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Efficient shortcuts to adiabatic 
passage for three-dimensional 
entanglement generation via 
transitionless quantum driving
Shuang He1, Shi-Lei Su1,2, Dong-Yang Wang1, Wen-Mei Sun1, Cheng-Hua Bai1, Ai-Dong Zhu1, 
Hong-Fu Wang1 & Shou Zhang1

We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional 
entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) 
approach. The key point of this approach is to construct an effective Hamiltonian that drives the 
dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the 
same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts 
to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and 
applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-
dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, 
the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by 
numerical simulation. The results show that the speed of entanglement implementation is greatly 
improved by the use of adiabatic shortcuts and that this entanglement implementation is robust 
against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in 
experiment and provides the necessary conditions for the application of high-dimensional entangled 
states in quantum information processing.

Quantum entanglement is an essential resource for quantum computation and quantum communication that 
has many promising practical applications in quantum information processing (QIP). Two-dimensional entan-
glement is the most general quantum entanglement that is involved in many QIP tasks1–12 such as quantum 
computing6–8, teleportation5, cryptography7,9, and precision measurements10. However, the high-dimensional 
entanglement has many fundamental and practical advantages compared to its two-dimensional counterparts13. 
It not only demonstrates the violations of local realism but can also be used to enhance the security of quantum 
cryptography. Motivated by this, many schemes have been proposed to generate a high-dimensional entangle-
ment14–21. For example, Shao et al. and Su et al. proposed schemes to create the three-dimensional entanglement 
by utilizing the dissipations of the physical system as the auxiliary resources14–16 and included the design of the 
non-resonant system in their schemes leading to a long evolution time. Li and Huang suggested a deterministic 
scheme to generate a three-dimensional entangled state in a resonant system via quantum Zeno dynamics, in 
which the time required to produce entanglement is very short compared to that required in dispersive proto-
cols17. Wu et al. proposed a scheme to achieve the multi-particle three-dimensional entanglement state via adia-
batic passage18. Although the adiabatic passage can effectively resist the fluctuations of the parameters, it requires 
a long time of dynamic evolution. Liang et al. proposed a scheme that combines the adiabatic passage with quan-
tum Zeno dynamics to realize the three-dimensional entanglement19. Although the scheme is simplified by using 
Zeno dynamics, it inevitably leads to a long evolution time due to the adiabatic passage. To date, two experimental 
schemes have been proposed for generating a high-dimensional entanglement that takes advantage of the spatial 
modes of the electromagnetic field carrying orbital angular momentum20,21.
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It is well known that the robustness of adiabatic passage against parameter fluctuations makes it a good choice 
for the realization of QIP. However, the required long evolution time is the key ingredient that makes it effective. 
In practice, however, a long evolution time may be a drawback that makes the method ineffective because the 
dissipation caused by decoherence, noise, and losses on the target state can increase with an increasing inter-
action time. Therefore, much attention has been devoted to improving the speed of the adiabatic passage, and 
the shortcuts to adiabaticity that arise in this situation. Several theoretical and experimental schemes have been 
proposed to realize the shortcuts to adiabaticity22–34. Two methods can be used to construct the shortcuts: the first 
is the inverse engineering based on the Lewis-Riesenfeld invariant (LR)35–37, and the second is the TQD proposed 
by Berry38–41. These two methods are strongly interrelated and are even potentially equivalent. The characteristic 
of the LR-based method is that the original Hamiltonian is not destroyed in the construction of the shortcuts, 
but in some cases, the fixed form of the invariants may be a weakness for the construction of the shortcuts. The 
TQD method provides an effective way to construct the counter-diabatic driving (CDD) Hamiltonian that accu-
rately drives the instantaneous eigenstates of the original Hamiltonian. However, it was found that in practice, 
the designed CDD Hamiltonian is difficult to implement directly42–46. Several schemes have been proposed to 
overcome this obstacle; for instance, Chen et al. proposed a scheme to generate the Greenberger-Horne-Zeilinger 
(GHZ) state using quantum Zeno dynamics and TQD28. In 2016, Song et al. presented an interesting approach 
for the implementation of the physically feasible three-level TQD with multiple Schrödinger dynamics47. Inspired 
by the above works, in this study, we construct shortcuts to the adiabaticity of three-dimensional entanglement 
by introducing auxiliary levels and a large detuning condition to improve the generation efficiency and expand 
the application of three-dimensional entanglement in cavity quantum electrodynamics. Unlike ref. 28, we gener-
ate the three-dimensional entanglement state merely by applying the TQD method. This scheme can effectively 
speed up the generation of three-dimensional entanglement in the adiabatic passage. Moreover, our numerical 
simulation shows that the present scheme can reach a high fidelity under dissipation and can therefore be helpful 
in dealing with the tasks of fast quantum communication and computation.

