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Abstract

Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are often comorbid and likely 

to share genetic risk factors. Hence, we examine their shared genetic background using a cross-

disorder GWAS meta-analysis of 3,495 AN cases, 2,688 OCD cases and 18,013 controls. We 

confirmed a high genetic correlation between AN and OCD (rg = 0.49 ± 0.13, p = 9.07×10−7) and 

a sizable SNP heritability (SNP h2 = 0.21 ± 0.02) for the cross-disorder phenotype. Although no 

individual loci reached genome-wide significance, the cross-disorder phenotype showed strong 

positive genetic correlations with other psychiatric phenotypes (e.g., rg = 0.36 with bipolar 
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disorder and 0.34 with neuroticism) and negative correlations with metabolic phenotypes (e.g., rg 

= −0.25 with BMI and −0.20 with triglycerides). Follow-up analyses revealed that although AN 

and OCD overlap heavily in their shared risk with other psychiatric phenotypes, the relationship 

with metabolic and anthropometric traits is markedly stronger for AN than for OCD. We further 

tested whether shared genetic risk for AN/OCD was associated with particular tissue or cell-type 

gene expression patterns and found that the basal ganglia and medium spiny neurons were most 

enriched for AN/OCD risk, consistent with neurobiological findings for both disorders. Our results 

confirm and extend genetic epidemiological findings of shared risk between AN and OCD and 

suggest that larger GWASs are warranted.

Keywords

anorexia nervosa; obsessive-compulsive disorder; GWAS; genetic; SNP; heritability; meta-analysis

INTRODUCTION

Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are heritable 

neuropsychiatric disorders with complex genetic etiologies.1–3 A wealth of genetic 

epidemiological findings supports associations between AN and OCD, suggesting the 

possibility of shared genetic risk factors. For example, ~20-50% of individuals with AN 

have a lifetime history of OCD4–6 and ~5-10% of patients with OCD have a lifetime history 

of AN,7–10 well above their population prevalences (OCD: ~2%,11 AN: ~1%12). In addition, 

first-degree relatives of AN probands have an approximately 3-5 fold elevated risk of OCD 

compared with relatives of healthy controls,13–16 further highlighting a potential genetic link 

between these disorders.

Recent genome-wide association studies (GWAS) of AN17–19 and OCD20–22 have provided 

important clues regarding the highly polygenic architecture of these two disorders. The 

largest AN GWAS published to date included 3,495 cases and 10,982 controls as part of the 

Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED). In 

addition to the identification of the first genome-wide significant variant associated with AN 

risk, significant genetic correlations for AN with multiple psychiatric, neurocognitive, and 

metabolic phenotypes were also reported.19 Although there were no genome-wide 

significant variants identified in the OCD GWAS meta-analysis (2,688 cases and 7,037 

controls), polygenic risk scores calculated in part of the sample significantly predicted OCD 

status in the remaining samples.22 A recent study using a subset of the GWAS data17, 20 

reported a strong genetic correlation (rg) between AN and OCD (rg = 0.55, P = 2 ×10−5)23. 

This result mirrored the epidemiological findings summarized above as well as bivariate 

twin models that revealed a significant genetic overlap between self-reported OCD and AN 

(ra = 0.52).13

Taken together, the available clinical, epidemiological and genetic results strongly point 

toward a shared etiology for AN and OCD, but our knowledge of the nature of this shared 

risk is limited. Thus, the aim of this study was to examine the cross-disorder genetic 

architecture of AN and OCD to gain a better understanding of their shared genetic etiology.
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MATERIALS AND METHODS

Datasets

The genetic data for this study came from the summary statistics of the largest and most 

recently published GWAS for AN19 and OCD.22 There was no sample overlap between 

these studies according to SNP-based relatedness testing. Estimates of pair-wise identity-by-

descent (IBD) were calculated with LD-pruned sets of SNPs using PLINK and no pair of 

samples with pi-hat >0.1 were identified. For AN, we used data from a GWAS of 3,495 

cases and 10,982 controls. For OCD, we used data derived from a similar recently published 

GWAS of 2,688 OCD cases and 7,031 controls. All participants were of European ancestry. 

