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Abstract The mechanisms of adaptation to inactivation of essential genes remain unknown.

Here we inactivate E. coli dihydrofolate reductase (DHFR) by introducing D27G,N,F chromosomal

mutations in a key catalytic residue with subsequent adaptation by an automated serial transfer

protocol. The partial reversal G27- > C occurred in three evolutionary trajectories. Conversely, in

one trajectory for D27G and in all trajectories for D27F,N strains adapted to grow at very low

metabolic supplement (folAmix) concentrations but did not escape entirely from supplement

auxotrophy. Major global shifts in metabolome and proteome occurred upon DHFR inactivation,

which were partially reversed in adapted strains. Loss-of-function mutations in two genes, thyA and

deoB, ensured adaptation to low folAmix by rerouting the 2-Deoxy-D-ribose-phosphate

metabolism from glycolysis towards synthesis of dTMP. Multiple evolutionary pathways of

adaptation converged to a suboptimal solution due to the high accessibility to loss-of-function

mutations that block the path to the highest, yet least accessible, fitness peak.

DOI: https://doi.org/10.7554/eLife.50509.001

Introduction
When important cellular functions are inactivated, for example by genetic mutations, long ranging

disruptions of cellular networks can occur, which poses a major adaptive challenge to cells. Recent

studies investigated evolution of E. coli upon inactivation of non-essential enzymes of carbon metab-

olism that lead to re-wiring through less efficient pathways (Krüsemann et al., 2018; Long et al.,

2018; McCloskey et al., 2018a; McCloskey et al., 2018b; McCloskey et al., 2018c;

McCloskey et al., 2018). These studies highlight a crucial interplay between regulatory responses

and imbalances in metabolite concentrations resulting from gene knockouts, which can be subse-

quently corrected by mutations elsewhere. Importantly all these studies involved gene-knockout so

that adaptation by reversal to wild type genotype was not possible.

Less is known about the adaptation mechanisms that follow inactivation of unique cellular pro-

cesses that are deemed indispensable in microbes. The genes that perform such functions, often

classified as essential, are believed to face higher selective pressure and thus evolve slower

(Luo et al., 2015). It is thus expected that functional disruption of essential genes either by mutation

or by antibiotic stress can create a major barrier to the adaptability of bacteria. Nevertheless, a com-

prehensive study involving knock outs of >1000 genes classified as essential in yeast has shown that

a small percentage of mutants could recover viability after laboratory evolution (Liu et al., 2015),

revealing that essentiality can, in some cases, be overcome through adaptation. Loss of essential

biosynthetic genes have also been observed to occur naturally, under evolutionary conditions where

pathway products are provided externally (D’Souza and Kost, 2016), highlighting a context-depen-

dent nature of essentiality. Nevertheless, while adaptation upon inactivation of essential genes in

microbes has been demonstrated, its mechanisms remain unknown.
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Here we study evolutionary adaptation upon functional inactivation of dihydrofolate reductase

(DHFR), an essential E. coli enzyme. As the cellular target of the antibiotic trimethoprim, DHFR has

been repeatedly observed to accumulate mutations leading to extremely high drug resistance levels

in various experimental evolution studies (Rodrigues et al., 2016; Tamer et al., 2019; Toprak et al.,

2012). Past efforts to link fitness effects of chromosomal variation in the folA locus encoding DHFR

and their biophysical effects on DHFR protein allowed us to develop an accurate quantitative bio-

physical model of DHFR fitness landscape (Bershtein et al., 2015a; Bershtein et al., 2013;

Bershtein et al., 2012; Bershtein et al., 2015b; Rodrigues et al., 2016). The availability of a clear

genotype-phenotype relationship makes DHFR an excellent model to study the dynamics and out-

comes of evolution to recover from its inactivation by point mutations. In contrast to previous studies

that used gene knockouts, here we inactivate the chromosomal E. coli DHFR by introducing muta-

tions in the folA locus at a key catalytic residue in position 27, generating strains that express inac-

tive DHFR (with at least 4 orders of magnitude lower catalytic efficiency than the wild type). These

strains are viable only with external metabolic compensation, allowing the mutants to adapt to lack

eLife digest Predicting how viruses and bacteria evolve remains a challenge. The ability to

anticipate when and how bacteria might develop drug resistance would make treating life-

threatening diseases easier and could potentially help prevent drug resistance altogether. Studying

bacterial evolution under different conditions and cataloguing all possible DNA mutations that allow

these bacteria to survive are crucial steps in predicting the appearance of drug resistance.

Studies have revealed that bacteria can adapt to sources of stress, such as antibiotics, in different

ways – each involving mutations in distinct genes. However, not all the mutations provide the same

benefits to the organism, and the factors that influence how bacteria will adapt are unclear.

Now, Rodrigues and Shakhnovich have used a new approach to push the adaptation ability of the

bacterium Escherichia coli to the limit. First, they genetically engineered different E. coli strains by

introducing distinct mutations to an enzyme the bacterium needs to make DNA. These mutations

make the resulting strains dependent on external molecules to synthesize new DNA. Next, the cells

were grown in conditions where the supply of these DNA precursors was progressively decreased,

forcing them to adapt. The obvious way for bacteria to adapt to these conditions would be to

‘revert’ the mutations that Rodrigues and Shakhnovich introduced in the first place. By using this

approach, Rodrigues and Shakhnovich were able to test how often the obvious evolutionary solution

happens compared with presumably less-preferred alternative routes.

In rare cases, a specific mutation did restore the activity of the enzyme that enabled DNA

synthesis. However, in most cases the bacteria found a different evolutionary solution whereby they

all adapt to the decrease in external DNA precursors in the same way, but not by reverting the

original mutation. Instead, further mutations disrupt the activity of two metabolic genes, allowing

the cells to use the external DNA precursors more efficiently, and keep building DNA. These cells

are therefore able to survive even when the levels of the external DNA components are very low,

but they will die in the complete absence of these precursor molecules.

This evolutionary solution leads to a non-optimal effect: mutations that restore the activity of the

original enzyme, which are the best solution when the two metabolic genes are intact, are no longer

as effective. This finding represents a clear example of interactions between genes determining

evolutionary outcomes. Rodrigues and Shakhnovich showed that, since it is more likely for a random

mutation to disrupt a gene than to revert a previous mutation, adaptations that are less-than-

optimal but still work might predominate simply because they happen faster.

Understanding why certain evolutionary adaptations prevail is an important step in predicting

evolution and may lead to breakthroughs in many areas. For example, if scientists can identify

mutations likely to make bacteria resistant to drugs, it may be possible to act proactively against the

bacterial strains that carry those mutations. Eventually, if the factors that lead to specific adaptations

are known, it may be possible to exploit this knowledge to create weaknesses in the bacteria’s own

defences.

DOI: https://doi.org/10.7554/eLife.50509.002
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of DHFR function by decreasing supplement concentration. The advantage of this approach is that it

presents cells with an obvious evolutionary ‘solution’ of reverting the mutant back to wild type vari-

ant without massive rewiring that could lead to potentially lesser fit variants. However, an actual out-

come may depend on evolutionary dynamics which could revert to wild type or other form of active

DHFR (higher fitness peak) or converge to a potentially more accessible solution of rewiring to a less

efficient metabolic pathways that do not require DHFR function. Therefore, this setup allows us to

assess relative roles of height and accessibility of fitness peaks in determining the outcome of evolu-

tionary dynamics.

We show that, depending on starting DHFR variant, partial reversion of DHFR phenotype may

indeed occur. However, adaptation to low concentration of external metabolites through metabolic

rewiring is the prevalent evolutionary solution due to the availability of a greater number of trajecto-

ries leading to consecutive gene inactivation events in two key loci, thyA and deoB. Using omics

analysis, we observe global perturbations in metabolites and proteins levels in both naı̈ve D27

mutant strains and in evolved strains. Finally, we show how adaptation to loss-of-function mutations

in DHFR, the cellular target of the antibiotic trimethoprim, can lead to high levels of drug resistance.

Results
DHFR is encoded by the folA gene and is essential for the biosynthesis of purines, dTTP, glycine and

methionine. We sought to inactivate the folA gene product in Escherichia coli by introducing muta-

tions in the key catalytic residue D27 (Figure 1A).

To construct these strains we supplemented the growth medium with a mixture (folAmix) of ade-

nine, inosine, thymine (precursor of dTTP), methionine and glycine which allows cells to overcome

DHFR deficiency (Howell et al., 1988; Kwon et al., 2010). We envisaged that inactivated DHFR

mutants growing in the presence of supplement folAmix could be progressively challenged to adapt

to ever decreasing concentrations of this supplement in the growth medium (Figure 1B). Next, we

implemented a fully automated serial passaging scheme as depicted in Figure 1C–D using a Tecan

liquid handling robot. In this setup, the growth rate of replicate cultures is monitored by periodic

OD readings, and the concentration of folAmix is adjusted downward in each serial passage when

cultures exceed a defined growth rate threshold. This feedback control loop ensures mutant strains

are continuously challenged to grow at sub-optimal conditions, sustaining a strong selective pressure

on the loss of DHFR function. This approach combines the medium-throughput capabilities of plate-

based serial dilution methods (currently, up to 48 independent replicate trajectories can be evolved

in parallel), and both real-time monitoring of fitness status and control of growth conditions featured

in a morbidostat setup (Toprak et al., 2012; Toprak et al., 2013), which allows cells to continuously

experience exponential growth and sustained selection pressure.