Results
Basic model.  We consider a multimode cavity in which two atoms are trapped as shown in Fig. 1(a). The 
atomic level configuration depicted in Fig. 1(b) was used by Wu et al.18. Atom 1 has two excited states |ej〉​1 
( j =​ L, R, the same below) and five ground states |1〉​1, |R〉​1, |g〉​1, |L〉​1, and |0〉​1, while atom 2 is a five-level system 
with three ground states |R〉​2, |g〉​2, |L〉​2 and two excited states |ej〉​2. For atom 1, the transitions |eL〉​1 ↔​ |1〉​1 and  
|eR〉​1 ↔​ |0〉​1 are driven by the classical fields with the same Rabi frequency Ω1(t), and the transition |ej〉​1 ↔​ | j〉​1 is 
resonantly driven by the corresponding cavity mode a1j and the coupling strength g1j. For atom 2, the transitions 
|ej〉​2 ↔​ | j〉​2 are driven by the classical fields with the same Rabi frequency Ω2(t), and the transition |ej〉​2 ↔​ |g〉​
2 is resonantly driven by the corresponding cavity mode a2j with the coupling strength g2j. The configuration 
described here can be obtained from the hyperfine structure of cold alkali-metal atoms48–50. Here we use two 87Rb 
atoms that have been cooled and trapped in a small optical cavity. For atom 1, 52S1/2 ground level |F =​ 1, m =​ 2〉​ 
(|F =​ 1, m =​ −​2〉​) can be used as the state |L〉​ (|R〉​) and |F =​ 2, m =​ 1〉​ (|F =​ 2, m =​ −​1〉​) as |1〉​ (|0〉​), respectively. 
The 52P3/2 excited level |F′​ =​ 1, m =​ 1〉​ (|F′​ =​ 1, m =​ −​1〉​) can be used as the state |eL〉​ (|eR〉​). Other hyperfine levels  
in the ground-state manifold can be used as |g〉​ for atom 1. For atom 2, the 52S1/2 ground level |F =​ 1, m =​ 0〉​, 
|F =​ 2, m =​ 2〉​, |F =​ 2, m =​ −​2〉​ can be used as states |g〉​, |R〉​, and |L〉​, respectively. The excited level |F′​ =​ 1, m =​ 1〉​ 
(|F′​ =​ 1, m =​ −​1〉​) corresponds to |eL〉​ (|eR〉​). The total Hamiltonian in the interaction picture can be written as 
(ħ =​ 1)
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where β is the phase difference between the two time-dependent classical fields and we have assumed β =​ 3π/2 
here; aij (i =​ 1, 2; j =​ R, L) is the annihilation operator for the corresponding cavity modes with R(L)-circular 
polarization, and gij (i =​ 1, 2; j =​ R, L) is the coupling strength between the corresponding cavity mode and the 
atom.

We now describe an idea for constructing the shortcuts to adiabatic passage to generate the three-dimensional 
entanglement between the two atoms; this can be written as

|Ψ〉 = | 〉 | 〉 + | 〉 | 〉 + | 〉 | 〉 .R R L L g g1
3

[ ]
(2)1 2 1 2 1 2

Initially, atom 1 is prepared in the state φ = + + g( 0 1 )1
1
3 1 1 1

, and atom 2 in state |g〉​2, with both  
cavity modes in the vacuum state. To clearly illustrate the physical method for the shortcut, we first use the state 
|0〉​1 |g〉​2 |0〉​c as the example. In this situation, the system is restricted to the subspace spanned by
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For simplicity, we assume gij =​ g (i =​ 1, 2; j =​ R, L) and assume the condition of weak-driving fields

Ω .t g( ) (4)i

Then, the eigenstates |ψn(t)〉​ at the instantaneous time t and the corresponding eigenvalues ξn(t) of HI(t) that 
obey the equation HI(t)|ψn(t)〉​ =​ ξn(t)|ψn(t)〉​ can be derived analytically as

Figure 1.  (a) Schematic view of the setup and two atoms are trapped in the cavity. (b) Level configuration 
of atom 1(2) for the original Hamiltonian. (c) Level configuration of atom 1(2) for the shortcuts to adiabatic 
passage.
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It can be seen that the eigenstate |ψ1(t)〉​ is a dark state in the subspace with an eigenvalue of ξ1 =​ 0. If the adiabatic 
condition ψ ψ ξ∂ ≠ t( ) t m t m1 1( )  is fulfilled51, the initial state will undergo an evolution determined by 
|ψ1(t)〉​, which neglects the probability of populating the |ϕ3〉​ state during the entire evolution. Undoubtedly, the 
adiabatic passage is an effective method for implementing the transformation from the initial state to the final 
state, but it requires a long time to complete the evolution. This is undesirable due to decoherence. The shortcut 
to the adiabatic passage is a good choice for the acceleration of the adiabatic evolution in a nonadiabatic manner. 
The evolutions of the other two initial states will be interpreted later.

