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Abstract: Skin is a biological system composed of different types of cells within a firmly structured
extracellular matrix and is exposed to various external and internal insults that can break its configu-
ration. The restoration of skin’s anatomic continuity and function following injury is a multifaceted,
dynamic, well-coordinated process that is highly dependent on signalling pathways, including the
canonical Wnt/β catenin pathway, all aimed at restoring the skin’s protective barrier. Compromised
and inappropriate tissue restoration processes are often the source of wound chronicity. Diabetic
patients have a high risk of developing major impediments including wound contamination and
limb amputation due to chronic, non-healing wounds. Photobiomodulation (PBM) involves the
application of low-powered light at specific wavelengths to influence different biological activities
that incite and quicken tissue restoration. PBM has been shown to modulate cellular behaviour
through a variety of signal transduction pathways, including the Wnt/β catenin pathway; however,
the role of Wnt/β catenin in chronic wound healing in response to PBM has not been fully defined.
This review largely focuses on the role of key signalling pathways in human skin wound repair,
specifically, the canonical Wnt/β-catenin pathway, and the effects of PBM on chronic wound healing.

Keywords: signalling pathways; chronic wound; diabetes; photobiomodulation; Wnt; β-catenin;
growth factor

1. Introduction

Injured or damaged skin is restored via a well-coordinated cutaneous restoration
response. The exact molecular and cellular mechanisms behind wound restoration are
poorly understood. The most peculiar observation is that repaired skin is different from
uninjured skin, largely due to disparities in the processes regulating postnatal cutaneous
wound restoration in mammals [1]. Essentially, the restoration response to cutaneous tissue
injury includes inflammation, neoangiogenesis, deposition of matrix, and recruitment
of cells. A delay in this process is largely coupled with underlying medical conditions
including diabetes mellitus (DM), vascular disease, and aging. Non-healing diabetic ulcers
are frequently associated with chronicity and limb amputation [2]. Conventional therapies
for chronic wounds are available but are limited in their treatment success. Key to the
generation of novel therapies for chronic wound management is an understanding of the
underlying molecular processes including cellular signalling that is engaged during the
wound restoration process [1,2].

A classic wound restoration process (Figure 1) is divided into four succeeding phases,
viz., haemostasis, inflammation, resurfacing of new epithelium, and remodelling of con-
nective tissue. These phases are well defined elsewhere [3] and are precisely controlled
by intricate communication between cells, signalisation, and extracellular matrix (ECM)
proteins [4]. Tissue restoration involves various cell types that go through proliferation, mi-
gration, differentiation, and apoptosis aided by various biological signalling pathways [1,5].
The canonical Wnt/β-catenin pathway is implicated in a range of biological activities in-
cluding cell proliferation, differentiation, and apoptosis and is one of the critical pathways
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participating in the restoration of cutaneous wounds [6]. Delay in the wound restoration
process and the development of wound chronicity are largely due to the reduced pro-
duction and performance of cytokines and the induction of their specific receptors and
intracellular signalling, hindering the functionality of cells including fibroblasts [7].
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chronic metabolic disease. Complications related to DM are multiple, involving diabetic 
neuropathy, retinopathy, and the development of diabetic cutaneous ulceration. Approx-
imately 50–70% of diabetic patients require non-traumatic lower limb amputation due to 
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Figure 1. Phases of wound repair and their cellular constituents. The wound restoration process starts
with the formation of a platelet plug (haemostasis) to prevent blood loss through the construction
of a fibrin matrix. This is followed by removal of debris and prevention of infection (inflammation)
by neutrophils and mast cells. Macrophages clear the remaining debris. Fibroblast, epidermal stem
cell (ESC) and keratinocyte migration, and neoangiogenesis, aided by various biological signals,
contribute to the resurfacing of the epithelium and the formation of granulation tissue and wound
closure. The final phase involves remodelling of the connective tissue.

DM is characterised by elevated blood glucose levels and is a major cause of systemic
chronic metabolic disease. Complications related to DM are multiple, involving diabetic
neuropathy, retinopathy, and the development of diabetic cutaneous ulceration. Approxi-
mately 50–70% of diabetic patients require non-traumatic lower limb amputation due to
wound chronicity [8]. The prevalence of diabetic ulcers in Africa is 13%, with about 15% of
these necessitating limb amputation, and a mortality rate of 14.2% during hospitalisation [9].
The Wnt/β-catenin pathway is implicated in the appearance of vascular endothelial cells
(VECs) in chronic DM, and downregulation of this pathway largely affects the healing of
diabetic wounds [10].