D27 mutations confer growth defects
We selected single or double nucleotide base mutations to replace a key catalytic residue Asp 27

either for Asn, Gly or Phe. The presence of a carboxylate side chain in position 27 is strictly con-

served among 290 bacterial DHFR orthologues, where Asp and Glu are present at a frequency of

82% and 18%, respectively (Figure 2—figure supplement 1A). These replacements were chosen to

explore how different degrees of structural perturbations could potentially lead to alternative muta-

tional pathways; while asparagine is structurally similar to aspartate, the introduction of residues

with side chains that are either bulky and hydrophobic (phenylalanine) or absent (glycine) is expected

to create significantly more structural perturbations, at least locally at the active site.

Purified D27 mutant proteins were characterized (Table 1). The catalytic activity measurements

confirm the lack of significant DHFR function in these variants; catalytic efficiencies (kcat/KM) are sev-

eral orders of magnitude lower than wild type. However, thermal denaturation data obtained for the

D27 mutant proteins indicates that their stability is mostly unaffected (or even significantly increased

in the case of D27F mutant; Tian et al., 2015) showing that, despite the lack of catalytic activity,

these proteins retain the ability to fully fold. Importantly, this provides a pathway for restoration of

DHFR function over the course of evolution, either by revertant mutations at the D27 locus or,

potentially, compensatory mutations elsewhere in the protein. D27 mutant strains were generated

by lambda red recombination (Bershtein et al., 2012) and plated in folAmix-containing agar media,

however, growth was only visible after 48 hr and the colonies formed were miniscule. When DHFR

Rodrigues and Shakhnovich. eLife 2019;8:e50509. DOI: https://doi.org/10.7554/eLife.50509 3 of 25

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.50509


function was assayed in cell lysates of D27 mutant strains, no DHFR activity could be detected (Fig-

ure 2—figure supplement 1B–C), confirming that these mutations inactivate DHFR function in the

cell. As expected, growth experiments showed that D27 mutants grow only at high concentrations

of folAmix (Figure 2A).

Interestingly, D27N and D27G mutants show slightly better growth at lower concentrations of

folAmix than D27F. Given that the catalytic efficiencies of D27G and N, albeit extremely low, are 2

orders of magnitude higher than that of D27F, it is possible that such difference could have a benefi-

cial impact at low folAmix concentrations. In addition, potential acquisition of a slightly advanta-

geous mutation elsewhere upon genetic manipulation to introduce D27G/N mutation in the folA

locus can also lead to growth differences (see Discussion). We tested D27 mutants for growth in the

presence of individual components of folAmix and their different combinations and found that only

thymine was essential, although growth with thymine alone is slower compared to growth with all

Figure 1. Automated experimental evolution of inactive DHFR mutants. (A) Mutations in key D27 catalytic residue of DHFR were introduced in E. coli

chromosome, together with flanking antibiotic resistant markers, by lambda red recombination and strains devoid of DHFR function were selected with

antibiotics in folAmix-containing agar plates. (B) D27 mutants are lethal but fitness can be partially rescued by metabolic compensation with folAmix.

Adaptative changes that increase fitness can be counterbalanced by decreasing the concentration of folAmix in the growth medium, forcing the cells to

evolve without DHFR function. (C) Experimental evolution using automated liquid handling. Six replicates of cell cultures are placed in the first column

of a 96-well plate and incubated at 30 ˚C with shaking and the optical density is measured every 30 min. The cultures are grown until the average OD

reaches a threshold (0.3), that was defined to avoid nutrient limitation and consequent shift into the stationary phase. At this point cultures are diluted

simultaneously into the wells of the adjacent column, to a common starting OD (0.01), and the cycle is repeated. The growth rate is calculated for every

culture and, whenever it exceeds a defined threshold, the amount of folAmix is independently decreased for each culture in the subsequent dilution.

DOI: https://doi.org/10.7554/eLife.50509.003

Rodrigues and Shakhnovich. eLife 2019;8:e50509. DOI: https://doi.org/10.7554/eLife.50509 4 of 25

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.50509.003
https://doi.org/10.7554/eLife.50509


folAmix components (Figure 2—figure supplement 2). The growth rates measured for all D27

mutants at high folAmix fall in the range 70–80% of wild type and lag times were typically 1.5–2 fold

longer (Figure 2B).

D27 mutations cause major metabolic and proteomic changes
The previous observation that D27 mutant strains show severe growth defects suggests that DHFR

inactivation imposes considerable homeostatic imbalance. We focused on the strain D27F to carry

out a detailed characterization of the systems-level effects of DHFR inactivation. To that end we car-

ried out high throughput proteomics analysis of D27F mutant strains using LC/MS TMT approach as

described earlier (Bershtein et al., 2015a). The method based on differential labeling provides

abundances of proteins in the proteome relative to a reference strain which in our case was wild

type (Bershtein et al., 2015a). We computed Z-scores of the log of relative (to wild type as refer-

ence) abundance according to the following equation:

z
strain=ref
i ¼ Y

strain=ref
i � Ystrain=ref


 �

s
strain=ref
Y

; (1)

where index i refers to protein, Y
strain=ref
i ¼ Log10

Astrain
i

A
ref

i

� �

where Astrain
i and A

ref
i are the protein i abun-

dances obtained for the mutant and reference (wild type) strains, respectively, Ystrain=ref

 �

denotes a

quantity Y
strain=ref
i averaged over all proteins for a given strain, and s

strain=ref
Y is the standard deviation

of Ystrain=ref (see Supplementary file 1). Then, we classified the proteins by their cellular function

according to Sangurdekar et al. (2011) and performed a Student t-test to determine which groups

of proteins had statistically significant variation of protein levels in D27F strain, with respect to wild

type (see Supplementary file 2). Numerous cellular processes were significantly altered, reflecting

broad genome-wide effects of DHFR inactivation (Figure 2—figure supplement 3). Proteins

involved in central processes were significantly downregulated in D27F strain, including energy

metabolism (aerobic respiration, TCA cycle), metabolism of nitrogen, several amino acids, pyrimi-

dines and lipopolysaccharides. On the other end, we found significant increase in the expression of

proteins involved in stress responses, peptidoglycan recycling and salvage of guanine and xanthine.

We then performed both targeted and untargeted metabolomic analysis of D27F mutant strain and

wild type (see experimental details) to characterize significant changes at the level of metabolites.

Likewise, Z-scores for metabolite levels were computed for D27F mutant, with respect to wild type

(see Supplementary file 3). The metabolites with the highest absolute Z-scores (>1.96) were

selected for an enrichment test using MBRole online software (López-Ibáñez et al., 2016) to identify

pathways in which altered metabolites are overrepresented. The analysis revealed that the metabo-

lism of purines, pyrimidines, beta-alanine, histidine and sulfur were the most significantly changed in

D27F mutant comparatively to wild type (Figure 2—figure supplement 4A–B). A detailed scheme

representing the changes in metabolites and proteins levels of nucleotide synthesis pathways is

Table 1. In vitro properties of DHFR mutant proteins a

Wild type D27F D27N D27G D27C

kcat (s
�1) 13 ± 2 (5 ± 1)�10�4 (2.6 ± 0.9) � 10�2 (1.8 ± 0.4)�10�2 3 ± 0.8

KM (mM) 0.8 ± 0.2 (1.2 ± 0.6)�102 (4 ± 1)�101 23 ± 7 (7 ± 2)�101

kcat/KM (s�1
mM�1) 16 ± 1 (4 ± 1)�10�6 (7 ± 0.8)�10�4 (8 ± 2)�10�4 (4.2 ± 0.8)�10�2

kcat/KM relative to wild type - 2 � 10�7 4 � 10�5 3 � 10�5 2 � 10�3

Ki (nM) 1.0 ± 0.3 ND ND ND (1.7 ± 0.7)�104

DTm (0C) - +7.6 ± 0.1 b +1.1 ± 0.3 +1.2 ± 0.2 +0.6 ± 0.6

bis-ANS 1 1.1 ± 0.1 2.9 ± 0.3 1.7 ± 0.3 2.2 ± 0.5

a Kinetic properties for dihydrofolate reductase catalytic activity (kcat = enzymatic turnover number, KM = Michaelis Menten constant, kcat/KM = catalytic effi-

ciency, Ki = inhibition constant for trimethoprim) and protein stability properties (DTm = difference in melting temperature of folding with respect to wild

type, bis-ANS = relative fluorescence from binding of bis-ANS to molten-globule intermediates with respect to wild type protein).

