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Abstract

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-

sequences as a modulating codes for their broadband spectrum and correlation property.

However, subjective fatigue of the presented codes has been a problem. In this study, we

introduce chaotic codes containing broadband spectrum and similar correlation property.

We examined whether the introduced chaotic codes could be decoded from EEG signals

and also compared the subjective fatigue level with m-sequence codes in normal subjects.

We generated chaotic code from one-dimensional logistic map and used it with conventional

31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we

presented these codes visually and recorded EEG signals from the corresponding codes for

their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beam-

forming (STB) methods were used for target identification and comparison of responses.

Additionally, we compared the subjective self-declared fatigue using VAS caused by pre-

sented m-sequence and chaotic codes. The introduced chaotic code was decoded from

EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ±
11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes

for all subjects respectively. The achieved accuracies in all subjects were not significantly

different in m-sequence and chaotic codes. There was significant reduction in subjective

fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence

and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods.

The chaotic codes significantly reduced subjective fatigue compared to the m-sequence

codes.
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Introduction

Visual evoked potentials (VEPs) are EEG responses to the visual stimuli. Brain-computer

interfaces (BCI) based on these potentials are becoming popular, for their less training time

and high information transfer rate (ITR) [1]. VEP-based BCI systems can be classified into

three different categories: time modulated, frequency modulated and code modulated stimuli

[2]. In systems with the time modulated stimuli, the sequence of target stimuli is coded in

non-overlapping time windows such as P300 based BCI system. This, however, usually leads to

low ITR [2]. In systems with frequency modulated stimuli, different targets are defined by

their distinct frequencies that can be recognized by detecting the same target frequencies and

their harmonics [2] and phase information of the evoked responses [3, 4]. In code modulated

BCI systems, the pattern of flashing is determined by using a pseudo-random manner

sequence such as an m-sequence [5]. In this modality the work mechanism is based on using

the different shifts of modulating codes. These codes have Dirac like auto-correlation function

that allows using shifted versions of modulating codes as different targets for evoking different

VEPs. A simple and short calibration allows to have a specific EEG response to the m-

sequence, and with that, all the targets that are lagged versions of the same m-sequence can be

distinguished [2, 6].

The signals transmitted via broadband codes lead to robustness to noise and lower cross

interferences of other stimuli because the auto-correlation of broadband code exhibits Dirac

function [7].

Code modulated Visual Evoked potentials (c-VEPs) utilize characteristics of broadband

codes as stimuli. Broadband codes have the capability of evoking the VEPs that have the appro-

priate auto and cross-correlation properties [8, 9]. c-VEP based BCIs could play an important

role in better system performance and target identification. These also give low cross interfer-

ence when high number of commands are presented simultaneously leading to significantly

high ITR [10].

c-VEP evoked by different lags of non-periodic binary codes could be demodulated in

brain responses such as EEG with template matching [6]. High ITR in c-VEP based BCI appli-

cations has been achieved by using canonical correlation analysis (CCA) and template match-

ing [11]. Utilizing m-sequence code, c-VEP based BCI has been used to build a BCI system for

amyotrophic lateral sclerosis (ALS) patients with significantly higher communication rate only

with eye gaze [12]. It has been successfully tested in online applications such as spelling [13]

with error-related potential and unsupervised learning for online adaptation and continues to

be employed in the control of mobile robots [14, 15].

Novel paradigms for c-VEP based BCIs include the introduction of the generative frame-

work for predicting the responses to gold codes [16], spatial separation and boundary position-

ing for decoupling of responses to different targets [17]. In addition, target identification in c-

VEP based BCIs has been improved by using Support Vector Machine (SVM) method and

accuracy has been increased with linear kernel [18]. However, more recently spatiotemporal

beamforming (STB) method was used for target identification in c-VEP responses and was

found to be significantly better than SVM [9]. Additional measures in this regard include opti-

mization of the stimuli presentation parameters such as color and size of LED, code length, sti-

muli proximity, and the lag between stimuli [19] and use of dry electrodes [20]. Recent studies

in c-VEP based BCIs have increased selectable targets by using different pseudo-random codes

such as m-sequence code that have low cross-correlation value with each other [21, 22].