The treatment of diabetic wounds is frequently challenging, and although there are
well-established treatments for diabetic wounds, subsequent reappearance is common
in 40% of the treated patients, and approximately 20% of these patients have unhealed
wounds 1 year after treatment [11]. Globally, a poor wound restoration response affects



Int. J. Mol. Sci. 2022, 23, 4210 3 of 10

many people, as well as healthcare systems, and these challenges call for novel interventions
to improve diabetic wound healing. The evolution of technology and improved knowledge
regarding the favourable effects of photobiomodulation (PBM) have led to its use as a
routine method of treatment for many ailments. PBM employs the non-invasive use of
visible and near-infrared (NIR) light (including lasers and light-emitting diodes, LEDs) at
definite wavelengths and fluencies [12]. This therapeutic method causes biological changes
in cells in response to irradiation. For many years, it has been used in the treatment of
psoriasis and jaundice in newborn babies and, more recently, in the treatment of wounds,
tissue swelling, pain and inflammation [13]. Studies show that PBM is able to speed up
the restoration of chronic wounds and activates cellular proliferation, differentiation and
survival by instigating various cellular signalling pathways [12,14].

2. Intracellular Signalling in Wound Healing

The cells response to injury is initiated by growth factors and cytokines that play
a key role in wound restoration, and their biological action is achieved via signal trans-
duction. Growth factors and cytokines play distinct roles through all phases of wound
healing [15]. In response to injury, they can trigger several strategic signalling transduction
pathways that are mostly activated during embryonic skin development [1]. Extracellular
signal-regulated kinases (ERKs) and calcium (Ca2+) are the first intracellular signalling
molecules for tissue repair response. These signalling molecules regulate several biologi-
cal activities including cellular migration, proliferation, contractility, survival and many
more related to different transcription factors that are usually induced by several other
intracellular signalling pathways. This phenomenon makes it difficult to link a specific
signalling response to injury [16]. There is large interaction between intracellular signalling
pathways during wound restoration, such as those activated by epidermal growth factor
(EGF) [17], transforming growth factor β1 (TGFβ1) [18], Src [19], Ras [20], integrin [21],
Wnt/β catenin [5] and Notch [22]. The Wnt/β-catenin intracellular pathway regulates
wound healing by improving wound neoangiogenesis, cell proliferation, differentiation,
apoptosis and tissue remodelling [6].

2.1. Wnt/β-Catenin Pathway in Wound Healing

The designation Wnt was created after the name Wingless-linked integration site [23]
and identifies a family of glycolipoproteins that regulates embryonic growth and homeosta-
sis in adults. Depending on the type of Wnt ligand, the related signal is via the canonical
or non-canonical Wnt signalling pathway. In the canonical Wnt pathway, a co-activator of
transcription, β catenin, is the central facilitator (Wnt/β-catenin signalling). Wnt/β-catenin
signalling is one of the critical molecular mechanisms for cell proliferation, polarity, deter-
mination of fate and tissue restoration. The Wnt/β-catenin signal transduction pathway
is blocked when competitive antagonists bind to their specific receptors. Common antag-
onists of Wnt/β-catenin signalling include Wnt inhibitory factor-1 (WIF 1) and secreted
frizzled-related proteins (SFRPs) [24]. Defects in the Wnt/β-catenin pathway are associated
with genetic defects, cancer and vascular diseases [25].

There are 19 Wnt members in humans, which include Wnt-1, Wnt-2, Wnt-2b, Wnt-3,
Wnt 3a, Wnt-4, Wnt-5a, Wnt-5b, Wnt-6, Wnt-7a, Wnt 7b, Wnt-8a, Wnt-8b, Wnt-9a, Wnt-9b,
Wnt-10a, Wnt-10b, Wnt-11 and Wnt-16 [26]. Signal transduction in the Wnt/β catenin
pathway (Figure 2) begins with the attachment of Wnt proteins to the seven-pass frizzled
(Fz) transmembrane receptors and the co-receptor lipoprotein receptor-related proteins
(LRP). When the Wnt ligand is not present (OFF), a protein complex consisting of axin,
casein kinase (CK) 1, adenomatous polyposis coli (APC) and glycogen synthase kinase
3 beta (GSK3β) is formed. GSK3β causes the phosphorylation of β-catenin, tagging it for
degradation by proteasomes. The attachment of Wnt to receptor Fz (ON) advances the
stimulation of the dishevelled (Dvl) protein that is responsible for deactivating the axin
protein complex. This results in the accumulation of cytoplasmic β-catenin, favouring its
translocation to the nucleus and the formation of an active transcriptional complex with
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T cell-specific factor (TCF) and lymphoid enhancer-binding factor 1 (LEF1) for protein
transcription [5,27]. Largely, Wnt3a is involved in activating the canonical Wnt/β-catenin
pathway, and in vitro, synthetic Wnt3a activates the Wnt/β-catenin pathway for cell prolif-
eration and differentiation [28].
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Figure 2. The Wnt/β-catenin pathway. Signal transduction begins with the attachment of Wnt
proteins to the seven-pass frizzled (Fz) transmembrane receptors and the lipoprotein receptor-related
proteins (LRP). When the Wnt ligand is not present (OFF), a protein complex consisting of axin,
casein kinase (CK) 1, adenomatous polyposis coli (APC) and glycogen synthase kinase 3 beta (GSK3β)
is formed. GSK3β phosphorylates β-catenin, tagging it for degradation. The attachment of Wnt
to Fz (ON) causes the stimulation of the dishevelled (Dvl) protein, resulting in the deactivation of
the axin protein complex and the accumulation of cytoplasmic β-catenin. β-catenin translocated
into the nucleus forms an active transcriptional complex with T cell-specific factor (TCF)/lymphoid
enhancer-binding factor 1 (LEF1) for protein transcription.