Shortcuts for a generating three-dimensional entanglement of two atoms.  The instantaneous 
eigenstates |ψn(t)〉​ for the Hamiltonian HI(t) do not satisfy the Schrodinger equation i∂​t|ψn(t)〉​ =​ HI(t)|ψn(t)〉​. 
According to Berry’s general transitionless tracking algorithm, one can reverse engineer a Hamiltonian related to 
the original Hamiltonian HI(t), but drives the eigenstates exactly40. The Hamiltonian can be obtained by using 

 ϕ ϕ= ∑ ∂H t i( ) n t n n  with |ϕn〉​ the eigenstates of original Hamiltonian HI(t); see the method section in detail. 
Substituting Eq. (5) into the above formula, we obtain the simplest Hamiltonian H(t) in the form

θ ϕ ϕ ϕ ϕ= +H t t( ) ( )( ), (7)1 5 5 1
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However, because the two atoms with double Λ​ level configurations in the original system are resonant with 
the cavity modes as well as with the classical lasers (see Fig. 1(a)), the two excited states of each atom are occupied 
with a considerable proportion of the population. It is difficult to realize the intended transitions between the 
ground states within the atoms. Thus, in practice, the direct implementation of the CDD Hamiltonian H(t) is 
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still challenging, especially in multi-particle systems. It is necessary for us to construct an alternative physically 
feasible (APF) Hamiltonian equivalent to H(t).

To construct the APF Hamiltonian, two auxiliary levels must be introduced in each of the atoms described 
above, as depicted in Fig. 1(c). For atom 1, the 52P3/2 excited levels |F′​ =​ 2, ±​2〉​ of atom 87Rb can be used as the two 
auxiliary excited levels ẽL  and , respectively. For atom 2, the excited levels ′ = = F m2, 1  of 52P1/2 can be used 
as the auxiliary levels ẽL  and ẽR , respectively. Correspondingly, two additional classical driving fields with Rabi 
frequencies Ω∼ t( )i  (i =​ 1, 2) and two auxiliary cavity field modes are introduced to drive the relevant transitions. 
The transition ↔ ˜j e j

 ( j =​ L, R) of atom 1 and ↔ ˜g e R L( )
 of atom 2 are coupled, respectively, to the auxiliary 

cavity modes with the coupling constant 
g ij (i =​ 1, 2 and j =​ R, L) and detuning Δ​2. The two classical laser fields 

are applied to drive the transition ↔ ẽ0 ( 1 ) R L( )
 and ↔ ˜j e j

 of atoms 1 and 2, respectively, with the same 
detuning Δ​1. Under the rotating wave approximation, the auxiliary interaction Hamiltonian is (ħ =​ 1)
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where bij (i =​ 1, 2; j =​ R, L) denotes the annihilation operator of the auxiliary cavity mode and the symbol H.c. 
means Hermitian conjugate. For simplicity, we have assumed =g gij  and Ω = Ω = Ω

∼ ∼ ∼t t t( ) ( ) ( )1 2 . If the system is 
initially in the state |ϕ〉​1, under the condition of a large detuning regime Δ​1, ∆ Ω

∼
 t( )2 , g, the level ẽ R L( )

 and the 
auxiliary cavity modes bR(L) are virtually excited. Thus, we can adiabatically eliminate the excited states of the 
atoms and obtain the auxiliary effective Hamiltonian52–54,
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Hence, the Rabi frequency of the auxiliary laser field contributes to the construction of the APF Hamiltonian 
and can be determined from the original frequencies Ω1(t) and Ω2(t) as
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the Rabi frequencies Ω1(t) and Ω2(t) in the original Hamiltonian HI(t) can be chosen as
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where Ω0 is the pulse amplitude, τ is the time delay, and T is the operating duration. Figure 2 shows Ω1(t)/Ω0 and 
Ω2(t)/Ω0 plotted as a function of t/T for a fixed value of time delay chosen for the best adiabatic passage. Applying 
this shortcut to the adiabatic passage, the initial state |0〉​1 |g〉​2 |0〉​c finally evolves to state |R〉​1 |R〉​2 |0〉​c.