Chaos has been widely observed in various biological systems [23–25]. Chaotic behavior

has also been observed in several neuronal structures such as cells, synapses [26, 27], and neu-

ral networks [28–32]. Chaotic dynamics has been attributed to large scale brain activities and
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physiological processes [33] such as information processing [34], synaptic plasticity [35],

memory [36], perceptual processing and recognition of unknown odor [37] and also brain

state transitions [38].

While randomness has been observed in various aspects of neural system such as rapid ran-

dom fluctuation in membrane [39], spontaneous activity of neurons [40] and neural spiking

[41], however, non-randomness, nonlinearity and chaotic dynamics exists at all levels of brain

function from the simplest up to the complex systems [42–47]. In summary, chaos provides

the ability of reacting adaptively to outside world leading to new patterns and fresh ideas and

contributes to the complex behavior in the brain functions [48–50].

Nonlinear and chaotic dynamics of neural activities also manifest themselves in EEG signals

[51–56]. Nonlinear and chaotic analyses methods have been utilized in EEG signal processing

[57], feature extraction and analysis in BCI applications [58–60]. Deviation from the normal

chaotic behavior of EEG signals is observed in neurological disorders [61, 62] such as epileptic

seizures [62–64], depression [65, 66], Alzheimer’s disease [53, 67] and Autism [68]. However, so

far there is no study in BCI applications that has employed chaotic code in visual stimulation.

Reduction of visual fatigue has been a challenging issue in VEP based BCI applications [69–

71]. Continuous exposure to changes in luminance is highly uncomfortable for the users gazing

it [72]. Therefore, designing the stimuli that cause less visual fatigue and discomfort could be

valuable in designing a suitable and ergonomic BCI setup. An efficient encoding of visual pattern

with low discomfort level occurs when images or flicker have statistical characteristics of natural

sense and are more close to 1/f spectral property in temporal or spatial frequency [73–75]. Inter-

estingly, the spectrum of chaotic behavior are reported to be close to the 1/f spectral property

[76, 77] as mostly seen in natural scenes and phenomena. As m-sequence codes have the inher-

ent property of random process with flat spectrum [78, 79], using chaotic codes generated with

nonlinear dynamical system for reducing visual discomfort are superior to m-sequence.

Employing chaotic behavior to generate codes in spread spectrum communication is taken

into consideration from the chaotic maps that provide an infinite number of uncorrelated sig-

nals with great correlation properties [80] and suitable for Code Division Multiple Access

(CDMA) modulation applications [81, 82]. Use of complimenting binary chaotic sequence

also helps in generating broad band chaotic code [83]. As a result the chaotic codes have high

correlation property, and using them can lead to high accuracies as m-sequences.

Despite the suitability of chaotic codes for use in c-VEP based BCI applications, so far they

have not been used as visual stimuli for c-VEP generation. Therefore, in this study we used

chaotic codes and widely used m-sequence codes to evoke c-VEPs in EEG signals and com-

pared their accuracy using CCA and STB methods. In addition, we used VAS to compare sub-

jective fatigue rates between these two codes in normal subjects.

Material and method

Study participants

Forty-Four volunteers (21 females), aged 20–33 years old (26.09 ± 3.67) with normal or cor-

rected vision to normal (6/6) participated in this study. The subjects informed via announce-

ment based on the notice boards of the faculties of medicine and biomedical engineering and

word of mouth. Subjects with a history of visual or neurological disorders, head trauma or use

any drugs that would affect nervous system function were excluded. Before the experiment

began, participants signed written informed consent form and the total procedure of signal

recording and experiment was described to them. The experimental protocol was approved by

the office of research review board and the research ethics committee of the Tehran University

of Medical Sciences.
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Experimental design

Stimuli. In this study, we used 31-bit m-sequence code that is commonly used in c-VEP

based BCIs for its favorable correlation property [2] and is used in other medical fields such as

studying visual receptive fields properties [84] and fMRI [85]. We generated 31-bit chaotic

code using the logistic map with good auto-correlation property [83] that makes it suitable for

using in CDMA based BCIs by the algorithm described as follow, bit ‘0’ presented with dark

and bit ‘1’ presented with light stimulation.