Using these datasets, we conducted a meta-analysis of 6,183 AN-OCD cases and 18,013 

controls. Although records regarding comorbidities are incomplete, and exist for 

approximately 50% of the OCD and 35% of the AN sample, we have identified 101 definite 

and 24 probable cases of AN among the OCD sample and 447 AN cases with self-reported 

OCD diagnoses. More information about these datasets can be found in the Supplementary 

Information.

AN-OCD Cross-Disorder GWAS Meta-Analysis

As a part of the pre-processing step prior to meta-analysis, we identified all variants for 

which post-imputation dosage information was available to a sufficient degree and at an 

adequate level of quality at the call level in both datasets. To do this, we identified SNPs that 

met the following criteria for each dataset: (1) minor allele frequency (MAF) > 0.01; (2) 

imputation quality (INFO) score > 0.6; (3) ≥60% of cases and controls from the overall 

meta-analysis per trait available for each variant; and (4) not an A/T or G/C variant with 

frequencies between 0.4-0.6. A total of 90.0% (9,586,433 of 10,641,224) of the variants in 

the AN dataset and 91.6% (7,707,306 of 8,410,839) of the variants in the OCD dataset met 

these criteria. Following additional pre-processing of the summary statistics files 

(Supplementary Information), we identified 7,461,827 variants which were present in both 

datasets.

The meta-analysis used the Ricopili pipeline (https://sites.google.com/a/broadinstitute.org/

ricopili), which is the standard analysis pipeline for the Psychiatric Genomics Consortium 

(PGC). This pipeline utilizes METAL24 and takes into account sample sizes as well as 

strength in direction of effect in each separate dataset (inverse-variance weighted meta-

analysis using a fixed-effects model). The meta-analysis summary statistics are available on 

the PGC website (http://www.med.unc.edu/pgc/results-and-downloads).

AN and OCD heritability, intercept and genetic correlation estimates

We used linkage disequilibrium (LD) score regression25 to evaluate the relative contribution 

of polygenic effects and confounding factors (e.g., cryptic relatedness or population 

stratification) to deviation from the null in the genome-wide distribution of GWAS χ2 

statistics. Analysis was performed using pre-computed LD scores from European-ancestry 

samples in the HapMap phase 3 project. To estimate the impact of confounding factors, we 

evaluated the deviation of the LD score intercept from one, the expected value for a GWAS 

showing no sign of population stratification. LD score regression was also used to estimate 
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SNP heritability.25 For AN, OCD, and AN-OCD cross-disorder phenotypes, we estimated 

liability-based heritability using population prevalence estimates of 0.9%, 2.5% and 3%, 

respectively. We also computed the genetic correlation between AN and OCD in order to 

determine whether the correlation is consistent with the previously reported high correlation 

between the two disorders.23

Genetic Correlation of AN-OCD Single and Cross-Disorder Phenotypes with Other Traits

The summary statistics files from AN, OCD, and AN/OCD cross-disorder analyses were 

uploaded to LD Hub server (v1.4.1; http://ldsc.broadinstitute.org). For each summary 

statistic file, we computed pairwise genetic correlations with 231 datasets, each representing 

a particular GWAS phenotype.26 Subsequent exploratory analyses of the computed genetic 

correlations were then carried out, with the goal of describing consistent and unique 

pairwise correlations with other traits.