In contrast, if the initial state is |1〉​1 |g〉​2 |0〉​c, the system is restricted to the subspace spanned by the basis 
vectors
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In this case, using the method described above, we can easily obtain the effective Hamiltonian
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where ′ =+S L11 1
, ′ =+S L g2 2

. Finally, the system will evolve to the state |L〉​1 |L〉​2 |0〉​c. Meanwhile, the initial 
state |g〉​1 |g〉​2 |0〉​c remains unchanged during the evolution due to the absence of excitation.

Considering all of the above cases, we can see that the two atoms in the initial state

Ψ = + + ⊗g g(0) 1
3

( 0 1 ) ,
(18)1 1 1 2

will evolve into the three-dimensional entangled state in Eq. (2), assisted by a vacuum cavity exploiting the short-
cuts to adiabatic passage. All of the cavity modes finally stay in the vacuum states.

Discussion
To prove the efficiency of the shortcuts assisted by the Hamiltonian ∼H t( ), we use a contrast between the perfor-
mance of the population transfer from the initial state to the final state driven by the APF Hamiltonian ∼H t( ) and 
that governed by the original Hamiltonian HI(t), as shown in Fig. 3.

The time-dependent population for any state |ϕ〉​ is given by the relationship P =​ 〈​ϕ|ρ(t)|ϕ〉​, where ρ(t) is the 
corresponding time-dependent density operator. A comparison of Fig. 3(a,b) shows that the APF Hamiltonian 
∼H t( ) governs the system to achieve a near-perfect population transfer in a short interaction time, whereas the 
original Hamiltonian HI(t) does not show such an effect. This can be understood in physics. By introducing the 
auxiliary levels in each atom and driving the transitions between the auxiliary levels and the ground states with 
the cavity modes and classical fields, the interaction energy within the system is increased. This enhances the 
effective transition strength (or coupling strength) between the ground states (

 L R1(0) ( )1 1
 and 

L R g( ) 2 2
), thereby greatly increasing the population probabilities of the target states and accelerating the 

entire process.
We can also compare the fidelities of the entangled states governed by the original Hamiltonian HI(t), HI(t) 

assisted by the APF Hamiltonian ∼H t( ) and those governed by the CDD Hamiltonian H(t). As shown in Fig. 4, as a 
fast and feasible experimental method, the fidelity for our shortcuts scheme can achieve the same perfect degree 
as that driven by the CDD Hamiltonian FCDD, with only a slightly longer time. Meanwhile, this process is much 
faster than the adiabatic passage.

In a realistic implementation, in addition to the operating speed requirements, the robustness of the scheme 
against the possible decoherence caused by atomic spontaneous emission γ and cavity decay κ should also be 
considered. Using the Lindblad master equation, we can simulate the fidelity of this scheme defined by 

ρ= Ψ ΨF t( )  with the ρ(t) being the reduced density matrix of the final state. An examination of Fig. 5(a) 
shows that under the dissipative conditions, the intended entanglement state can be obtained with a high fidelity 
of more than 90% in the present shortcut scheme. Moreover, the fidelity increases with decreasing γ and κ, e.g., a 
fidelity 98.18% can be reached with γ/g =​ 0.014 and κ/g =​ 0.01. To reveal the effectiveness of the shortcuts, the 
fidelity of original scheme under the dissipation is shown in Fig. 5(b). Comparison of Fig. 5(a,b) shows that the 

Figure 2.  The shapes of Ω1(t)/Ω0 (solid blue line) and Ω2(t)/Ω0 (dashed red line) dependent on t/T, where 
Ω1(t) and Ω2(t) are defined by Eqs (22) and (23) with τ = 0.22 T.
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original fidelity is always lower than that in the present shortcut to adiabatic passage under the same degree of 
dissipation factors (cavity decay and spontaneous emission). The spontaneous emission in the shortcuts to the 
adiabatic passage has a smaller influence than does that in the original scheme. Therefore, our present scheme is 
more robust.

The realistic problem related to the experiment is how to capture the two 87Rb atoms into the same cavity and 
control them precisely by using different laser pulses in the same cavity. The optical dipole trap (ODT) is one opti-
mal candidate system for QIP using laser cooling techniques55–60. A quantum register composed of 5 qubits and 
the controllable Rabi oscillation for 5 qubits has been realized by using monochromatic microwave field to coher-
ently control these atoms61. Kim and Saffman et al. constructed five one-dimensional linear ODTs with a spatial 
distance on the micron level between each other using diffractive optical elements and successfully realized 5 
single-atom qubits with no mutual disturbing between any two qubits62. We can also use the technology of an 
atom conveyor belt63,64 to implement our present scheme. Chapman’s group developed this technique further with 
dual atom conveyor belts65,66 so that two single atoms confined in two optical lattices can be transferred to the 
designated positions in the cavity. These two lattices are sufficiently far apart along the direction perpendicular to 
the axis of the cavity that the probe beams excite atoms in only one of the lattices. The atoms are loaded simultane-
ously from the magneto-optical trap, but each lattice has independent translational control. Using strong focusing 
laser fields and detuning the frequencies, the required transitions can be realized.