DOI: https://doi.org/10.7554/eLife.50509.010
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Figure 2. D27 mutants require folAmix to grow. (A) The growth rates of each D27 mutant and wild type were

measured at various dilutions of folAmix, with respect to initial composition (adenine 20 mg/mL, inosine 80 mg/mL,

thymine 200 mg/mL, methionine 20 mg/mL and glycine 20 mg/mL), (see also Figure 2—figure supplement 1 and

Figure 2—figure supplement 2). Cultures were grown in M9-minimal medium at 30 ˚C, and absorbance was

monitored at 600 nm. Data are represented as mean ± SD (N = 4) (B) Comparison of representative growth curves

of wild type and D27F mutant obtained in the presence of 1x folAmix. (C) Schematic representation of purine and

pyrimidine biosynthetic pathways depicting changes in the levels of metabolites and proteins for the D27F mutant

(Z-scores, relative to wild type). Metabolites are represented by circles and arrows represent enzymatic reactions

color-coded by the levels of associated proteins (see also Figure 2—figure supplement 3 and Figure 2—figure

supplement 4). Light gray shading indicates that no data is available. Metabolites that are downstream of the

enzymatic reactions requiring reduced folates (ThyA, PurH and PurT) are strongly depleted in D27F mutant,

whereas those metabolites immediately upstream to those reactions are increased in respect to wild type.

DOI: https://doi.org/10.7554/eLife.50509.004

The following source data and figure supplements are available for figure 2:

Source data 1. D27 mutants require folAmix to grow.

DOI: https://doi.org/10.7554/eLife.50509.009

Figure supplement 1. Mutations in key catalytic residue D27 impair DHFR function.

Figure 2 continued on next page
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shown in Figure 2C. Not surprisingly, we observe build-up of metabolites upstream the reactions

that require reduced folate cofactors (PurT, PurH, and ThyA), whereas metabolites downstream of

those reactions are found to be strongly depleted.

Overall, weaker growth and small colony phenotype show that D27 mutants are severely compro-

mised even in presence of folAmix. Using the evolutionary scheme described previously (Figure 1C),

we allowed six replicates derived from the same colony of each mutant strain D27F/N/G to evolve in

parallel for about 50 days.

Evolution of D27G mutant
Cultures of D27G mutant strains were first grown in the presence of folAmix diluted to 0.1 fold with

respect to the initially defined folAmix composition.

Throughout the course of the experiment the concentration of supplement mixture further

decreased (Figure 3A) in response to increasing fitness of the mutant strains, as imposed by the

feed-back control loop discussed previously. Thus, the change in folAmix concentration over time

reflects the effect of adaptation. Three trajectories (1,3 and 6) stand out by reaching the ability to

grow in the complete absence of folAmix. Trajectories 2 and 5 reached a point where growth

dropped below detection limit, and ultimately could not be recovered, whereas trajectory four had

adapted to grow at low concentrations of folAmix. We hypothesized that mutations in folA locus

could have restored DHFR catalytic activity in the cultures where reversion of phenotype was

observed. Accordingly, Sanger sequencing analysis of this region revealed that in all these three tra-

jectories (1,3 and 6), but not trajectory 4, residue Gly27 had mutated to cysteine. This finding was

surprising because alignment of multiple known DHFR sequences shows that cysteine does not occur

naturally in position 27; only aspartate or glutamate are observed in this locus (Figure 2—figure sup-

plement 1A). To assess whether Cys27 mutant is functional, this variant was purified and character-

ized in vitro, and its catalytic properties are compared with wild type and other mutants in Table 1.

Although stability-wise D27C mutant is similar to wild type protein, it shows much weaker catalytic

efficiency, mostly in terms of high KM , retaining only about 0.1% kcat/KM of wild type. To assess if

this residual catalytic function is sufficient to explain the reversion of phenotype in the evolved strain

we first predicted fitness based on a previously established model (Rodrigues et al., 2016). Taking

as input the in vitro biophysical properties of purified D27C mutant, namely kcat/KM and bis-ANS

fluorescence values, the model predicts a growth rate of about 30% of the wild type strain. To check

the validity of this prediction, the mutation D27C was reconstituted in the wild type background by

lambda red recombination and cells were plated in folAmix-containing agar plates to lift any selec-

tive pressure for DHFR activity. This strain was able to grow in the absence of folAmix supplementa-

tion, and the measured growth rate was 92% of the wild type, which is in fair agreement with the in

vitro-based prediction which does not take into account a possibility of upregulation in response to

DHFR deficiency (Bershtein et al., 2015a) (see Material and methods section Predicting fitness of

D27 mutants for discussion) (Figure 3B–D). This analysis shows that D27C mutation alone explains a

significant fraction of fitness recovery of the evolved strains. Of note is also the fact that the signifi-

cant loss in catalytic efficiency in D27C mutant is associated with a dramatic 4 orders of magnitude

increase in the inhibition constant for trimethoprim, and consequent nearly 100-fold increased resis-

tance of the D27C strain to trimethoprim inhibition in comparison with the wild type (Figure 3E).

This is in line with previous observations that active site mutations compromise catalytic function but

also disrupt pocket interactions with the drug, resulting in high levels of resistance (Bader et al.,

2006; Rodrigues et al., 2016).

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.50509.005

Figure supplement 2. Naı̈ve D27F strain requires thymine for growth.

DOI: https://doi.org/10.7554/eLife.50509.006

Figure supplement 3. D27F mutation causes major proteomic changes.

DOI: https://doi.org/10.7554/eLife.50509.007

Figure supplement 4. The abundance of various metabolites is strongly affected in naı̈ve and evolved D27F

strains.

DOI: https://doi.org/10.7554/eLife.50509.008
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Evolution of D27F and D27N mutants
Evolutionary trajectories of D27F and D27N mutants represented in Figure 4A and B, respectively,

show a marked decrease in folAmix necessary to sustain growth, in most cases reaching concentra-

tions nearly three orders of magnitude lower than initially required for naı̈ve strains.

To verify that these strains adapted to grow at low folAmix concentrations we first plated evolved

cultures (from �80 ˚C glycerol stocks) in agar medium supplemented with 1x concentration of folA-

mix and then randomly selected individual colonies from different trajectories to measure growth at

various concentrations of folAmix. Plating the cultures at a high folAmix concentration ensures that

Figure 3. Phenotype-reverting G27C mutation emerges upon evolution of D27G strain. (A) Evolutionary profiles of

the six trajectories in D27G adaptation showing the time dependent changes in folAmix concentration necessary

to sustain growth. Each trajectory is colored according to its position in the column of the 96-well plate, as

represented in the scheme (C = wells with growth medium only). (B) Evolved D27G strain does not require folAmix

to grow. The growth rates determined at different concentrations of folAmix are compared for wild type, naı̈ve

and evolved D27G strain from trajectory 6 (clone G33T6#1). Data are represented as mean ± SD (N = 4). (C)

Fitness model (Rodrigues et al., 2016) based on the biophysical properties of DHFR mutants (represented by the

black line) allows to predict the growth rate of mutant strains from in vitro properties of the purified D27G and

D27C DHFR mutant proteins. The dots represent the growth rate determined experimentally for each mutant

strain at the flux value predicted from the biophysical properties. The model predicts a growth rate for D27C that

is approximately 30% of the wild type value. This is in fair agreement with the experimental value measured for a

BW25113 strain in which D27C mutation was introduced in the wild type folA gene (D27C reconstituted) which was

92% of the wild type. (D) Comparison of growth rates of wild type, evolved D27G and reconstituted D27C strain

(mean ± SD, N = 4). (E) Dose-dependent growth inhibition by trimethoprim determined for wild type and

reconstituted D27C mutant (mean ± SD, N = 3). The data was fitted with a logistic equation (solid lines) from which

IC50 was determined to be 0.8 ± 0.1 mg/mL for wild type and 79 ± 17 mg/mL for D27C mutant.

DOI: https://doi.org/10.7554/eLife.50509.011

The following source data is available for figure 3:

Source data 1. Phenotype-reverting G27C mutation emerges upon evolution of D27G strain.

DOI: https://doi.org/10.7554/eLife.50509.012
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Figure 4. D27F and D27N mutant evolved to grow at low folAmix concentrations. Evolutionary profiles of each

trajectory in (A) D27F and (B) D27N adaptation to loss of DHFR function. (C) Comparison of growth dependence

on folAmix concentration determined for wild type, both naı̈ve and evolved D27F (trajectory 1, clone F51T1#1)

strains and naı̈ve and evolved D27N (trajectory 6, cloneN51T6#1), see also Figure 4—figure supplement 1,

Figure 4—figure supplement 2. Data are represented as mean ± SD (N = 4).

DOI: https://doi.org/10.7554/eLife.50509.013

The following source data and figure supplements are available for figure 4:

Source data 1. D27F and D27N mutant evolved to grow at low folAmix concentrations.

DOI: https://doi.org/10.7554/eLife.50509.016

Figure supplement 1. Evolved D27F and D27N strains require folAmix for growth.