We first asked if there were traits that have significant correlations with the AN-OCD cross-

disorder data at a multiple testing-corrected level of significance. We applied a stringent 

Bonferroni correction based on a total of 231 × 3 = 693 separate tests performed, with a p-

value significance threshold of 7.2×10−5. We identified all single tests that passed this 

threshold, taking note of traits that did not meet the threshold in AN and OCD cohorts alone, 

but rather in the combined AN-OCD cohort. Second, we assessed the directionality of 

correlations between AN, OCD, and the tested traits, as well as identified traits where the 

correlations were in opposite directions. To analyze the concordance of correlation 

directions between AN and OCD, we constructed a sign test by stratifying traits into bins 

based on p-values (AN and OCD ≥ 0.05; AN or OCD < 0.05; AN or OCD < 1×10−3; AN or 

OCD < 1×10−5). For each bin, we counted the number of correlations which were in the 

same direction for AN and OCD, and binomial tests were performed under the null 

hypothesis that 50% of correlations should be in the same direction. We extracted traits for 

which: (1) AN or OCD had a correlation p-value that at least trended towards significance (p 
< 0.1); and (2) AN and OCD correlations had opposite signs. We hypothesized that the traits 

that came out of this exploration could potentially capture some of the genetic signal specific 

to each disorder rather than the cross-disorder shared risk.

Additionally, we performed tests to determine if there was evidence for sets of traits for 

which concordant correlations with AN and OCD were biased in magnitude towards one 

phenotype over the other. We identified 80 traits that had concordant direction of correlation 

between AN and OCD, as well as a correlation p-value < 0.05 in at least one of the two 

phenotypes. We binned these traits into categories as defined in LD Hub output and selected 

a subset of 10 categories for formal testing where we had at least three traits that fit the 

criteria above. For each category, we tested the null hypothesis that the number of traits 

where the magnitude of the correlation is greater in AN matches the number of traits where 

the magnitude is greater in OCD using a two-sided binomial test with an expected fraction 

of 0.5.
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Gene-based and pathway-based tests

We used MAGMA v1.0627 to conduct gene-based and pathway-based association tests on 

the AN-OCD cross-disorder genotype data. Association was tested using the SNP-wise 

mean model, in which the sum of −log(SNP p-value) for SNPs located within the transcribed 

region (defined using NCBI 37.3 gene definitions) was used as test statistic. Included 

variants had MAF > 0.01, and INFO scores > 0.8. All gene-based tests were performed on 

loci extending from 35kb upstream of transcription start site to 10kb downstream of the 

transcription end site. MAGMA accounts for gene-size, number of SNPs in a gene and LD 

between markers when estimating gene-based p-values. LD correction was based on 

estimates from the 1000 Genome phase 3 European ancestry samples. This yielded a total of 

18,279 gene-based tests, with a multiple-test-corrected significance level of 0.05/18,279 = 

2.74 × 10−6.

These gene-based p-values were used to analyze sets of genes in order to test for enrichment 

of association signals in genes belonging to specific biological pathways or processes. In the 

analysis, only genes on autosomes, and genes located outside the broad major 

histocompatibility complex (MHC) region (hg19:chr6:25-35Mb) were included. For gene 

sets we used sets with 10-1000 genes from the Gene Ontology sets curated from MsigDB 

6.0,28, 29 yielding a total of 17,081 separate pathway-based tests, with a multiple-test-

corrected significance threshold of 0.05/17,081 = 2.92 × 10−6.

Partitioned LD score regression

Heritability was partitioned into different genomic regions using LD score regression.25, 30 

LD score regression can estimate common SNPs heritability by regressing the χ2 

association statistics against the LD scores, which are defined as the sum of r2 for each SNP. 

Indeed, assuming polygenicity, SNPs in high LD should on average be more associated with 

the trait than SNPs in low LD because they are expected to be in linkage with more causal 

variants. The relationship between χ2 statistics and LD scores is directly dependent on the 

proportion of genetic variance of the trait, which allows to estimate heritability.

Partitioned LD score regression uses the same principle except that SNPs are partitioned into 

diverse functional categories. Indeed, if some categories are enriched in causal variants, the 

relationship between χ2 statistics and LD scores should be stronger than for categories with 

few causal variants, allowing to estimate heritability enrichment of diverse functional 

categories. We used the “baseline model” provided on the partitioned LD score regression 

website (https://github.com/bulik/ldsc/wiki/Partitioned-Heritability) to compute heritability 

enrichment for 28 functional categories.