A large amount of active communication processes occurs in response to injury, even-
tually leading to wound restoration. An efficacious wound restoration process is largely
governed by differentiation and proliferation of various cells including fibroblasts, epider-
mal stem cells (ESCs) and keratinocytes, achieved through different biological signalling
pathways. Incorrect regulation of cellular signalling results in abnormal wound healing,
including the development of chronic ulcers. Wnt signalling plays a significant role in
controlling cell proliferation, movement and differentiation during tissue restoration [5].
In fibroblasts, the Wnt/β-catenin pathway is inactive and is frequently activated due to
injury [29]. Wang et al. (2017) [30] defined a feedback controlling loop joining basic fi-
broblast growth factor (bFGF) and Wnt signalling via β-catenin in fibroblasts. The bFGF
Wnt-regulated pathway is implicated in cell proliferation, and inhibition of bFGF reduces
Wnt-mediated influence on cell proliferation. Basic FGF proteins are influential mitogens
in normal growth and wound healing [31,32].
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2.2. Regulation of the Wnt/β-Catenin Pathway in Diabetic Wound Healing

A delay in wound restoration in DM is mainly due to mechanisms related to abnormal
inflammation, irregular expression of matrix metalloproteinases (MMPs), reduced cell
proliferation, disproportionate cell apoptosis and reduced expression of growth factors
and their receptors [3]. High protease levels significantly inhibit dermal reconstruction
by reducing ECM components and fibroblast function. Fibroblasts from chronic diabetic
wounds are exceedingly senescent, further contributing to reduced ECM deposition [33].
In addition, the reduced healing process in diabetic wounds is worsened by reduced
dermal cell neovascularisation, persistent infection and poor cell differentiation within
the wound, largely affecting the treatment outcome [28]. The Wnt/β-catenin signalling
pathway directly participates in the alteration of various biological processes related to the
manifestation and advancement of DM and its complications [24].

During diabetic wound restoration, Wnt/β-catenin signalling stimulates skin thick-
ness and pigmentation, and the literature reports that increased regulation of the Wnt/β-
catenin pathway augments the action of high-glucose-suppressed cells [6]. It is suggested
that reduced activity of the Wnt/β-catenin pathway is due to decreased R-spondin (RSPO)
instigated by DM and is one of the main reasons for the irregularity in diabetic wound
healing [10]. The RSPO protein family consist of RSPO 1 to 4 secreted proteins that are
enhancers of the Wnt signalling pathway. RSPOs are responsible for the stabilisation of the
Wnt receptors and their co-receptors via the inactivation of membrane-bound ubiquitin
ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger 43) that antagonize the Wnt
pathway by targeting the Wnt receptors for ubiquitylation-mediated disintegration [34].
Adjustment or alteration of the Wnt/β-catenin pathway is known to enhance diabetic
wound restoration, and it is suggested that transplanting Wnt signalling-activated cells
promotes diabetic wound restoration [28,35]. In diabetic wounds, there is a significant
decrease in the activity of GSK3β, caspase 3, NF-κB and β-catenin pathways [36].

GSK3β, a serine/threonine kinase, is ubiquitously expressed as a strategic regulator
of various signalling pathways for cellular proliferation and survival and plays a critical
role in phosphorylating the Wnt receptors on LRP5/6, in that way causing stabilization of
the Wnt/β-catenin pathway [37]. Inhibition of GSK3β is critical in cell proliferation and
differentiation during the wound restorative process, and modulation of GSK3β-mediated
Wnt/β-catenin pathway advances diabetic wound healing [38].