DOI: https://doi.org/10.7554/eLife.50509.014

Figure 4 continued on next page
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there is no biased selection for high-fitness phenotypes when colonies are randomly picked from

agar media. We found that individual colonies taken among all trajectories that adapted to low folA-

mix concentrations all showed a strikingly similar phenotype - folAmix-dependent growth profile,

irrespective of the initial variant at D27 locus (F/N and also trajectory four in D27G) (Figure 4—fig-

ure supplement 1A–C). Figure 4C shows representative growth profiles obtained with colonies

taken from trajectories 1 and 6 of D27F and D27N, respectively, showing a marked decrease in

growth rate at concentrations of folAmix comparable to the lowest concentrations achieved during

the evolution experiment. However, these strains cannot grow in the complete absence of folAmix.

This result indicates that, unlike some trajectories in D27G evolution, adaptation of D27N and D27F

strains did not involve reversion of the folA- phenotype. Accordingly, no mutations were found in

folA locus in evolved D27N and D27F strains (see Supplementary file 4). Other mechanisms must

therefore be responsible for the ability to grow at low folAmix concentrations. The growth rate of

the evolved strains measured at high concentrations of folAmix reached values comparable to wild

type, showing a clear fitness increase with respect to naı̈ve strain. However, at lower concentrations

of folAmix the growth rate of evolved strain becomes markedly reduced to nearly half of the wild

type value and appears to plateau in an intermediate range of folAmix concentrations. The growth

rate value at this plateau coincides with that measured for cells grown in thymine alone (Figure 4—

figure supplement 1D), which is indicative that thymine is the growth-limiting component at these

concentrations of folAmix and that cells utilize thymine less efficiently in the absence of the other

folAmix components. We also evaluated sensitivity to trimethoprim for both naı̈ve and evolved D27F

strains. Not surprisingly, in the absence of a functional DHFR and in the presence of folAmix D27F

mutant strains are extremely resistant to trimethoprim (Figure 4—figure supplement 2A). We

noted, however, that while no decrease in growth was evident in naı̈ve D27F strain up to 1000 mg/

mL, the growth rate of the evolved strain dropped abruptly above 500 mg/mL trimethoprim, sug-

gesting that the drug is acting on an unknown target in the cell which is essential in the evolved but

not the naı̈ve strain. We then tested how the resistance of evolved D27F strain would compare with

wild type at very low concentrations folAmix (Figure 4—figure supplement 2B). We found that in

those conditions IC50 for the wild type is similar to that measured in the absence of supplement, yet

the evolved D27F strain still shows an extremely high resistance to trimethoprim (IC50 = 656 ± 78

mg/mL).

Loss of function mutations in thyA and deoB lead to adaptation to low
folAmix concentrations
Whole genome sequence (WGS) analysis was performed to identify the genetic basis for the adapta-

tion mechanisms of the evolved strains. We analyzed naı̈ve D27F/N/G strains and individual clones

representative of adaptation to low folAmix (evolved D27F - trajectories 1 and 2 and evolved D27N

- trajectory 6), and one clone representative of adaptation through DHFR reversion (D27G- trajectory

6). In addition, to characterize the dynamics of mutation fixation, individual colonies from intermedi-

ate evolutionary time points of D27F trajectory two were also sequenced. Figure 5A–B summarizes

the WGS results obtained for each clone of evolved D27 and naı̈ve strains.

We found that D27N and D27G strains, but not D27F, had additional background mutations that

must have been acquired prior to starting the evolution experiments; although all D27 strains were

constructed from the same wild type E. coli parent strain, we could not prevent the appearance of

mutations at any given stage of genetic manipulation prior to the evolution experiments. Strain

D27N had a point mutation (P74S) in the gene nanM that encodes N-acetylneuraminate mutarotase,

which supports efficient growth form sialic acid as carbon source (Severi et al., 2008), and a point

mutation (L44Q) in the gene thyA (discussed below). Strain D27G had a point mutation (A101V) in

the gene ymfD that encodes a putative SAM-dependent methyltransferase and an early stop codon

in the gene upp, that encodes the enzyme uracil phosphoribosyltransferase that participates in

pyrimidine salvage pathway. It is possible that these mutations may provide some fitness advantage

Figure 4 continued

Figure supplement 2. D27 mutant strains are extremely resistant to trimethoprim inhibition.

DOI: https://doi.org/10.7554/eLife.50509.015
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with respect to ‘pure’ D27F strain (see below and discussion). Comparison between evolved and

naı̈ve D27G strains reveals that no other mutation was fixed upon evolution besides the one nucleo-

tide change at the D27 locus of the folA gene, corresponding to the Gly->Cys substitution described

earlier. This is fully consistent with the earlier conclusion that D27C mutation alone explains the fit-

ness recovery observed in D27G evolution. We asked if the presence of mutations in upp and ymfD

genes originally found in D27G strain could have an impact on fitness of the cells, and thus could

have conditioned the evolutionary fate of this strain. We note the potential role of the mutation in

upp gene which protein product levels appeared depleted in proteomics analysis of naı̈ve D27F

strain. To address this, we engineered additional D27G strains and, after confirming the absence of

mutations in thyA, upp and ymfD, compared their growth properties at various folAmix concentra-

tions with D27G upp/ymfD strain that was used in the evolution experiments. No difference was

found in the growth rate profiles of these strains (Figure 5—figure supplement 1), indicating no

Figure 5. Loss of function mutations in two genes, thyA and deoB, lead to adaptation to low folAmix concentrations. (A) Mutations identified in naı̈ve

and evolved D27 mutant strains. Vertical lines identified with NGS represent mutations identified by whole genome sequencing whereas the remaining

cases were identified by Sanger sequencing. Details are presented for trajectory 2 of D27F evolution and include the mutations identified at various

passages and the folAmix profile obtained for that trajectory. Points denoted P0 correspond to naı̈ve strains. Mutations between brackets represent

polymorphisms with estimated frequencies of 0.5. See also Figure 5—figure supplement 1 for the effect of upp and ymfD mutation in naı̈ve D27G

strain. Figure (B) Mutations identified in the most relevant genes. C) Mapping thyA, deoB and folA mutations found among evolved strains from all

trajectories of each D27 mutant. Colored dots represent the presence of mutations, whereas gray dots represent genes that were not mutated in

evolved strains. Trajectories that ceased growth prior to the end of the experiment were not sequenced (gray squares). D–E) Expression of wild type

DeoB and ThyA in evolved D27F strain reverts phenotype to high folAmix requirement. Evolved D27F strain (trajectory 1, clone F51T1#1), with

background mutations deoB p.D10G and thyA 403-410del, was transformed with pTRC-tetR plasmid coding (D) wild type or mutant deoB and (E) wild

type or mutant thyA, under the control of tetR repressor. Evolved D27F strain without plasmid is also represented as control. Cells were grown in M9

minimal medium and growth rates were measured from periodic OD measurements.. *p<0.01, **p<0.001.

DOI: https://doi.org/10.7554/eLife.50509.017

The following source data and figure supplement are available for figure 5:

Source data 1. Expression of wild typeDeoB and ThyA in evolved D27F strain reverts phenotype to high folAmix requirement.

DOI: https://doi.org/10.7554/eLife.50509.019

Figure supplement 1. Mutations in upp and ymfD do not impact fitness of D27G.

DOI: https://doi.org/10.7554/eLife.50509.018
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obvious impact of mutations in upp and ymfD in favoring the reversion of DHFR function over thyA

inactivation.

From the analysis of evolved D27F and D27N we can identify two common hotspots for muta-

tions, the genes thyA and deoB, encoding thymidylate synthase and phosphopentomutase, which

are involved in the synthesis of dTMP via de novo and salvage pathways, respectively. For that rea-

son, the sequence of these two loci were determined by Sanger analysis for all other trajectories

that evolved to grow at low folAmix concentrations, including trajectory four in D27G evolution.

Strikingly, in a total of 12 trajectories all were found to have mutations in thyA and 11 had deoB

mutated (Figure 5C). We noted as well that evolved D27F strains also carried mutations in other

genes, crr (7 bp deletion), rpe and yhdH (4 bp deletion), however, these were not observed among

other trajectories indicating that these are most likely either random passenger mutations or provide

only marginal advantage on a specific genetic background. On the other hand, the occurrence of

deletions and deleterious point mutations (see Supplementary file 5) in both thyA and deoB

strongly implies that functional inactivation of these gene products arises as a main mechanism of

adaptation to the lack of DHFR function. We reasoned that complementation with either thymidylate

synthase or phosphopentomutase should create a significant fitness disadvantage to the evolved

cells, which can be reverted if these enzymes become inactivated. To verify this prediction, we trans-

formed evolved D27F strains with plasmids expressing either wild type ThyA or DeoB proteins and

compared the ensuing growth rates of these strains with transformants carrying the same plasmids

expressing functionally inactive ThyA and DeoB, respectively. Expression of functional ThyA and

especially DeoB were found to be highly deleterious in evolved D27F strains at low folAmix concen-

trations, as shown Figure 5 D-E, whereas no significant change in growth was observed upon

expressing inactive mutants.