Tissue and cell type association

We used MAGMA27 and partitioned LD score regression30 to look for association between 

tissue/cell type specificity in gene expression and gene-level genetic association with AN-

OCD. The methods for these analyses were extensively described elsewhere.31 Briefly, for 

tissue level expression, we downloaded the median RPKM across individuals (V6p) from the 

GTEx portal (https://www.gtexportal.org). For the single cell RNA-seq, we examined single 

cell RNA-seq data from 9,970 single cells coming from five different mouse brain regions 
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(cortex, hippocampus, striatum, midbrain and hypothalamus) allowing the identification of 

24 different brain cell types. The prototypical expression of each cell type was obtained by 

averaging gene expression levels for all cells classified in each of the 24 cell types. We then 

obtained a measure of specificity for each gene and each cell type/tissue by dividing the 

expression of each gene in each cell type/tissue by the total expression of the gene.

For MAGMA, we binned the specificity measure for each cell type into 41 bins (0 for genes 

not expressed, 1 for genes below the 2.5% quantile in specificity, …, 40 for genes between 

the 97.5% quantile in specificity and the 100% quantile). We then tested for a positive 

relationship between the specificity bins in each cell type/tissue and the gene-level genetic 

association of each gene (-10kb upstream to 1.5kb downstream). For LD score regression, 

we binned the specificity measure into 11 bins for each cell type (0 for genes not expressed, 

10 for genes between the 90% quantile and the 100% quantile) and tested whether genomic 

regions around genes (-10kb downstream to +1.5 kb upstream) in the top 10% most specific 

genes for each cell type/tissue were enriched for AN-OCD cross-disorder heritability.

RESULTS

Cross-Disorder Meta-Analysis

The AN-OCD meta-analysis included 6,183 cases, 18,031 controls, and 7,461,827 variants. 

As shown in the quantile-quantile (QQ) plot (Figure 1a), the genomic inflation factor (λ1000) 

of 1.010 indicates no signs of excessive inflation. Inflation statistics from individual AN19 

and OCD22 datasets appear similarly well controlled (λ1000 values of 1.011 and 1.009 

respectively). As shown in the Manhattan plot in Figure 1b, no variants reached genome-

wide significance and 30 loci had a lead SNP with p < 10−5. The most significant peaks 

were located near genes CXCR4 (chr2), KIT (chr4), the MHC (chr6), FAM19A2 (chr12), 

and SLC25A42 (chr19). The most prominent signal that was driven by both AN and OCD 

lies near the MHC (index SNP rs75063949, chr6:25591041 in LRRC16A (Figure S1). As 

shown in the forest plot for this SNP (Figure S1a), the 95% confidence interval on the 

natural log of the odds ratio excludes 0 in both AN and OCD. Another cross-disorder signal 

was found upstream of KIT on chr4 (Figure S2), while the locus found within FAM19A2 on 

chr12 appears primarily driven by AN (Figure S3).

Heritability and Genetic Correlation Estimates for AN and OCD

As an additional assessment of the distribution of test statistics for our constructed cross-

disorder meta-analysis, we computed liability-based heritability estimates for AN and OCD 

datasets, as well as the genetic correlation between the two disorders based on the disorder-

specific summary statistics. Using population prevalence estimates of 0.9%, 2.5%, and 3% 

for AN, OCD and the AN-OCD cross-disorder phenotype respectively, we computed 

heritability estimates of 0.18 for AN, 0.29 for OCD, and 0.21 for AN-OCD (Table 1). The 

AN and OCD estimates were computed only using the SNPs present in both datasets and are 

consistent with previously reported estimates of 0.20 for AN19 and 0.28 for OCD.22 The LD 

