is the quantity at time 0, and λ > 0. This
class of functions is useful because functions can be easily computed for sums and counts
(e.g., they are valuable for decay elicited by multiple processes or by decay series). The
typical example is ‘nuclear decay’, the stochastic process by which an atomic nucleus that
is unstable loses energy by radiation in the form of one or more subatomic particles or
photons. The model has been applied to numerous problems in the natural, social, and
computer sciences, including many in biology [62]. For example, the popular algorithmic
implementation called ‘forward decay’ uses time decay to decrease the influence of older
data arrivals in the management of data streams, data warehouses, sensor networks,
and other distributed monitoring systems [63]. Since the number of substructures x is
approximately linearly proportional to t, with t measured as time of origin in a relative
0–1 nd scale (e.g., Figure 4 of Ref. [21]), the special case of the MA law [Equation (1)] used
to fit our data subsumes a statement of deep evolution that can be reformulated as an
evolutionary decay equation of the type of Equation (3), where N(t) = y(x) is the length of
substructures at time t, N0 = A is the length of the first molecular construct appearing in
evolution at time 0 (the intercept), and λ is the constant that describes the rate of decay of
molecular length (the slope in a loglinear plot), which is proportional to c. In nuclear decay,
λ is a characteristic number for each nuclide, ranging from 0.69 × 10−24 yr−1 for the highly
stable 28Te to 0.30 × 1023 sec−1 for the highly unstable 7H. It measures nuclide stability,
an atomic population characteristic related to atomic persistence. Similarly, time decay
of the length of RNA substructures translates into a range of c exponents, from 0.012 for
rRNA to 0.460 for tRNA (Table 3). These exponents measure the evolutionary persistence
of the population of monomers that is characteristic of the substructural parts of individual
RNA species. Reed and Hughes [64] demonstrated that, when stochastic processes of
exponential growth are randomly stopped (‘killed’) for observation, the distribution of the
killed state exhibits power—law behavior in one or both tails. This explains distributions
in sizes and frequencies of, for example, gene and protein families. Similarly, stopping
the exponential decay process by observation with retrodiction methods appears to make
explicit the molecular principle of diminishing returns embodied in the MA law.

The decay of molecular length with evolutionary time likely involves biophysical and
evolutionary culprits. Predicted and empirically measured sizes of long RNA molecules are
vastly determined by branching patterns of their secondary structures [65]. Hydrodynamic
(Rh) or gyration (Rg) radii of long RNA molecules measured with fluorescence correlation
spectroscopy compared well with predictions from ensemble averaging methods that
consider sequence-dependent molecular branching. Measurements revealed a general
scaling law Rh~Rg~Nv, with N representing the length of the RNA molecule in nucleotides
and v a scaling exponent. While v for small compact molecules approaches 0.34, longer
molecules such as those of viral RNA genomes that are under evolutionary pressure to fold
into icosahedral viral capsid have scaling relationships with v ranging from 0.5 to 0.6 that
deviate from simple monotonic behavior (e.g., Gaussian coils). These observations suggest
junction-induced branching patterns (which delimit individual substructures) are strongly
biased by the size, compact folding, and function of the molecules. In addition to these
biophysical and evolutionary constraints, a number of stochastic processes involving biases
in mutation, insertion, and deletion of RNA sequences will affect the size and function of
RNA substructures. This putative decay force could also embody a molecular principle of
diminishing returns. The c exponents of the MA law formulation reveal pushes towards
economy as the sizes of RNA molecules increase and expand the flexibility—robustness
stratum suggested by the length of the first ‘originating’ molecular construct (A). Con-
versely, smaller molecules could become independent of the economy push by exploring
other mechanisms, including the use of modified bases, wobble base pairing, and pseudo-
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knot lock-in configurations. The push towards increasing unpaired regions in all molecules
except rRNA is also in line with a focus on flexibility/robustness. Such is the case of RNase
P RNA. Recent analysis of atomic structure of the yeast RNase P complex [66] revealed
that the larger RNase P RNA adopts an ‘open’ extended and highly unpaired single layer
conformation in heavy interaction with proteins. This arrangement exposes the universally
conserved catalytic center of the molecule to dramatic conformational changes triggered by
tRNA substrate interactions that are protein-controlled. Thus, RNAse P RNA appears in
certain circumstances evolutionarily constrained by flexibility/robustness forces external
to RNA make up that benefit from evolving unpaired RNA regions. No such arrangement
has been observed in the tightly packed ribosome.