Overall, these results show two competing adaptation mechanisms to the loss of DHFR activity,

either involving a reverting mutation at the D27 locus or, more prevalently, consecutive inactivation

of two genes.

Loss-of-function mutations in deoB prevent draining of deoxyribose
pools into energy production
The gene deoB is part of an operon responsible for deoxyribose degradation, that includes deoA,

deoC, and deoD, which is under the control of 2-deoxyribose-5-phosphate-inducible deoR repressor

(Hammer-Jespersen and Munch-Ptersen, 1975). DeoB catalyzes the interconversion of 2-Deoxy-D-

ribose-1-phosphate and 2-Deoxy-D-ribose-5-phosphate, and, while the former is necessary for syn-

thesis of dTMP from thymine by DeoA, the latter can be further degraded in glycolysis, through con-

version into acetaldehyde and D-glyceraldehyde 3-phosphate by DeoC (Figure 6A).

Therefore, inactivating deoB or deoC is an ‘economy’ solution preventing key metabolite in thy-

mine uptake to be wasted in energy production, allowing cells to efficiently use small amounts of

thymine available from media supplement for nucleotide synthesis (Dale and Greenberg, 1972). In

agreement with the key role of deoxyribose in limiting thymine uptake, while deoB+ cells cannot

grow at low concentrations of thymine in the media, replacing this precursor by thymidine or dTMP,

which provide a deoxyribose moiety, improves the growth of evolved D27F strains transformed with

plasmid expressing active DeoB (Figures 6B-C). Moreover, to confirm that the route for deoxyribose

degradation into energy production is blocked in evolved mutants, we measured the growth of naı̈ve

and evolved cells in the presence of thymidine as the sole carbon source and verified that deoB- cells

cannot grow unless complemented with a plasmid expressing wild type DeoB (Figure 6D).

Evolved D27 strains partially revert the omics effects of DHFR
inactivation
Next, we carried out LC/MS TMT proteomics analysis of evolved strains (D27F, D27N and D27G) to

help identify systems-level changes emerging from adaptation to lack of DHFR function. Since we

observed that all clones randomly selected from trajectories that adapted to low folAmix concentra-

tions showed very similar fitness profiles, we focused on individual clones arbitrarily chosen among

D27F and D27N trajectories as representatives of adaptation to low folAmix. Specifically, clone

F51T1#1 from D27F trajectory one and clone N51T6#1 from D27N trajectory six were selected. Like-

wise, clone G33T6#1 from D27G trajectory six was chosen as representative of adaptation through
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reversion of DHFR function. To get a glimpse of global proteomics changes we applied PCA analysis

which revealed that both wild type and evolved D27G occupy the same quadrant in the space of

two principal components, whereas D27 mutants that are folAmix dependent cluster more closely in

another quadrant (Figure 7—figure supplement 1A). We then computed the Z-scores for the

Figure 6. Inactivation in deoB gene prevents 2-deoxy-D-ribose-1-phosphate from being diverted into energy

production via glycolysis and tricarboxylic acid cycle. A) Changes in the levels of metabolites (depicted as circles)

and proteins (depicted as arrows) in the evolved D27F strain (Z-scores, relative to naı̈ve D27F mutant) are

represented. The proteins involved in 2-deoxy-D-ribose-1-phosphate degradation are marginally increased in

evolved D27F, with respect to naı̈ve strain (average Z-score = 0.445, p=0.0817, see Figure 7—figure supplement

1). However, deoB inactivation saves 2-deoxy-D-ribose-1-phospahte that is required in dTMP production, instead

of being utilized for energy production in glycolysis, which is significantly upregulated in evolved D27F, with

respect to naı̈ve D27F (average Z-score = 0.593, p=0.015). B) Evolved D27F transformed with a plasmid expressing

wild type DeoB are able to growth at low external concentrations of thymidine and dTMP, but not at low

concentrations of thymine. C) Evolved D27F strains transformed a plasmid expressing inactive DeoB mutant grow

at the same extent with either thymine, thymidine or dTMP. At the lowest concentration of dTMP, however, these

cells are not able to grow, likely because of inefficient transport of this metabolite into the cell. D) DeoB- strains

cannot grow on thymidine as the sole carbon source unless complemented with a plasmid expressing wild type

DeoB. Data are represented as mean ± SD (N = 3).

DOI: https://doi.org/10.7554/eLife.50509.020

The following source data is available for figure 6:

Source data 1. Inactivation in deoB gene prevents 2-deoxy-D-ribose-1-phosphate from being diverted into

energy production.

DOI: https://doi.org/10.7554/eLife.50509.021
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proteomic changes in evolved strains with respect to naı̈ve D27F (ZD27_evo/D27F_naı̈ve), to assess the

effect of evolution on the proteomic levels and plotted these values against ZD27F_naı̈ve/WT to com-

pare with the initial changes caused by D27F mutation (see also Supplementary file 1 and

Supplementary file 2). A clear anticorrelation was observed for all mutants (Figure 7A), being the

strongest for evolved D27G strain.

These results indicate that adaptation leads to proteomic changes that generally oppose the

immediate effects caused by DHFR inactivation. In the case of D27G, the strong global proteomic

shift towards wild type levels is somewhat expected since in the evolved strain, the DHFR catalytic

activity is partly restored by G27- > C mutation. To better characterize the proteomic changes that

were specific to evolution of folAmix dependence we searched for classes of proteins grouped by

function with significantly altered protein abundance levels in both evolved D27F and D27N with

respect to naı̈ve D27F strains (Figure 7—figure supplement 1B), as described previously. We found

a significant increase in the expression levels of proteins involved in glycolysis, fermentation, sugar

alcohol degradation and response to low pH, suggesting a metabolic shift towards mixed acid fer-

mentation as a result of adaptation that blocked using derivative of thymidine for glycolysis to save

them for DNA synthesis. On the other hand, the levels of proteins involved in DNA restriction/meth-

ylation and D-ribose uptake were significantly decreased with respect to naı̈ve D27F in both evolved

D27F and D27N strains. Next, we focused on evolved D27F strain to perform a detailed metabolo-

mic analysis and characterize the changes occurring at the level of metabolites (see also

Supplementary file 3). We computed Z-scores for metabolite changes with respect to naı̈ve D27F

(ZD27_evo/D27F_naı̈ve) and we found significant anticorrelation with Z-scores obtained for naı̈ve D27F

(ZD27F_naı̈ve/WT) (Figure 7B), indicating that metabolite concentrations in evolved strain generally

change to partially recover wild type levels, as observed with proteomics. We found that the path-

ways significantly enriched in metabolites with the highest ZD27_evo/D27F_naı̈ve scores (>1.96) in

evolved D27F were the same as those that had the most significant changes in naı̈ve D27F, with

respect to wild type (Figure 2—figure supplement 4A–B). Overall these results show that adapta-

tion to low folAmix concentrations is accompanied by an overall shift in the abundance of metabo-

lites and proteins to partially revert the system-level changes that are caused by DHFR inactivation.

Growth inhibition by purine supplementation is suppressed in evolved
D27F strain
Metabolites of purine and pyrimidine biosynthetic pathways were among the most strongly depleted

in naı̈ve D27F strain and showed highest increase upon evolution (Figure 7C,D and Figure 2—figure

supplement 4A–B). We reasoned that these depleted metabolites could be limiting growth of the

D27 mutants, and that supplementing the culture medium with these metabolites would improve

growth. Surprisingly, supplementation with purines strongly inhibited growth of the naı̈ve D27F

strain, whereas pyrimidines addition had, at most, a slight stimulatory effect (Figure 7E). The detri-

mental effect of individual purine supplementation appears to be associated with regulatory

responses and/or with toxic effects caused by metabolite imbalance (e.g. purines vs pyrimidines)

upon supplementation. In the case of evolved D27F strain, the effect of supplementation of individ-

ual nucleotides on growth was comparably weaker or non-existent, indicating that the inhibitory

effects were relaxed upon adaptation. Since we found no mutations directly associated with regula-

tory genes, it seems that the observed changes result solely from the re-wiring of metabolic path-

ways. In this regard our examples are particularly noteworthy. Evolution of D27F and D27N strains

blocked supplementary glycolysis pathway by rerouting Deoxyribose towards DNA synthesis while

the ensuing metabolic changes lead to significant increase in abundance of glycolysis proteins, pre-

sumably to compensate for diminished flux of sugar metabolites along the glycolysis pathway (see

Supplementary file 2). Another example of metabolite-induced rewiring is purR operon whereby

purR is inhibited by purine hypoxanthine. Evolved strains show significant increase in abundance of

hypoxanthine giving rise to significant drop in abundance of proteins controlled by purR (see

Supplementary file 2).