Score regression intercept of the cross-disorder association analysis was 1.01, therefore 

providing further evidence against the presence of genomic inflation.
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Using the largest published datasets to date, we computed a genetic correlation between AN 

and OCD of 0.49 (se = 0.13; p = 9.07×10−7) and therefore supporting the previously 

reported genetic correlation calculated using a subset of these samples.23

Genetic Correlations with Other Phenotypes

Following Bonferroni correction, 19 of the 231 phenotypes available in LD Hub were 

significantly correlated with AN-OCD shared genetic risk. Among psychiatric phenotypes, 

bipolar disorder, schizophrenia, and PGC cross-disorder shared risk (comprising bipolar 

disorder, schizophrenia, autism spectrum disorders, attention deficit/hyperactivity disorder, 

and major depressive disorder) were positively correlated with AN-OCD shared risk (Figure 

2). These findings are in line with previous work,23 including the most recent AN GWAS19 

and emphasize the shared genetic architecture of psychiatric disorders in general. We also 

observed a positive correlation between AN-OCD cross-disorder risk and years of schooling, 

which mirrors the positive genetic correlation reported for AN and educational attainment.19

For metabolic traits, high body mass index and related phenotypes (i.e., class I obesity, 

overweight, hip circumference, waist-to-hip ratio) were negatively correlated with AN-OCD 

shared risk. Similarly, whereas unfavorable metabolic markers such as triglyceride and 

fasting insulin yielded negative genetic correlations with AN-OCD, HDL cholesterol (which 

is a favorable metabolic marker) yielded a significant positive genetic correlation. These 

findings also support the genetic correlations previously reported for AN,19 therefore 

suggesting a metabolic component in the genetic etiology of AN as well as AN-OCD cross-

disorder phenotype.

Many of the stronger, higher confidence pairwise correlations derived from LD Hub appear 

to be shared by AN and OCD. In visualizing the correlations, we first noted this trend, in 

that there appeared to be very few correlations of particularly high confidence where the 

directions of correlation pointed in opposite directions between the two disorders (Figure 

3a). To formally test this, we assessed the frequency of the same direction correlations 

across different p-value thresholds, with an expected value of 50% under the null, and found 

that more significant results were more concordant, as expected (Figure 3b). This 

observation is consistent with the observed high genetic correlation between AN and OCD.

In order to determine if there were traits with p < 0.1 where the correlations with AN and 

OCD were markedly different, we identified 16 traits where the signs of the genetic 

correlations with AN and with OCD were opposite (Figure S4). Many traits were metabolic 

and anthropometric in nature, for which the correlations with AN were much stronger. There 

were two phenotypes for which the correlations with AN and OCD were both notably high 

but in opposite directions. These included the personality trait “openness to experience” 

(correlation positive with AN but negative with OCD), and genetic risk for Amyotrophic 

Lateral Sclerosis (also positive in AN but negative in OCD).

Given that many of the stronger correlations were in the same direction, we then examined 

whether particular phenotypes—clustered by some higher-order category classification—

would be enriched for stronger correlation magnitudes in one phenotype versus the other. To 

test this, we took the subset of traits where the direction of correlation with AN and with 
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OCD were concordant, and at least one phenotype between AN and OCD had a nominally 

significant correlation at p < 0.05. We next took the higher-order category classifications in 

LD Hub that had been applied to each trait, and took the subset of categories where we had 

three or more applicable traits that met the previously described criteria (10 categories total). 

For each category we tested the null hypothesis that 50% of traits in that category would 

have a greater correlation magnitude in OCD, again using a two-sided binomial test. We 

found that correlation magnitudes were heavily shifted towards AN for anthropometric and 

metabolic categories (Figure S5). Consistent with this observation, lipid and glycemic 

categories show similar bias towards AN, albeit with less statistical power due to a smaller 

number of traits represented in these categories.

Partitioned heritability

We also investigated whether particular genomic annotations were enriched in AN-OCD 

cross-disorder heritability using partitioned LD score regression.30 As expected with the 

current sample size, we did not observed any significant enrichments at a 5% false discovery 

rate (Figure S6), and the most significant annotation was conservation regions across 29 

mammals32 with an estimated 17-fold heritability enrichment (q-value = 0.23). Since this 

annotation was previously shown to be enriched in heritability for a variety of traits,30 it is 

likely that the lack of significant association in our study is due to limited statistical power.