Figure 3.  Time evolution of the population for the states ϕ ϕ ′( )1 1  and ϕ ϕ′( )5 5  with Ω0 = 0.2 g, T = 50/g, 
and τ = 0.22 T. (a) governed by the original Hamiltonian HI(t), (b) governed by the APF Hamiltonian ∼H t( ) with 
Δ​1 =​ 6 g, Δ​2 =​ 7 g.

Figure 4.  Fidelities of the three-dimensional entanglement state are shown as a function of gT. They are 
governed by CDD Hamiltonian H(t), APF Hamiltonian ∼H t( ) with Δ​1 =​ 6 g and Δ​2 =​ 7 g and original 
Hamiltonian HI(t), respectively. The Rabi frequencies Ω1(t) and Ω2(t) are defined by Eqs (22) and (23) with 
Ω0 =​ 0.2 g, τ =​ 0.22 T.
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Conclusion
We have constructed a shortcut to the adiabatic passage for the three-dimensional entanglement of two atoms 
by using the TQD method. We construct a supplemental interaction Hamiltonian that is equivalent to the 
counter-diabatic Hamiltonian under a large detuning regime. The numerical simulation demonstrates that the 
scheme is fast and robust against the decoherence caused by atomic spontaneous emission and cavity decay. We 
have also discussed the feasibility of the scheme in experiment. In view of the high security of high-dimensional 
entanglement in quantum communication and quantum cryptography, our present scheme is expected to have 
practical applications in quantum communication.

Methods
Transitionless quantum driving.  The starting point of TQD is an arbitrary time-dependent Hamiltonian 
H0(t) with the instantaneous eigenstates |ϕn(t)〉​ and energies λn(t), given by

ϕ λ ϕ= .H t t t t( ) ( ) ( ) ( ) (19)n n n0

Under the adiabatic approximation, the state driven by H0(t) would be36

ψ ϕ= αt e t( ) ( ) , (20)n
i t

n
( )n

where the adiabatic phase including dynamical and geometric parts is

 ∫ ∫α λ ϕ ϕ= − ′ ′ + ′ ′ ∂ ′ .′t dt t i dt t t( ) 1 ( ) ( ) ( ) (21)n
t

n
t

n t n
0 0

To find the Hamiltonian H(t) that drives the eigenstates |ϕn(t)〉​, we first define a time-dependent unitary 
operator

∑ ϕ ϕ= αU e t( ) (0) ,
(22)n

i t
n n

( )n

which obeys

 ∂ = ⇒ = ∂ .†i U H t U H t i U U( ) ( ) ( ) (23)t t

Then the Hamiltonian H(t) is obtained as

∑ ϕ ϕ ϕ ϕ ϕ ϕ
= +

= ∂ − ∂ .

H t H t H t
H t i

( ) ( ) ( ),
( ) ( )

(24)n
t n n n t n n n

0 1

1

The simplest choice is αn =​ 0, for which the bare states |ϕn(t)〉​ with no phase factors are driven by

∑ ϕ ϕ= ∂H t i( ) ,
(25)n

t n n

reflecting

Figure 5.  Fidelity of the target state as a function of κ/g and γ/g. The Rabi frequencies Ω1(t) and Ω2(t) are 
defined by Eqs (22) and (23) with Ω0 =​ 0.2 g and τ =​ 0.22 T. (a) governed by the APF Hamiltonian ∼H t( ) with  
Δ​1 =​ 6 g, Δ​2 =​ 7 g, T =​ 50/g. (b) governed by the original Hamiltonian HI(t) with T =​ 100/g.
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∑ϕ ϕ ϕ ϕ∂ = ∂ .i i
(26)t n

m
t m m n 

Modelling of decoherence effects.  The short evolution time is the striking characteristic of our scheme, 
but the evolution will inevitably suffer from decoherence. Therefore, we pay attention to the effects of decoherence 
on our entanglement generation. The main dissipation channels include the spontaneous emission of atoms and 
cavity decay. Considering all of these factors, the evolution of our scheme is governed by the following master 
equation