Overall, these results show that two key loss of function mutations that are responsible for the

partial adaptation of D27F to loss of DHFR activity result in significant metabolic, proteomic and reg-

ulatory shifts observed in the evolved strains.
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Figure 7. D27 mutation causes major metabolic and proteomic changes. A) Proteomics changes upon evolution

partially revert the effect of DHFR inactivation (see also Figure 2—figure supplement 4). Comparison of the

changes in protein levels obtained for evolved D27F (trajectory 1, cloneF51T1#1), D27N (trajectory 6, clone

N51T6#1) and D27G (trajectory 6, clone G33T6#1) (Z-scores, relative to naı̈ve D27F) with those measured for naı̈ve

D27F (Z-scores, relative to wild type). See also Figure 7—figure supplement 1. B) Comparison of the changes in

metabolite levels measured for evolved D27F (trajectory 1, cloneF51T1#1) (Z-scores, relative to naı̈ve D27F) with

those measured for naı̈ve D27F (Z-scores, relative with wild type). C–E) Inhibitory effect of purine metabolites

Figure 7 continued on next page
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Discussion
In this study we set to explore the evolutionary mechanisms that follow inactivation of the essential

gene that encodes DHFR. Such scenario is akin to antibiotic-mediated target inhibition, but distinct

in that there is no selection for mutations that affect interactions with the drug, such as target modi-

fication and drug efflux mechanisms. For example, when treated with DHFR inhibitor trimethoprim,

bacterial cells recurrently acquire resistance by high-fitness mutations near the active site of the tar-

get protein that decrease drug binding affinity, even at the expense of catalytic efficiency

(Rodrigues et al., 2016; Tamer et al., 2019; Toprak et al., 2012). In contrast, a genetic perturba-

tion in the same target gene provides the opportunity to study other potential unexplored mecha-

nisms of adaptation in the absence of drug and evaluate their impact in the context of antibiotic

resistance.

We found that, in the conditions studied here, evolution is constrained towards two solutions that

appear to be mutually exclusive, either (partial) restoration of DHFR catalytic activity or adaptation

to lack of DHFR function. While D27F, D27N and one trajectory in D27G convergently adapted to

lack of DHFR function, other trajectories in D27G mutant reached reversion from thymine auxo-

throph phenotype. It is important to address the possible reasons for the observed outcome. A

potentially influential factor could be the presence of background mutations observed in both D27N

and D27G. The point mutation L44Q in thyA, reported to affect the activity of a nearly identical

orthologue enzyme (Nur-E-Kamal et al., 1994), could have skewed the solution towards further

inactivation of thyA by subsequent point mutations in other loci of that gene that were later

observed in different trajectories. On the other hand, mutations in the genes upp and ymfD found in

D27G strains did not impact the growth rate, thus the role of these mutations in altering the accessi-

bility of the DHFR functional reversion G27- > C seems to be neutral.

The codon structure of each mutant studied here and bias in the frequency of each mutation type

can also affect the likelihood that phenotype-reverting mutations may arise. We note that the near-

est accessible high-fitness Asp/Glu codon for D27F mutant is two nucleotide substitutions away

(although one nucleotide away from one D27C codon), whereas both D27G and D27N could be res-

cued by a single G->A or A->G transition, respectively. Only D27G was found to revert, however,

not to wild type codon, but to a less catalytically efficient cysteine residue caused by a G->T trans-

version. In this respect, it is rather surprising that D27C mutation was fixed in three trajectories when

transversions are generally regarded to be less likely than transitions. That this mutant was able to

fix, despite its poor enzymatic activity, brings important insights on how deleterious mutations can

be maintained when the selection pressure on protein function is alleviated by particular environ-

mental conditions, in this case the presence of folAmix, and may provide a rapid route to the devel-

opment of resistance. In addition, these results may hint at a possible mechanism for the divergence

Figure 7 continued

supplementation on the growth of the naı̈ve D27F strain is attenuated in the evolved D27F strain. C) Changes in

intracellular levels of various purine and pyrimidine species determined by targeted metabolomics for naı̈ve D27F

strain, represented as Z-scores relative to wild type. D) Metabolite levels changes obtained for evolved D27F

strain, represented as Z-scores relative to naı̈ve D27F strain. E) Effect of individual metabolites on growth of naı̈ve

and evolved D27F mutant strains. The effect of supplementation with individual metabolites on growth was

determined by growth measurements of naı̈ve and evolved D27F mutant strains in M9 minimal medium

supplemented by 1.6 mM thymine in combination with one of each tested metabolites (1 mM final concentration).

Relative growth represents the maximum OD obtained for each metabolite normalized to the value measured in

the presence of thymine alone. Although most purine metabolites are strongly depleted in naı̈ve D27F mutant,

supplementation of the culture medium with these compounds has a strong inhibitory effect on growth.

Contrastingly, pyrimidines do not affect growth. In evolved D27F strain, the supplementation with purines has only

a marginal effect on growth. Data are represented as mean ± SD (N = 3).

DOI: https://doi.org/10.7554/eLife.50509.022

The following source data and figure supplement are available for figure 7:

Source data 1. D27 mutation causes major metabolic and proteomic changes.

DOI: https://doi.org/10.7554/eLife.50509.024

Figure supplement 1. Proteomics profile of D27 mutants is associated with growth dependence on folAmix.

DOI: https://doi.org/10.7554/eLife.50509.023
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of the key residues in the active sites of enzymes across long evolutionary timescales, where fixation

of non-consensus mutations, such as D27C, may be allowed by transient adaptation to permissive

environments, and subsequent compensatory mutations that restore protein function at later stages.

While the selection pressure regime used in our study was solely based on the feedback loop strat-

egy to control the concentration of folAmix, it remains to be explored how the implementation of

alternative selection protocols could influence the course of evolution. Nonetheless, it appears that

the system studied in this work provides an excellent framework for future theoretical and experi-

mental studies to evaluate the role of environmental pressure dynamics in shaping evolution.

The most crucial factor in determining the fate of D27 mutant evolution appears to be the higher

accessibility of mutational routes for inactivating thyA that lead to their fixation very early in the evo-

lution experiment. Thymidylate synthase is the only known enzyme in E. coli able to synthetize dTMP

de novo from dUMP, and inactivation of thyA inevitably commits the cell to thymine auxothrophy;

reversion of DHFR function on the thyA- background is not expected to change this phenotype, as it

is known that folA+ thyA- strains are thymine-dependent (Bertino and Stacey, 1966; Schober et al.,

2019). Competition between DHFR reversion and thyA inactivation thus appears to be decisive in

determining the evolutionary solution. However, since inactivation of a gene can be achieved by mul-

tiple ways, there is greater number of accessible evolutionary trajectories leading to thyA knockout

than to reversion of DHFR function. This view has major implications for our understanding of how

the relative impact of height and accessibility of fitness peaks shapes the evolutionary dynamics

short-term adaptation.

Upon thyA inactivation, the only available route for dTMP synthesis involves DeoA-catalyzed for-

mation of thymidine from thymine and 2-deoxy-D-ribose-1-phosphate (Figure 6F). However, DeoA

is part of the deo operon that is induced by high levels of 2-deoxy-D-ribose-5-phosphate. This regu-

latory scheme allows cells to recycle excess metabolites into energy production. However, on the

background of thyA inactivation, the co-expression of deo operon proteins creates simultaneously a

solution and a problem for the uptake of thymine. Now DeoA becomes an essential protein, but its

function is opposed by the roles of DeoC and DeoB which divert 2-Deoxy-D-ribose-1-phosphate into

degradation via the glycolysis pathway. The evolutionary solution found in D27 strains converged to

the inactivation of a single gene of the operon, deoB, an event that is sufficient to block the degra-

dation pathway without disrupting the regulatory structure. This critical example illustrates how evo-

lution can be constrained by regulatory circuits that provide conflicting responses when the optimal

directionality of metabolic routes is switched due to genetic perturbations. Understanding these

processes is critical for guidance towards new strategies for antibiotic resistance prevention. Perhaps

not surprisingly, we found that pathways of adaptation to genetic inactivation of an antibiotic target

provide a route to high levels of resistance. Likewise, a recent study also reported that E. coli cells

challenged with increasing concentrations of trimethoprim in the presence of thymidine repeatedly

evolved high levels of resistance by thyA loss-of-function mutations besides acquisition of commonly

observed resistant mutations in DHFR (Schober et al., 2019). Strikingly, mutations in thyA are also

known to confer trimethoprim resistance in bacterial clinical isolates of S. aureus (Chatterjee et al.,

2008; Kriegeskorte et al., 2014), and H. influenza (Rodrı́guez-Arce et al., 2017), which emphasizes

the need of laboratory studies of microbial adaptation as useful models to tackle serious global

threat.