3. Photobiomodulation (PBM) and the Activation of Signalling Pathways in Diabetic
Wound Healing

Many diabetic wounds remain chronic and persistent after a variety of diverse treat-
ments [39]. Various approaches have been employed to hasten the chronic diabetic wound
restoration process, and most of these methods involve the use of exogenous stimuli.
The use of electrical or electromagnetic energy stimulates the release of growth factors
and the enhancement of wound restoration [40]. PBM utilises electromagnetic radiation
from low-level monochromatic light to induce non-thermal, photo-chemical and photo-
physical effects. The primary and secondary mechanisms of PBM include oxygen- and
non-oxygen-related functional pathways activated via energy transfer or multiple non-
metabolic pathways for amplified adenosine triphosphate (ATP) production and nuclear
gene transcription [41].

PBM is a non-invasive, multipurpose, and economical treatment method that has
attracted a lot of attention in the management of chronic wounds [42] and involves illumi-
nating wounds with LEDs or lasers to induce cellular and tissue biochemical activity and
wound restoration. In vitro, in distinct animal models and in clinical trials, PBM has been
shown to induce wound restoration at unique wavelengths and fluencies, with no ideal
set of limitations identified [39]. However, wavelengths between 405 and 1100 nm and a
fluence between 0.1 and 10 J/cm2 emerge to impart a therapeutic advantage for diabetic
wounds, and basically, low-level light has been observed to have a much better effect
in accelerating tissue repair than high levels of light [42,43]. De Castro et al. (2020) [44]
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suggested that PBM enhances the skin wound restoration process, and that the outcomes
are directly linked to the selected parameters and the mode of irradiation.

The benefits of PBM in skin wound restoration have been previously reported; how-
ever, the biological mechanisms of its action demand to be completely understood. Basically,
the target cells photochemically react to illumination via chromophores present in the mi-
tochondria, which absorb the photons. The mitochondrial chromophore, cytochrome c
oxidase (COX), unit IV in the mitochondrial respiratory chain, is able to absorb red and
NIR light, which results in the increase of different molecules including reactive oxygen
species (ROS), ATP, nitric oxide (NO) and calcium ions, and activates several other sig-
nalling proteins [45]. PBM is suggested to change the cellular redox environment/state,
and several of the significant cellular regulation pathways are redox-mediated. Alterations
in cellular redox state activates many intracellular signalling pathways, the synthesis of
nucleic acids and proteins, the release of growth factors and the progression of the cell
cycle [46]. Oyebode et al. (2021) [47] suggested that cell irradiation produces a biochemical
alteration within cells and tissues, inducing cellular processes and diabetic wound restora-
tion. In vitro, irradiated cells show increased expression of many growth factors, including
TGF-β and vascular endothelial growth factor (VEGF), illustrative of the PBM-enhanced
expression of essential cellular mediators of the wound restorative process [48].

Studies have shown that signal transduction pathways facilitate cellular mechanisms
of PBM, and many cellular signalling pathways have been shown to be modulated by PBM.
However, it is still not completely known which pathways are modulated [49]. Increased
intracellular ROS production following PBM influences cellular activities including prolif-
eration, differentiation, migration and survival due to the activation of Src (a non-receptor
tyrosine kinase). Src proteins interact with a significant number of intracellular biological
signalling transduction pathways including those involving mitogen-activated protein
kinase (MAPK), EGF receptor, signal transducer and activator of transcription-3 (STAT3),
focal adhesion kinase (FAK) and many others [12]. Several studies testify to the activation
and involvement of intracellular signalling during PBM-modulated tissue repair. Feng et al.
(2020) [50] suggested that PBM (808 nm; 1 J/cm2 and 2 J/cm2) enhances wound healing
by promoting the migration of gingival stem cells via the ROS/JNK/NF-κB/MMP-1 sig-
nalling pathway. Rajendran et al. (2021) [51] noticed decreased oxidative stress through the
activation of forkhead Box O1 (FOXO1) in adipose stem cells when PBM (660 nm; 5 J/cm2)
was used. Rhee et al. (2019) [52] observed reduced neuronal cell polarity and increased
cell proliferation, viability and activation of Src, Ras, and MAPK signalling when PBM
(660 nm; 0.78, 1.56, 3.12, 6.24, 9.36 J/cm2) was used. Ye et al. (2012) [53] used PBM at a
wavelength of 632.5 nm and a fluence of 0, 0.6, 1.5 and 2.5 J/cm2 and noticed an increase
in collagen production and degradation and the activation of Erk1/2 and JNK/MAPK
signalling in rat skin. Neves et al. (2018) [54] observed improved acute inflammatory
response in the spinal cord of mice, initiated through p38-MAPK when they used PBM
at a wavelength of 660 nm and a fluence of 50 J/cm2. Bamps et al. (2018) [55] reported
increased cellular proliferation via the initiation of AKT, ERK and Ki67 signalling in hu-
man head and neck cancer cells when they used PBM at a wavelength of 830 nm and a
fluence of 1 J/cm2. When Shingyochi et al. (2017) [56] used a CO2 laser at a wavelength of
10.6 µm, they suggested that PBM accelerates wound restoration by progressing fibroblast
proliferation and relocation via the instigation of AKT, ERK and JNK signalling proteins.
In osteoclastogenesis, Song et al. (2021) [57] observed that PBM enhanced the expression
of NF-κB, ERK, c-Fos and p38 signalling proteins in osteoclasts. In diabetic fibroblasts,
Rajendran et al. (2021) [58] noted mitigated oxidative stress and inhibition of the FOXO1
signalling through the activation of the AKT pathway in diabetic wounded fibroblasts after
irradiation at 660 nm with a fluence of 5 J/cm2.