∑ ∑

∑

∑ ∑

∑ ∑

∑ ∑

ρ ρ

κ
ρ ρ ρ

κ
ρ ρ ρ

γ
σ ρ σ ρ σ ρ σ

σ ρ σ ρ σ ρ σ

γ
σ ρ σ ρ σ ρ σ

σ ρ σ ρ σ ρ σ

= − +

−







− +

− − +







− − +

− − +

− − +

− − +

∼

= =

=

= =

= =

= =

�

�

�

�

� � � � � �

† † †

† † †

t i H t H t t

a a t a t a t a a

b b t b t b t b a

t t t

t t t

t t t

t t t

( ) [ ( ) ( ), ( )]

2
[ ( ) 2 ( ) ( ) ]

2
[ ( ) 2 ( ) ( ) ]

2
{ [ ( ) 2 ( ) ( ) ]

[ ( ) 2 ( ) ( ) ]}

2
{[ ( ) 2 ( ) ( ) ]

[ ( ) 2 ( ) ( ) ]}, (27)

I

i j L R

j
ij ij ij ij ij ij

j L R

j
ij ij ij ij ij ij

h L m e e
m m h m m h m m

k R n e e
n n k n n k n n

j R L l j g
e e l e e l e e

e e l e e l e e

1,2 ,

,

1
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,

1
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1
,

1
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1
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1
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2

,
2

,
1

,
2

,
2

,
2

,
1

L L

R R

j j j j j j

j j j j j j

where κR(L) denotes the decay rates of cavity mode R(L), γ1(2) denotes the spontaneous emission rate of atom 1(2) 
from ˜e e( )x x  (x =​ R, L) to |R〉​, |L〉​, |g〉​, respectively; σ = = ˜ ˜p q p q L R e e e e( , 0, 1, , , , , , )p q L R L R,  are the usual 
Pauli matrices. The fidelity of the three-dimensional entanglement state versus the ratios γ/g and κ/g has been 
shown in Fig. 5 where we have assumed κ κ κ κ κ= = = =

 R L R L , γ1 =​ γ/5, γ2 =​ γ/3 for simplicity. In experi-
ments, the cavity QED parameters g/2π ≈​ 750 MHz, κ/2π ≈​ 2.62 MHz and γ/2π ≈​ 3.5 MHz are predictively 
achievable in ref. 67. For such parameters, the fidelity of our scheme is larger than 99.0%, thus, the present short-
cut scheme is robust against both cavity decay and atomic spontaneous emission.

References
1.	 Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. 

Lett. 69, 2881–2884 (1992).
2.	 Zheng, S. B. & Guo, G. C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. 

Rev. Lett. 85, 2392–2395 (2000).
3.	 Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 

4656–4659 (1996).
4.	 Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 91, 147902 (2003).
5.	 Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. 

Lett. 70, 1895–1899 (1993).
6.	 Lo, H. K., Spiller, T. & Popescu, S. Introduction to Quantum Computation and Information (World Scientific, Singapore, 1998).
7.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
8.	 Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature (London) 404, 247–255 (2000).
9.	 Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

10.	 Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. 
Phys. Rev. A 54, R4649(R) (1996).

11.	 Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).
12.	 Zoller, P. et al. Quantum information processing and communication. Eur. Phys. J. D 36, 203–228 (2005).
13.	 Kaszlikowski, D. et al. Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger than for Two Qubits. 

Phys. Rev. Lett. 85, 4418–4421 (2000).
14.	 Shao, X. Q. et al. Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014).
15.	 Shao, X. Q., Zheng, T. Y., Oh, C. H. & Zhang, S. Dissipative creation of three-dimensional entangled state in optical cavity via 

spontaneous emission. Phys. Rev. A 89, 012319 (2014).
16.	 Su, S. L., Shao, X. Q., Wang, H. F. & Zhang, S. Preparation of three-dimensional entanglement for distant atoms in coupled cavities 

via atomic spontaneous emission and cavity decay. Sci. Rep. 4, 7566 (2014).
17.	 Li, W. A. & Huang, G. Y. Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 

83, 022322 (2011).
18.	 Wu, X. et al. Generation of multiparticle three-dimensional entanglement state via adiabatic passage. Chin. Phys. B 22, 040309 

(2013).
19.	 Liang, Y. et al. Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Opt. Express 

23(4), 5064–5077 (2015).
20.	 Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature (London) 

412, 313–316 (2001).
21.	 Vaziri, A., Weihs, G. & Zeilinger, A. Experimental Two-Photon, Three-Dimensional Entanglement for Quantum Communication. 