More generally this study highlights the evolutionary conundrum between ‘survival of the fittest’

and ‘survival of the fastest’. Unlike previous studies that followed evolution of adaptation to gene

knockouts, the current setup provides an ‘easy’ highest fitness solution by genetic reversion of single

amino acid substitution. However, for most evolutionary trajectories the dynamics quickly converged

to a ‘quick and dirty’ solution – a dead-end local fitness peak which provided an immediate relief

from stress but blocked the path to highest fitness peak. Future studies will reveal how general this

scenario is for evolutionary dynamics of adaptation to mutational inactivation and/or antibiotic

induced inhibition of essential bacterial enzymes and beyond.
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Materials and methods

Construction of plasmid pKD13-kefC(897–1863)-cmR-folA(wt)-kanR-
apaH-apaG
A portion of chromosomal apaH:apaG genes was amplified by PCR using primers P4_chrom_flan-

king_for and PCRseq_apaH_rev. Then the pKD13 plasmid was linearized by PCR using the primers

P4_chrom_flanking_for and PCRseq_apaH_rev. Both PCR products were purified and combined in a

new PCR reaction using phosphorylated primers pKD13_post_downstream_for and PCRseq_apaH_-

rev. The linear product was ligated using T4 ligase to make plasmid Plasmid pKD13-cmR-folA(wt)-

kanR-apaH-apaG. Then a portion of kefC gene was amplified by PCR using primers PCRseq_KefC_-

for2 and CapR-Chrom-Flanking rev. Then the plasmid pKD13-cmR-folA(wt)-kanR-apaH-apaG was lin-

earized by PCR using primers Upstream_capR_for and pKD13_post_upstream_rev. Both products

were combined in a new PCR reaction using phosphorylated primers PCRseq_KefC_for2 and

pKD13_post_upstream_rev. Finally, the linear product was ligated using T4 ligase to make pKD13-

kefC(897–1863)-cmR-folA(wt)-kanR-apaH-apaG.

Mutations in D27 folA locus
Plasmid pKD13-kefC(897–1863)-cmR-folA(wt)-kanR-apaH-apaG was linearized using phosphorylated

mutation primers D27Xmut_For and primer D27_rev, and ligated using T4 Ligase.

Construction of D27 mutant strains
Inactive D27 mutants were created by lambda-red recombination (Datsenko and Wanner, 2000)

according to a previously described procedure (Bershtein et al., 2012) with some modifications.

Briefly, a pKD13 plasmid was modified to contain the entire regulatory and coding sequence of folA

gene, flanked by two different antibiotic markers (genes encoding kanamycin (kanR) and chloram-

phenicol (cmR) resistances) and approximately 1 kb homologous region of both upstream and down-

stream chromosomal genes flanking folA gene (kefC and apaH, respectively). A list of relevant

primers ais shown in Supplementary file 6 . The entire cassette was amplified using primers

PCRseq_KefC_for2 and PCRseq_apaH_rev and transformed into BW25113 cells with induced Red

helper plasmid pKD46, and cells were recovered in SOC medium containing 1x folAmix (adenine 20

ug/mL, inosine 80 ug/mL, thymine 200 ug/mL, methionine 20 ug/mL and glycine 20 ug/mL). Trans-

formants were plated in agar media containing both antibiotics and folAmix. To confirm correct inte-

gration of the desired mutations, folA locus was amplified by PCR (primers Ampl_RRfolA_for,

Ampl_RRfolA_rev) and Sanger-sequenced using primer PCRseq_RRfolA_rev. Plasmid pKD46 was

removed by plating cells at 37˚C twice in the absence of antibiotic selection. Prior to starting the

evolution experiments, the cultures had gone through three bottlenecks that involved randomly

picking single colonies from agar plates for the subsequent step required for genetic manipulation.

Automated experimental evolution
A liquid handling instrument Tecan Freedom Evo 150 equipped with Tecan Infinite M200 Pro plate

reader and Liconic shaker was used in this work. The experiments were done at 30 ˚C and using M9

minimal media supplemented with 2 g/L glucose, 34 mg/mL chloramphenicol and 50 mg/mL kanamy-

cin. The liquid handling worktable has two 100 mL troughs (Tecan) with either fresh M9 medium +

antibiotics or 40% glycerol. In addition, solutions of folAmix at various concentrations (prepared in

M9 + antibiotics) are provided in 50 mL falcon tubes. The general procedure involves up to four 96-

well plates that are used for serial dilutions of bacterial cultures. Each working plate can carry eight

trajectories that are positioned in a single column. In this work we used the first and eight wells in

the column with media alone to control for contamination. The experiment starts by placing the 200

mL cultures/control in the first column of the 96-well plate. All the four plates are incubated in a

shaker at 30 ˚C and at every 30 min the OD of each plate is determined alternately. The growth rate

of each culture is calculated from OD measurements over time. To ensure proper comparison, the

growth rate was computed only from OD values within a specified range (0.1–0.25). When the aver-

age OD of the six experimental replicates in a plate exceeds a threshold of 0.30 each culture is

diluted into the next adjacent column by mixing a calculated volume of both culture and fresh

medium and folAmix so that the initial OD is 0.01 in a total of 200 mL. At this point, the remaining
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portion of the previous culture is mixed with glycerol in an auxiliary plate and subsequently frozen at

�80 ˚C. The very first cultures to be frozen at �80 ˚C (at passage zero), are considered to be the

naı̈ve strains, and referred as such in the text to contrast with evolved strains which are picked at

later passages. The cycle is repeated throughout the entire experiment. At every passage, the

growth rate is compared with a threshold value (0.16 h�1) and whenever a culture exceeds this value

the concentration of folAmix is halved. The volume of folAmix added in each passage is 10, 5 or 2.5

mL.

Media and growth conditions
Cell cultures were recovered by inoculating fresh M9 media medium supplemented with 0.2% glu-

cose and 1x folAmix with a portion of �80 ˚C glycerol stocks taken at different passages. After

recovery for several hours, the cultures were plated in agar media containing 1x folAmix, 34 mg/mL

chloramphenicol and 50 mg/mL kanamycin and incubated at 30 ˚C. Plating evolved cultures at high

folAmix concentrations ensures that the clones growing in agar media are not biased towards high

fitness phenotypes. Individual colonies were randomly picked, grown in M9-media+folA mix and

stored in glycerol at �80 ˚C for later analysis. Clones selected in this manner were labeled using the

following mask: XdTt#i, where X refers to the amino acid letter in D27 locus (F/N/G), d is day at

which the culture was passaged in the evolution experiment, t is the trajectory number (1-6) and i is

the unique number of different colonies taken from the same culture. Cell cultures grown overnight

were diluted in fresh M9 minimal media containing 1x folAmix and antibiotics and were grown for

additional 4–6 hr. Cultures were then pelleted by centrifugation and washed three times in fresh M9

without folAmix. Microplates containing 150 mL of M9 minimal with 0.8 g/L glucose, antibiotics, and

varying concentrations of folAmix were then inoculated with each culture at a starting OD of 0.0005.

Growth measurements were performed in a Infinite 200 PRO plate reader for 48 hr at 30 ˚C with con-

stant shaking. Growth rate values are represented as mean ± SD from at least three biological

replicates.

Protein purification and characterization
D27 mutant fused to C-terminal (6x) His-tag were overexpressed using pFLAG expression vector

under isopropyl b-D-1-thiogalactopyranoside (IPTG) inducible T7 promoter. The recombinant pro-

teins were purified from lysates on Ni-NTA columns (Qiagen) as described previously

(Rodrigues et al., 2016).

Determination of kinetic parameters
DHFR kinetic parameters were derived from the analysis of progress-curve kinetics of NADPH oxida-

tion in the presence of different concentrations dihydrofolate using the software Kintek Explorer

(Johnson, 2009) as described before (Rodrigues et al., 2016). The data correspond to the

mean ± S.E. of at least three measurements.

bis-ANS fluorescence measurements
DHFR protein solutions (2 mM) in the presence of 12 mM of bis-ANS were prepared in 50 mM phos-

phate and 1 mM DTT at pH 7.0 and placed in a 1 cm path-length quartz cuvette. The samples were

equilibrated for 5 min at 37˚C and the fluorescence emission spectra between 460 and 600 nm were

recorded upon excitation at 395 nm. The emission band was integrated and the background of bis-

ANS fluorescence in the absence of protein was subtracted. The area of the band was normalized to

wild type E. coli. DHFR. The data corresponds to the mean ± S.E. of three measurements.

Determination of the melting temperature
DHFR solutions (5 mM) were prepared in 50 mM phosphate buffer and 1 mM DTT at pH 7.0 in the

presence of 100 mM NADPH. A temperature ramp of 1 ˚C/min was set between 25˚C and 90˚C, and

the tryptophan fluorescence was recorded by measuring the intensity at 370 and 320 nm upon exci-

tation at 280 nm. Thermal denaturation curves were also performed in the presence of 5x concentra-

tion of Sypro Orange and 20 mM. Melting temperature and confidence intervals at 95% were

determined from the simultaneous analysis of the thermal denaturation curves obtained with both
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tryptophan and Sypro Orange fluorescence using the online software Calfitter (Mazurenko et al.,

2018).