Generation of chaotic code using logistic map. Chaotic signals have the potential of

designing codes that have auto-correlation close to Dirac like function so that correlation

method performs well in the identification and makes it appropriate for code modulating

applications [86]. The logistic map is a one-dimensional map that can most of natural phe-

nomena and population growth of biological species [87], as defined in (1). Where x is in the

interval of [0 1] and indicates the ratio of existing population to the maximum possible popula-

tion, the x(0) as the initial value of x and A is the rate for reproduction and starvation that is at

the interval of [0 4]. This simple map could generate chaotic dynamic in some values of param-

eter A generally between 3.5 to 4 [88]. An example of chaotic sequence generated from logistic

map is shown in Fig 1 for A parameter equal to 3.882 and initial value x(0) equal to 0.15.

xðiþ 1Þ ¼ AxðiÞð1 � xðiÞÞ ð1Þ

The algorithm of chaotic code generation is as follows and shown in Fig 2.

1. Selection of the initial value x(0) and A parameter in Eq 1, (we chose x(0) = 0.015 and

A = 3.882)

2. Calculation of the x(i+1) from the (1).

3. Generation of binary code from x(i+1):

If x(i+1)>0.5 then C(n) = 0 else C(n) = 1.

4. Taking the 1’s complement of C(n) to generate C(n+1) = C’(n).

5. Checking the condition (i�16). If it is satisfied then increase i by 1 and n by 2 and then pro-

ceed to the step 2, if it is not satisfied, proceed to the next step.

6. Selection of the first 31 bits from the generated code.

The auto-correlation of m-sequence and chaotic codes are shown as function of delay in

Fig 3, here the delays of codes are according to samples (bits) of codes. It can be seen that the

auto-correlation of m-sequence code and generated chaotic code are almost Dirac like func-

tion, so that the generated chaotic code by the proposed algorithm could be appropriate to be

used in the code modulation.

The one-sided amplitude spectrum of presented stimuli of m-sequence and chaotic codes

stimuli are shown in Fig 4. Both of the stimuli are broad band. The dashed lines separate the

low, medium and high frequency regions. Significant peaks of the m-sequence code are seen

in low and medium frequencies. For the chaotic codes, the spectrum of stimuli shows domi-

nant peaks in high frequencies components.

Stimuli presentation paradigm. The m-sequence and chaotic codes were presented at

the rate of 90 Hz (each bit presented at 1/90 second). This is relatively higher presentation rate

among the c-VEP studies as few studies have used presenting rates of between 80 Hz [18] and

120 Hz [9]. Four different versions of m-sequence and chaotic codes were generated by
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shifting the original code by eight bits that was temporally equal to almost 0.088 second (as

shown in Fig 5). The circularly shifted versions of m-sequence and chaotic codes are shown by

M1 −M4 and Ch1 − Ch4 respectively.

The stimuli specifications are presented in Table 1. Each code presentation duration time

was 0.344 seconds (single epoch). It was presented 18 times in each trial (6.2 second). One ses-

sion (90 second) of stimuli presentation consisted of 10 trials in which 2 second break was con-

sidered in between the trials. Supporting data files S1 Video and S2 Video recorded by Canon

750D DSLR Camera show playback videos of m-sequence and chaotic code respectively. Each

video is approximately 17 seconds of total duration and has two trials with 2 seconds break in

between. Stimulus presentation started 10 seconds after the start of EEG recording. Fig 6

shows the stimuli presenting diagram for single session.

Subjective fatigue evaluation. All the participants were asked to answer the self-reported

questions that measured the amount of fatigue and un-comfortability of the presented stimuli

after each session. For evaluation of fatigue we used VAS score [89]. Before the start of session,

the subjects were guided to report their fatigue rate by considering their tiredness of gazing the

Fig 1. The chaotic sequence. The sequence derived from logistic map for x (0) = 0.15 and A = 3.882.

https://doi.org/10.1371/journal.pone.0213197.g001
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stimuli and how much they felt uncomfortable with the stimuli. At the end of each session, the

subjects were asked to give the score (VAS score) between 0 for no fatigue at all and 10 if they

were extremely fatigued. For avoiding the effect of cumulative fatigue by the previously pre-

sented stimuli, we let the subjects to have rest time of 2 minutes duration in between the ses-

sions and then if the subject answered ‘No’ to the question “Do you need more time for rest?”

we continued to record another session.