Tissue and cell-type association

We next aimed to detect tissues involved in the aetiology of AN-OCD using MAGMA.27 We 

did not observe any tissue types in GTEx33 significantly associated with AN-OCD following 

Bonferroni correction; however, the strongest associations were observed with brain tissues. 

Notably, the top hit in GTEx was the nucleus accumbens from the basal ganglia (Figure S7).

Given the suggestive evidence of the implication of brain tissues in the etiology of AN-OCD 

in our previous analysis, we used MAGMA to investigate whether there was an association 

between AN-OCD cross-disorder risk and any of 24 mouse brain cell types.31 We observed 

that medium spiny neurons (MSNs) were significantly associated with AN-OCD after 

Bonferroni correction (Figure 4). As MSNs are located in the basal ganglia, the association 

of MSNs with AN-OCD is concordant with the tissue-level association of the basal ganglia 

using GTEx data. Of note, we did not observe the same significant association when we 

used LD score regression (Figure S8), indicating that this association may not be very robust 

(which is not surprising given the current sample size).

Additional analyses

We performed gene-based and pathway-based tests on the AN/OCD cross disorder summary 

statistics using the MAGMA package (see methods for details). One gene (KIT) passed the 

multiple test correction threshold of 2.5 × 10−6 (Figure S9). We did not detect any pathways 

that survived multiple test correction for 17,081 separate pathway-based tests.
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DISCUSSION

This cross-disorder GWAS of AN and OCD was geared toward explicating the shared 

genetic architecture of the two disorders. The clinical and epidemiological connections 

between AN and OCD have been well-documented,4–16 and it is especially important to 

examine the potential genetic connection between these two disorders in the light of recent 

genetic and twin-based findings.13 As disorder-specific association studies have been 

conducted (and analyses with larger sample sizes are ongoing), the present study was geared 

toward examining the shared AN-OCD risks as opposed to the dissection of any disorder-

specific risk factors.

The combined GWAS meta-analysis of 6,183 cases and 18,013 controls did not yield any 

genome-wide significant findings for shared AN-OCD risk. Although there is one genome-

wide significant risk locus identified for AN, the available OCD and AN samples continue to 

be small relative to those needed for the reliable detection of genome-wide significant loci. 

Therefore, this AN-OCD analysis was likely underpowered to detect genome-wide 

significant findings and genetic heterogeneity between AN and OCD may also play a role. 

Thus, in the absence of significant hits, we describe the loci for which we found strongest 

evidence for association. The most prominent reliable signal lies near the edge of the MHC 

in the gene LRRC16A (Figure S1a) and is driven by both AN (p = 4.19 × 10−5) and OCD (p 

= 1.53 × 10−3). Although this gene has no clear connection to brain phenotypes, and it 

remains to be seen whether this signal will reach significance, it is notable that a role for 

autoimmunity has previously been implicated in both AN34 and OCD.35

Another association driven by both AN (p = 1.62 × 10−6) and OCD (p = 0.011) is located 

just upstream of KIT, which is thought to be involved in cell growth and differentiation.36 

We were unable to find literature supporting a link between this gene and a psychiatric 

phenotype. Gene-based association for KIT barely exceeded the pre-determined significance 

threshold, though the regional association plots suggest a true signal and not one that is 

artefactual, so more data are needed before seriously considering its role in AN/OCD. Taken 

together, our results strongly point to the possibility of identifying loci for shared AN/OCD 

risk as sample sizes for both disorders increase.

We observed a genetic correlation of 0.49 (se = 0.13; p = 9.07×10−7) between AN and OCD, 

supporting previous results23 computed using smaller AN and OCD datasets. We also 

examined the genetic correlations of AN and OCD with a wide range of other phenotypes. 