Phys. Rev. Lett. 89, 240401 (2002).
22.	 Chen, X. et al. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Phys. Rev. Lett. 105, 123003 (2010).
23.	 Chen, X. & Muga, J. G. Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:30929 | DOI: 10.1038/srep30929

24.	 Chen, Y. H., Xia, Y., Chen, Q. Q. & Song, J. Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle 
systems. Phys. Rev. A 89, 033856 (2014).

25.	 Liang, Y. et al. Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304 (2015).
26.	 Liang, Y., Song, C. & Ji, X. Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. Opt. Express 23, 

23798–23810 (2015).
27.	 Liang, Y., Ji, X., Wang, H. F. & Zhang, S. Deterministic SWAP gate using shortcuts to adiabatic passage. Laser. Phys. Lett. 12, 115201 

(2015).
28.	 Chen, Y. H., Xia, Y., Song, J. & Chen, Q. Q. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states 

by transitionless quantum driving. Sci. Rep. 5, 15616 (2015).
29.	 Chen, Y. H., Xia, Y., Chen, Q. Q. & Song, J. Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast 

and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014).
30.	 Lu, M. et al. Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a 

cavity. Phys. Rev. A 89, 012326 (2014).
31.	 Song, X. K. et al. Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum 

driving algorithm. New J. Phys. 18, 023001 (2016).
32.	 Zhang, J. et al. Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015).
33.	 Santos, A. C. & Sarandy, M. S. Superadiabatic Controlled Evolutions and Universal Quantum Computation. Sci. Rep. 5, 15775 

(2015).
34.	 Feng, G. R., Xu, G. F. & Long, G. L. Experimental Realization of Nonadiabatic Holonomic Quantum Computation. Phys. Rev. Lett. 

110, 190501 (2013).
35.	 Lai, Y. Z., Liang, J. Q., Müller-Kirsten, H. J. W. & Zhou, J. G. Time-dependent quantum systems and the invariant Hermitian 

operator. Phys. Rev. A 53, 3691 (1996).
36.	 Chen, X., Torrontegui, E. & Muga, J. G. Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 

(2011).
37.	 Muga, J. G., Chen, X., Ruschhaupt, A. & Guéry-Odelin, D. Frictionless dynamics of Bose-Einstein condensates under fast trap 

variations. J. Phys. B 42, 241001 (2009).
38.	 Demirplak, M. & Rice, S. A. Adiabatic Population Transfer with Control Fields. J. Phys. Chem. A 107, 9937–9945 (2003).
39.	 Demirplak, M. & Rice, S. A. On the consistency, extremal, and global properties of counterdiabatic fields. J. Phys. Chem. A 129, 

154111 (2008).
40.	 Berry, M. V. Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical 42, 365303 (2009).
41.	 Bason, M. G. et al. High-fidelity quantum driving. Nat. Phys 8, 147–152 (2012).
42.	 Campo, A. D., Rams, M. M. & Zurek, W. H. Assisted Finite-Rate Adiabatic Passage Across a Quantum Critical Point: Exact Solution 

for the Quantum Ising Model. Phys. Rev. Lett. 109, 115703 (2012).
43.	 Takahashi, K. Transitionless quantum driving for spin systems. Phys. Rev. E 87, 062117 (2013).
44.	 Takahashi, K. How fast and robust is the quantum adiabatic passage. J. Phys. A 46, 315304 (2013).
45.	 Muga, J. G. et al. Transitionless quantum drivings for the harmonic oscillator. J. Phys. B 43, 085509 (2010).
46.	 Ibáñez, S. et al. Multiple Schrödinger Pictures and Dynamics in Shortcuts to Adiabaticity. Phys. Rev. Lett. 109, 100403 (2012).
47.	 Song, X. K., Ai, Q., Qiu, J. & Deng, F. G. Physically feasible three-level transitionless quantum driving with multiple Schrödinger 

dynamics. Phys. Rev. A 93, 052324 (2016).
48.	 Lettner, M. et al. Remote Entanglement between a Single Atom and a Bose-Einstein Condensate. Phys. Rev. Lett. 106, 210503 (2011).
49.	 Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-Atom Single-Photon Quantum Interface. Science 317, 488–490 (2007).
50.	 Weber, B. et al. Photon-Photon Entanglement with a Single Trapped Atom. Phys. Rev. Lett. 102, 030501 (2009).
51.	 Kuklinski, J. R., Gaubatz, U., Hioe, F. T. & Bergmann, K. Adiabatic population transfer in a three-level system driven by delayed laser 

pulses. Phys. Rev. A 40, 6741(R) (1989).
52.	 Pellizzari, T. Quantum Networking with Optical Fibres. Phys. Rev. Lett. 79, 5242 (1997).
53.	 Lü, X. Y., Liu, J. B., Ding, C. L. & Li, J. H. Dispersive atom-field interaction scheme for three-dimensional entanglement between two 