Fig 2. Flowchart for the generation of orthogonal chaotic code.

https://doi.org/10.1371/journal.pone.0213197.g002
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The order of presentation of the four shifted versions of m-sequence (M1-M4) and chaotic

codes (Ch1-Ch4), comprising of total 8 stimuli codes, was random for all subjects. The random

distribution of presentation sequence of each stimulus code in all 8 sessions helped to avoid

the influence of bias caused by possible cumulative fatigue in our analysis. The time sequence

of eight sessions of stimuli presentation with EEG recording and subjective fatigue evaluation

is shown in Fig 7.

Signal recording setup. EEG signal was recorded using g.USBAmp with sampling rate of

4800 Hz. Four active g.lady bird electrodes were placed at Oz, O1, O2, and Pz positions on

scalp where the visual evoked potentials such as c-VEP have maximum amplitude [11, 18]. Fpz

and right earlobe were used as the ground and reference electrodes respectively as shown in

Fig 8. An online band pass filter with cutoff frequencies of 0.05Hz and 120 Hz was applied.

All the stimuli were generated using MATLAB software (Release 2016b, The MathWorks,

193 Inc, Massachusetts, United States) and presented to a custom-made DAC board and LED

driver (shown with stimulator in Fig 9). The LED used in this study was square shaped and red

colored with size of 4 × 4 cm2 and was placed almost 70 cm from subject.

An optical sensor (Texas Instruments) was used to record the light of stimuli presented via

LED and the National Instruments (NI) DAQ was used for recording the trigger pulse coming

Fig 3. The auto-correlation of m-sequence code (top) and chaotic code (bottom). The generated chaotic code follows the correlation property which is

necessary in code modulation.

https://doi.org/10.1371/journal.pone.0213197.g003
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from digital Input-Output port of g.USBAmp signal recording amplifier that indicated the

beginning of EEG recording. Additionally, Optic sensor output and analog output from LED

driver were recorded in NI DAQ for synchronizing the stimuli presentation and EEG record-

ing simultaneously. Finally the recorded EEG signal from g.USBAmp and NI DAQ were sent

to a personal computer for further analysis. The onset of EEG recording and stimuli presenta-

tion were detected from recorded data in NI DAQ and the lag time between the two actions of

start of EEG recording and start of stimuli presentation was identified. The EEG signal

recorded after lag time was used for analysis. The beginning time of a trial was detected by the

triggering pulse that came from LED driver at the beginning of trial.

The EEG recording and stimuli presentation set-up is shown in Fig 9. Details of the signal

recording setup is reported in our previous study [90].

Preprocessing. The trigger pulse from g.tec and optic sensor output that was recorded

with NI DAQ was extracted and used for detecting and extracting synchronized trials from

EEG signals. The extracted EEG signal of individual trials was filtered by zero phase shift But-

terworth band pass filter with cutoff frequencies of 2 and 40 Hz with the order of 8 and

Fig 4. One-sided amplitude spectrum of the presented stimuli (blue: Spectrum of the m-sequence codes stimuli, red: Spectrum of the chaotic code

stimuli). Dashed lines separate Low, Medium and High frequencies. Low: frequencies from 0 to 10 HZ, Medium: frequency range between 10 to 30 Hz and

High: frequencies above 30 Hz. It is obvious that compared to the m-sequence codes, the chaotic codes frequency components are less in Low and Medium

frequencies and are more in High frequency range.

https://doi.org/10.1371/journal.pone.0213197.g004
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detrended for baseline correction. For each trial, the epochs that corresponded to each code

were extracted and finally for each stimulus, 10 trials were extracted such that each trial con-

tained responses to 18 consecutive epochs.