In outer root sheath cells (ORSCs) that maintain the structure of hair follicles, PBM acti-
vated proliferation and migration via the Wnt/β-catenin and ERK signalling pathways [59].
Liang et al. (2012) demonstrated the effect of PBM on the AKT/GSK3β/β-catenin pathway
and cell apoptosis. They reported a cellular pro-survival effect through the activation of
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AKT and its interaction and inhibition of GSK3β that led to an increase in cytoplasmic
β-catenin and its nuclear translocation [60]. Furthermore, Han et al. (2018) found that
a 655 nm LED device promoted hair growth through the activation of Wnt/β-catenin
signalling in vitro [61]. The involvement of PBM-initiated Wnt/β-catenin signalling in
human fibroblasts in diabetic wound healing is not clear. Presumably, when PBM is used
in diabetic chronic wound healing, it utilises the increased mitochondrial ROS, NO and
ATP production to initiate the transcription and release of cytokines and growth factors
including Wnt proteins. In turn, Wnt binds to Fz receptors, resulting in increased fibroblast
activities through the activation of Wnt/β-catenin signalling (Figure 3). In previous studies,
it was suggested that PBM (660 nm; 5 J/cm2) activated diabetic fibroblast proliferation, mi-
gration and survival via the Janus kinase/STAT (JAK/STAT) [62] and phosphatidylinositol
3-kinase/protein kinase B-AKT (PI3K/AKT) [63] pathways. Presently, our research group
is studying the involvement of different intracellular pathways including Wnt/β-catenin
signalling in the observed diabetic fibroblast activities instigated by PBM.
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Figure 3. Probable effect of PBM on cellular Wnt/β-catenin signalling in fibroblasts during diabetic
chronic wound healing. Wnt/β-catenin signalling is reduced (OFF) in fibroblasts from chronic
diabetic wounds. PBM initiates fibroblast increased mitochondrial activity, resulting in increased
reactive oxygen species (ROS), nitric oxide (NO) and adenosine triphosphate (ATP), which activates
nuclear gene transcription. Increased release of cytokines and growth factors including Wnt ligands
activates Wnt/β-catenin signalling (ON) and cytoplasmic accumulation and translocation of β-
catenin into the nucleus. In the nucleus, β-catenin forms an active transcriptional complex with
T cell-specific factor (TCF) and lymphoid enhancer-binding factor 1 (LEF1) for protein transcription,
resulting in cellular proliferation, migration and survival.

4. Conclusions

Skin injury activates the Wnt signalling pathway and plays an important role in all
successive phases of the wound healing process. Studies have suggested several mecha-
nisms, including reduced activity of growth factors and their cell surface receptors, alter
the healing process. PBM shows high therapeutic efficacy for different chronic wounds,
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particularly diabetic skin wounds, and its use has attracted medical interest. The use of
PBM as a therapeutic technique for different ailments is rapidly growing. Conversely, the
exact means by which emitted light and tissue interact and the parameters that determine
the beneficial effects and efficacy of PBM continue to be the main topics of further research.
Most importantly, good clinical studies on the molecular, cellular and biologic outcomes of
PBM treatment are essential to increase our understanding on the exact means of action of
PBM. There is a need for sufficient substantiation to promote the use of PBM.
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