spatially separated atoms. Phys. Rev. A 78, 032305 (2008).
54.	 Wu, Y. Effective Raman theory for a three-level atom in the Λ​ configuration. Phys. Rev. A 54, 1586–1592 (1996).
55.	 Masuda, S. & Rice, S. A. Fast-Forward Assisted STIRAP. J. Phys. Chem. A 119, 3497–3487 (2015).
56.	 Pollak, E. & Miret-Artés, S. Second-Order Semiclassical Perturbation Theory for Diffractive Scattering from a Surface. J. Phys. 

Chem. C 119, 14532–14541 (2015).
57.	 Kobrak, M. N. & Rice, S. A. Equivalence of the Kobrak-Rice photoselective adiabatic passage and the Brumer-Shapiro strong field 

methods for control of product formation in a reaction. J. Chem. Phys. 109, 1 (1998).
58.	 Kobrak, M. N. & Rice, S. A. Selective photochemistry via adiabatic passage: An extension of stimulated Raman adiabatic passage for 

degenerate final states. Phys. Rev. A 57, 2885 (1998).
59.	 Gong, J. B. & Rice, S. A. Complete quantum control of the population transfer branching ratio between two degenerate target states. 

J. Chem. Phys. 121, 1364 (2004).
60.	 Yavuz, D. D. et al. Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps. Phys. Rev. Lett. 96, 063001 

(2006).
61.	 Schrader, D. et al. Neutral Atom Quantum Register. Phys. Rev. Lett. 93, 150501 (2004).
62.	 Knoernschild, C. et al. Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering 

system. Appl. Phys. Lett. 97, 134101 (2010).
63.	 Kuhr, S. et al. Deterministic Delivery of a Single Atom. Science 293(5528), 278–280 (2001).
64.	 Fortier, K. M. et al. Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).
65.	 Shih, C. Y. & Chapman, M. S. Characterizing single atom optical dipole traps, Phys. Rev. A 87, 063408 (2013).
66.	 Shih, C. Y. Characterizing Single Atom Dipole Traps for Quantum Information Applications. Ph.D Thesis, Georgia Institute of 

Technology (2013).
67.	 Spillane, S. M. et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

Acknowledgements
This work was supported by the National Natural Science Foundations of China under Grant Nos 11564041, 
11165015, 11264042, 11465020, 61465013, and the Project of Jilin Science and Technology Development for 
Leading Talent of Science and Technology Innovation in Middle and Young and Team Project under Grant No. 
20160519022JH. The authors thank Dr. Ye-Hong Chen of Fuzhou University for the helpful discussion.

Author Contributions
S.H., S.-L.S. and S.Z. designed the scheme and performed the simulations for the model. D.-Y.W. and C.-H.B. 
modify the graphics. W.-M.S., H.-F.W. and A.-D.Z. performed the initial draft of the manuscript. All authors 
participated in the writing of the text.



www.nature.com/scientificreports/

1 1Scientific Reports | 6:30929 | DOI: 10.1038/srep30929

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: He, S. et al. Efficient shortcuts to adiabatic passage for three-dimensional entanglement 
generation via transitionless quantum driving. Sci. Rep. 6, 30929; doi: 10.1038/srep30929 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving

	Results

	Basic model. 
	Shortcuts for a generating three-dimensional entanglement of two atoms. 

	Discussion

	Conclusion

	Methods

	Transitionless quantum driving. 
	Modelling of decoherence effects. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ (a) Schematic view of the setup and two atoms are trapped in the cavity.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The shapes of Ω1(t)/Ω0 (solid blue line) and Ω2(t)/Ω0 (dashed red line) dependent on t/T, where Ω1(t) and Ω2(t) are defined by Eqs (22) and (23) with τ = 0.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Time evolution of the population for the states and with Ω0 = 0.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Fidelities of the three-dimensional entanglement state are shown as a function of gT.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Fidelity of the target state as a function of κ/g and γ/g.



 
    
       
          application/pdf
          
             
                Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30929
            
         
          
             
                Shuang He
                Shi-Lei Su
                Dong-Yang Wang
                Wen-Mei Sun
                Cheng-Hua Bai
                Ai-Dong Zhu
                Hong-Fu Wang
                Shou Zhang
            
         
          doi:10.1038/srep30929
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep30929
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep30929
            
         
      
       
          
          
          
             
                doi:10.1038/srep30929
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30929
            
         
          
          
      
       
       
          True
      
   