Feature extraction and target identification. Canonical correlation analysis (CCA) and

spatiotemporal beamforming (STB) methods were used for feature extraction and target iden-

tification. For evaluation of feature performance, 10-fold cross-validation was used for the ver-

ification of above mentioned methods. This meant that all trials of a subject were divided into

10 folds; 9 folds were used as training data set and the remaining one fold was used as testing

data. There were 10 trials for each of the four shifted codes every time when a single trial was

tested during 10-fold cross-validation. Finally, the mean of 10 accuracies of target identifica-

tion were reported as the final value of accuracy for each subject. All procedures were carried

out for the responses to m-sequence and chaotic codes separately.

Canonical Correlation Analysis (CCA). The CCA is a multivariable data processing that

reveals the underlying correlation existing between the two multidimensional variables by

Fig 5. Time domain representation of m-sequence and chaotic codes. Left and right columns show the m-sequence and chaotic codes respectively. M1-M4

and Ch1-Ch4 are the 4 shifted versions of m-sequences and chaotic codes respectively. Each box (shown with pink color) represents temporal shift of 0.088

second (8 bits) ahead with respect to previous one.

https://doi.org/10.1371/journal.pone.0213197.g005

Table 1. The stimuli specifications for both m-sequence and chaotic codes.

Stimuli presentation

rate

Epoch duration

(Code)

Epoch repetition per

trial

Trial repetition per

session

Rest duration between

trials

Total duration of single

session

90 Hz 0.344 sec 18 times 10 times 2 sec 90 sec

https://doi.org/10.1371/journal.pone.0213197.t001
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maximizing the correlation of linear combination of two variables [91]. This method has been

successfully used for the analysis of visual evoked potentials such as SSVEP [2, 11, 91]. CCA

attempts to find the two vectors of Wx and Wy called as the canonical correlation vectors for

the two multidimensional variables X and Y that maximize their canonical variant x and y
which is defined respectively by x = XTWx and y = YTWy.

Wx and Wy derived by maximizing the correlation coefficient ρ:

maxWx ;Wy
pðx; yÞ ¼

EðxTyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxTxÞEðyTyÞ

p ¼
WT

x XY
TWy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WT

x XXTWx �WT
y YYTWyÞ

q ð2Þ

Fig 6. The stimuli presentation diagram for single session: A single session consisted of 10 trials presenting m-sequence or chaotic code visual stimuli.

Each trial had 18 consecutively presented epochs. Each epoch presented a single visual stimulus code. Each trial was followed by 2 second break time. As there

were 4 m-sequence (M1 −M4) and 4 chaotic codes (Ch1 − Ch4), each subject had total 8 sessions of stimulus presentation (see Fig 7 and text for details).

https://doi.org/10.1371/journal.pone.0213197.g006
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In this study, the Xm×n is template and Y is the responses. In this study the matrices of X
and Y are defined as matrices sm×n and T respectively where m denote the number of channels

and n is the number of samples in each epoch.

Fig 7. Time sequences of activities of m-sequence (A) and chaotic code (B) presentation sessions. Each subject was presented with eight sessions. Each

session started with 10 second rest and EEG recording and consisted of 10 trials. Each trial consisted of 18 epoch of consecutive m-sequence or chaotic codes

presented with 2 seconds break after each trial. At the end of each session subjective fatigue rate was evaluated. The order of presentation of eight sessions for

each subject was random.

https://doi.org/10.1371/journal.pone.0213197.g007
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The steps of using CCA for feature extraction and target identification are as follows and

also shown in Fig 10.

Template generation.

1. Extraction of the epochs in training data set Sk�m�nTri
where i = [1 2 . . .4] (the indices of i rep-

resent the i th target in m-sequence and chaotic codes separately) and k is the total number

of epochs in training dataset.

2. Averaging Sk�m�nTri
over k epochs to generate the Tm�n

i which is then used as a template.

In online applications of code modulated BCIs, the templates are generally obtained for a sin-

gle delay of code as a calibration target and the templates for other targets are obtained by

shifting the original template [10]. In this study which was an offline study, due to the accessi-

bility to training data set, we preferred to obtain the templates for each targets separately and

therefore discontinuity introduced by circular shifting was prevented and even miniature dif-

ferences between the templates were taken into consideration.