The results of these analyses hinted at some of the similarities and potential differences 

between AN and OCD genetic architecture. Although it is clear that both share correlations 

with other psychiatric disorders and that many of the particularly strong correlations with the 

traits explored are common between the two disorders, we note a markedly stronger 

correlation in AN with metabolic and anthropometric traits. It is possible that a subset of 

these correlations may represent a component of AN genetic architecture, which may 

distinguish AN from OCD and set AN apart from other psychiatric disorders as having both 

a psychiatric and a metabolic etiology.19 As previously noted, only greatly expanded GWAS 

studies of both AN and OCD will be able to tell us what genetic risk factors are distinct to 

AN and to OCD.
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Tissue and cell type analyses suggested that the basal ganglia and MSNs play a role in AN-

OCD cross-disorder risk. Larger samples, however, are needed to conclusively implicate 

specific brain regions and cell types as our findings were not robust enough when using two 

different analytical methods. Nevertheless, the association of MSNs seems plausible as these 

neurons have also been associated with schizophrenia31 and neuroticism,37 both of which 

were found to be significantly genetically correlated with AN-OCD shared risk in our 

analyses. A large body of literature supports a role for the basal ganglia and its associated 

substructures in both AN and OCD. In AN, the nucleus accumbens is involved in feeding 

behavior,38 hyperactivity39 and its ablation increased drive to eat, in some individuals with 

AN.40 In OCD, neuroimaging studies have repeatedly shown hyperactivity in the head of the 

caudate nuclei41 and deep brain stimulation targeting striatal areas is often therapeutic,42 

both consistent with the cortico–striato–thalamo–cortical (CSTC) model of OCD.43

The strengths of this study include the use of the largest and most current GWAS results for 

both AN and OCD and rigorous pre-processing of the summary statistics files prior to 

analyses, to ensure comparability in this first ever AN-OCD cross disorder GWAS. 

Limitations of this study include heterogeneity, the fact that both the AN and OCD GWAS 

are currently underpowered and our data on comorbidities are limited. Future directions for 

this work as sample size increases will include the incorporation of subphenotype 

information in the analyses as well as Mendelian randomization analyses to examine causal 

inference.
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Figure 1. 
(a) Quantile-quantile (QQ) plot of the AN-OCD cross-disorder meta-analysis, showing a 

slight departure from a null model of no associations (blue line and grey 95% confidence 

interval). (b) Manhattan plot of the AN-OCD cross-disorder meta-analysis of 6,183 cases 

and 18,031 controls. The x-axis shows genomic position (chr1-chr22), and the y-axis shows 

statistical significance as –log10(P). The red line shows the genome-wide significance 

threshold (P=5×10−8).
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Figure 2. 
Genetic correlations of the AN-OCD cross-disorder phenotype with psychiatric, metabolic, 

and other phenotypes. Only significant results after Bonferroni correction are shown.
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Figure 3. 
AN and OCD show overlapping patterns of genetic correlation across 229 traits. (a) 
Distribution of pairwise correlations of traits with AN and OCD in two-dimensional space. 

Bars depict one standard error in each direction for the pairwise correlation estimate 

between each trait in question and AN or OCD, with lines stretched horizontally in reference 

to AN and vertically in reference to the OCD estimate. Data points are color coded based on 

the p-value bin they fall into, listed in the legend. (b) Results of correlation sign test between 

AN and OCD values, for traits previously binned and color coded. Bar represent the 95% 

confidence interval. For indicators of significance, “***” indicates p < 0.0001, “**” 

indicates p < 0.001, and “*” indicates p < 0.05.
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Figure 4. 
Association between mouse brain cell-type specific expression and gene-level genetic 

association to AN/OCD using MAGMA. The black vertical bar represents the Bonferroni 

significant threshold.
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Table 1

LD Score regression results. Shown are the SNP-based heritabilities for AN, OCD, and AN-OCD cross-

disorder phenotype (rounded to two decimal points).

AN OCD AN-OCD

Liability Scale h2 0.18 0.29 0.21

Standard Error for h2 0.03 0.04 0.02

Mean Chi-Square 1.08 1.06 1.11

LD Score Regression Intercept 1.01 0.99 1.01
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