What are the evolutionary agents of molecular change responsible for RNA accretion
and the principle of diminishing returns we uncovered? We proposed a linkage theory [67]
that uses networks to explain the interplay of diversification and accretion [1]. Macro-
molecules behave as networks of atoms connected by a repertoire of atomic interactions.
Since both folding speed and flexibility are molecular traits that are beneficial [68,69],
we used, for example, networks to study molecular trajectories in protein dynamics [70].
We found that processes that unfold at nanosecond timescales typical of molecular con-
formations are linked to evolutionary processes spanning billions of years [71]. Drivers
of network structure can therefore explain molecular diversification. Networks become
structured through the formation of communities (modules) of nodes and links generally
leading to hierarchical modularity and scale-free behavior [71]. A plurality of drivers
of hierarchy and modularity have been proposed that advance fitness through natural
selection or competitive optimization. These drivers can act directly on the network by
targeting individual-level selection through ‘constraints’ that offer a fitness advantage [72]
(e.g., favoring information flow) or indirectly as an adaptation of the system to the environ-
ment and as a response to different goals [73,74]. Alternatively, non-adaptive drivers that
approach ‘neutrality’ can arise from patterns of network duplications and differentiations
that generate modularity ‘for free’ as a phase transition [75]. Similarly, hierarchy may sim-
ply arise by a preference to reuse modules of similar complexity [76]. Finally, simulations
have shown that decreasing connection costs in a network produces modularity, hierarchy,
and evolvability when systems are poised to maximize performance [77,78]. Our studies
have shown that statistical characters describing information dissipation in molecules (e.g.,
Shannon entropy) also carry evolutionary signatures analogous to those embedded in the
geometrical structure of RNA (e.g., [14]), suggesting that evolutionary diversification and
growth of RNA are also driven but non-adaptive processes. In contrast with drivers that
generate modules and hierarchy in systems, many by rearrangement of network links, little
is known about primordial agents of accretion responsible for network growth. Inspired
by Verlinde’s conjecture on the entropic origins of gravity [79] and within the framework
of temporal parts, we recently proposed a theory of entanglement that would explain
causal relationships responsible for the increasingly extended and complex molecular
makeup of biological systems [80]. Entropic gravity arises when space has one emergent
holographic direction that holds entropic change, degrees of freedom are proportional
to the area of the holographic screen, and energy is evenly distributed over degrees of
freedom following the equipartition principle. Mimicking premises of quantum particle
physics, we proposed that molecular growth is an entropic force driven by the interplay
of short-distance entanglement of neighboring degrees of freedom (such as the greedy
formation of helical structural modules in RNA) and the long-distance entanglement of
parts of those degrees of freedom (such as the long-range interactions forming for example
RNA junctions) causing de Sitter entropy to equally divide over degrees of freedom. Short
and long-distance entanglements generate modules and hierarchy respectively, pushing
growth through exploration of principled informational spaces within a space-time dimen-
sion. Remarkably, there is an entropic force connection in the aggregate logistic Bass model
of diffusion of innovations that propels evolutionary growth [81]. The logistic S-shaped
wavelets (‘loglets’) that are typical of paths of high performance in diffusion of innovation
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models account for sequential patterns of evolutionary accumulation we have observed in
the growth helices and junctions in rRNA [1].

The existence of MA law of syntax in RNA accretion history now provides an ad-
ditional tool to reconcile phylogenetic, algorithmic, and theoretical models of molecular
history. We have interpreted structural phylogenomic chronologies with global models
of origin of proteins, cofactors, and protein biosynthesis [82], the genetic code [83], and
the ribosome [2]. Chronologies of RNA accretion reveal that the terminal tRNA acceptor
arm, the terminal S1 helix of 5S rRNA, the P12 and terminal P1–P4 helices of RNase P
RNA, and the large (and sometime terminal) moving arms of the rRNA subunits (h44, H76,
H41-42, H38) are the oldest and largest of their RNA substructural ensembles. Besides the
hidden connection uncovered by the MA law, what is special about them? Any molecule
or molecular complex exhibit roles of machine, catalyst, and gatekeeper in a triangle of
‘effective molecular communication’ [84]. In three known cases, the ancient terminal helices
and large moving components enrich the ‘machine’ role of the molecules. The acceptor
stem enables the amino acid charging mechanistic function of tRNA. The P12 helix is the
most terminal of the molecular branch that defines the specificity domain of the RNase P
RNA. It likely positions the tRNA substrate for optimal cleavage by the P1–P4 mediated
catalytic site. The ribosomal h44 ratchet and the large helices of the L1 and L7/12 stalks
and the central protuberance are the central mechanistic components of the ribosomal
translocation machinery. Thus, RNA molecules appear to originate as scaffolds of macro-
molecular movement, paraphrasing a similar tendency we observed in proteins [82]. Our
analyses also revealed that there were no significant ‘jumps’ in the patterns of diminishing
returns that would result from structural grafting, the recruitment of substructures with
different evolutionary origins [2], or the building up of RNA molecules from primordial
tRNAs [85]. Except for tRNA, we observed that the most ancient stem structures were
dispersed to distant portions of the molecules in evolution by recruitment of newer stems.
Many of these episodes of growth did not comply with models of outward growth. Instead,
they introduced ‘roadblocks’ that can only be explained by helix reformations or other
more complex mechanisms of stem growth [2]. Thus, an MA law exists in RNA accretion
history in full generality and without interference from the details of the molecular process
of evolutionary growth.
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