Measurements of total enzymatic activity in cell lysates
Cells from 14 mL cultures grown at 30˚C at an OD of 0.5 were pelleted by centrifugation and lysed

with 200 mL of lysis buffer containing 1 � Pop Culture reagent (Merck Millipore), 100 mM MES (2-(N-

morpholino)ethanesulfonic acid) at pH 7.0 in the presence of 1 mM DTT in the presence of

1 � complete protease inhibitor mixture (Roche) and 1 mg/mL lysozyme and incubated for 20 min at

room temperature. The lysate was sonicated with 10 pulses of 1 s,cleared by centrifugation and then

85 mL of the soluble fraction was transferred to 96-well white plates for total activity measurements

using a total assay volume of 100 mL. The lysate was preincubated with 100 mM NADPH and the

reaction was started with the addition of 100 mM dihydrofolate and mixing. The decrease in fluores-

cence (excitation at 300 nm and emission at 440 nm) was measured over 60 min at 25˚C, and the ini-

tial velocities were computed. Measurements were also done in the presence of 1 mM TMP to

control for the non-DHFR-specific reaction. Data corresponds to the mean ± S.E. of three

measurements.

Predicting fitness of D27 mutants
The fitness of E. coli DHFR mutants can be predicted from in vitro biophysical parameters using a

simple metabolic model described in an earlier work (Rodrigues et al., 2016). The metabolic flux

through DHFR reaction in DHFR mutant strains, normalized to wild type, can be approximated to:

Vnorm
dhfr ¼

kmutcat

Kmut
M

� DHFR½ �mut

kEcoliWT
cat

KEcoliWT
M

� DHFR½ �WT
� 1

1þ a� TMP½ �medium
Kmut
i

� � (2)

Where,
kcat
K
M

, Ki and DHFR½ � are, respectively, the catalytic efficiency, trimethoprim inhibition con-

stant and intracellular protein abundance of the mutant or of the wild type, and TMP½ �medium and a

are, respectively, the concentration of trimethoprim in the culture medium and the ratio of intracellu-

lar vs extracellular concentrations of trimethoprim, defined previously to be 0.1 (Rodrigues et al.,

2016). To connect flux to fitness, we first measure the growth rate of wild type E. coli cells at various

concentrations of DHFR inhibitor trimethoprim.

Then fitness is plotted against the flux through DHFR reaction calculated at each concentration of

inhibitor using Equation 2, and catalytic parameters determined in vitro (Table 1). Protein abun-

dance is determined by measuring the total catalytic activity in cell lysates, as described earlier

(Rodrigues et al., 2016). Finally, we use Equation 3:

Grnorm ~
Vnorm

dhfr

BþVnorm
dhfr

� � (3)

to fit the fitness vs Vnorm data points to determine the parameter B, which represents the normal-

ized flux at which growth rate is reduced by half. From this equation, the in vitro parameters deter-

mined for D27 mutants are used in Equation 2 and 3 to predict fitness. The protein abundance of

D27 mutants, however, cannot be determined from enzymatic assays in cell lysates, as these are

inactive variants. Instead, protein abundance was predicted using an inverse relationship with rela-

tive bis-ANS fluorescence of those variants (Bershtein et al., 2013; Rodrigues et al., 2016). In quali-

tative terms, our model accurately predicted that the D27C variant is able to grow in the absence of

folAmix supplement. However, the measured fitness was somewhat higher than the value predicted

by the calculations. It is possible that some assumptions are not entirely met. One important

assumption is that the concentration of DHFR and substrate dihydrofolate are either always constant

or change only as a function of the flux calculated by Equation 2. The latter implies that, for every

given value of flux, the changes in DHFR and dihydrofolate concentration will always be the same,

and thus always comparable regardless of what parameters are used as input in Equation 2. How-

ever, this might not be always true. For example, a tight feedback control regulates the DHFR pro-

moter activity, in response to the metabolic needs of the cell (Bershtein et al., 2015a;

Bershtein et al., 2015b). Likewise, a decrease in DHFR catalytic function is also expected to result in
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a considerable level of substrate build up. In these conditions, the magnitude of substrate KM for

each variant might become more relevant. In our calculations, however, substrate saturation is not

considered. This may lead to deviations, especially when KM values differ significantly, as we find in

this work. How much these dynamic processes may differently affect the flux through DHFR reaction

in each mutant is still to be determined.

Effect of DeoB and ThyA expression
The genes deoB and thyA and corresponding mutants deoB p.309Stop and thyA 755-762del were

cloned into a modified pTRC plasmid in which the laqI and promoter region were replaced by the

tetR repressor gene and promotor region derived from plasmid Plasmid pEM-Cas9HF1-recA56

(addgene Addgene plasmid # 89962; Moreb et al., 2017). Transformed strain cells were grown in

M9 minimal media + folAmix, then washed with fresh M9 media without folAmix and plated at dif-

ferent concentration of folAmix. Growth rate values are the mean ± SD of at least three biological

replicates.

Metabolite extraction and LC-MS analysis
Cultures of mutant strains (naı̈ve and evolved D27F) and wild type (30 mL) were grown in parallel in

M9 minimal media supplemented with 2 g/L glucose in a 250 mL flask at 30C. At an OD of 0.2–0.25

the cultures were centrifuged. The volume of culture to be pelleted was calculated so that the prod-

uct OD �volume of cell culture (mL) = 5. The pellet was mixed with 300 ml of 80:20 ratio of metha-

nol:water that had been pre-chilled on dry ice. Samples were vortexed and incubated in dry ice for

10 min followed by centrifugation at 4 ˚C for 10 min at maximum speed. The supernatant was col-

lected, and the pellet was processed by repeating the procedure. Samples were stored at �80 ˚C

until analyzed by mass spectrometry. At least three independent biological replicates were analyzed

for each strain. LC-MS analysis in the positive and negative mode was performed as previously

described (Bhattacharyya et al., 2016). Retention times of several metabolites of the nucleotide

biosynthesis pathway were determined from the analysis of pure compounds.

LC/MS TMT Proteomics
Cell cultures from isolated colonies were grown at 30 ˚C in M9 minimal media supplemented with

0.2% glucose and were collected by centrifugation during mid-exponential phase (OD ~0.2–0.25),

well below saturation due to oxygen limitation (typically at OD >0.8–0.9). Global proteomic analysis

was performed as described previously (Bershtein et al., 2015a).

Whole-genome sequencing
Sequencing was performed on isolated colonies on Illumina MiSeq in 2 � 150 bp paired-end config-

uration (Genewiz, Inc, South Plainfield, NJ). The raw data were processed with the with the breseq

pipeline (Deatherage et al., 2014) on default settings, using the E. coli K-12 substr. BW25113 refer-

ence genome (GenBank accession no. CP009273.1). The experiment accession numbers for the raw

reads deposit are as follows: Naı̈ve D27F: SRX6873308, evolved F15T2#1: SRX6873309, evolved

F22T2#1: SRX6873310, evolved F27T2#1: SRX6873311, evolved F32T2#1: SRX6873312, evolved

F51T1#1: SRX6873313, naı̈ve D27N: SRX6873314, evolved N51T6#1: SRX6873315, naı̈ve D27G:

SRX6873316, Evolved G33T6#1: SRX6873317. The BioProject accession number for the whole proj-

ect is PRJNA566398.

Metabolomics data analysis
Data analysis was performed using the software packages MzMatch (Scheltema et al., 2011) and

IDEOM (Creek et al., 2012) for untargeted analysis. For peak assignment in untargeted analysis,

IDEOM includes both peak m/z values and predicted retention times calculated based on chemical

descriptors (Creek et al., 2011). A list of 32 experimentally measured retention times was initially

used to calibrate retention time predictions. The retention time of putatively identified metabolites

were found to correlate fairly well with the values included in IDEOM (R2 = 0.73) and published in

other studies (Pluskal et al., 2010) (R2 = 0.88 and R2 = 0.61, respectively)ee. For this reason, addi-

tional metabolites from those sources that closely matched IDEOM assignments were treated as

standards in the identification routine. Following identification, Z-scores with respect to wild type
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(ZD27F_naı̈ve/WT) or to naı̈ve D27F strain (ZD27F_evo/D27F_ naı̈ve) were calculated using Equation 1.

Z-scores determined for each set i of n biological replicates were combined for each metabolite met

using the expression zmetcombined ¼
P

n

i

zmet
i

ffiffi

n
p . The set of metabolites with highest absolute combined

Z-scores (>1.96) was selected to perform an overrepresentation (enrichment) analysis of categorical

annotations using MBrole2.0 (López-Ibáñez et al., 2016), using as reference the metabolic pathways

of E. coli from KEGG database.

Proteomics data analysis
Z-scores were computed using Equation 1. For grouping analysis, we used the functional and regu-

latory classification group sets as (Sangurdekar et al., 2011). For each set of genes belonging to a

group we employed a one-sample t-test which provides the p-value against the null hypothesis that

the group of genes was drawn from a normal distribution and considered that a given group of

genes is upregulated or downregulated with respect to a reference if the average of Z-scores of that

group is positive or negative, respectively.
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