Fig 8. EEG recording electrodes placement according to 10–20 system. Four active g.laddy bird electrodes were placed in Oz, O1, O2

and Pz. A2 and Fpz were selected as the reference and ground electrodes respectively.

https://doi.org/10.1371/journal.pone.0213197.g008
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Target identification.

1. Extraction of each target epochs of the test trial Sr�m�nTe where r is the number of epochs in

the single trial.

2. Averaging Sr�m�nTei
over r epochs to yield the matrix sm�ni

3. Calculation of the canonical correlation of templates Tm�n
i and sm�ni to achieve the correla-

tion vector Pi1×m.

4. Calculation of the mean value of correlation vector Pi1×m to create the feature vector.

5. Selection of the maximum value of feature vector ρi.

Spatiotemporal beamforming. STB was initially used as the spatial filter for analyzing the

radar and sonar data [92]. STB has also been used in EEG signal processing for source localiza-

tion [93] and optimal estimation of ERP sources [94]. The extended form of beamforming was

introduced as a STB for single trial detection of evoked potentials from meaningful stimuli

(N400) [95]. Recently the researchers in VEP based BCI have used this approach for decoding

the message of each stimulus from synchronized EEG with it, such as P300 based BCI [96],

SSVEP based BCI [97, 98] and c-VEP based BCI [9, 99].

The procedure for using STB is described in following steps and all procedures are shown

in Fig 11 [99].

Building beamformers.

1. Extraction of all the epochs of all the targets in training trials to create the matrix, Sih×m×n,

where h is the total number of epochs of all the targets acquired from training trials data.

2. Extraction of the epochs corresponding to each target in training data STri
k�m�n where k is

the epoch’s number in training trial data for each target.

3. Generation of the spatiotemporal activation patterns for each target Ai
m×n by averaging

STri
k�m�n over k epochs.

Fig 9. Signal recording set up: Stimuli were selected from stimuli presenting PC and sent to stimulator for presentation to subject via LED screen. NI

DAQ was used to record the trigger pulse coming from g.USBAmp and optic sensor output and also the stimulator box. The data was sent to PC for further

analysis.

https://doi.org/10.1371/journal.pone.0213197.g009
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4. Concatenation of the rows of Ai
m×n and generating the vectors of ai1×mn.

5. Generation of the Xh×mn by concatenating the channels in STrh×m×n.

6. Calculation of the covariance matrix of X for generating Smn×mn.

7. Generation of the beamformers wi
1×mn from:

wi ¼

P� 1ai
aTi
P� 1ai

ð3Þ

The linearly-constrained minimum-variance (LCMV) beamformers were calculated by using

the Lagrange multipliers method under constraint aTi wi ¼ 1 (3).

Note that due to the accessibility to training data, the activation patterns for each target were

obtained separately for each target such as generating templates for each target in CCA method.

Target identification.

1. Extraction of all epochs of testing trial Sr�m�nTe where r is the number of epochs in the testing

trial.

Fig 10. Schematic representation of using CCA for template generation and target identification. Template generation included extraction of epochs for

each target and averaging them to generate templates. Target identification included extraction of epochs for testing trial and calculation of the canonical

correlation of generated templates from training stage and averaged epochs for generating the feature vector and finally the maximum value of feature vector

were selected.

https://doi.org/10.1371/journal.pone.0213197.g010
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2. Averaging r epochs and concatenating the channels of the averaged signal to generate

s1×mn.

3. Calculation of yi = swi where i = [1 2. . .4].

4. Selection of maximum score of y in feature vector.

Statistical analysis. The averaged VAS scores of each stimulation (m-sequence or chaotic

codes) were calculated by averaging the scores across 4 sessions (shifted versions of codes) for

each subject.

For the evaluation of subjective fatigue between the m-sequence code and the chaotic code

groups, the averaged VAS scores were used and for comparison, the results were expressed as

Fig 11. Schematic of representation of using STB for building beamformers and target identification. Building beamformers included extraction of epochs

for all the targets and generation of the activation patterns for each target and in parallel calculation of covariance matrix of concatenated epochs. The

beamformers were calculated from Eq 4. The target identification included multiplying the beamformers with concatenated channels of averaged epochs in

testing trials for the generation of feature vector and selecting the maximum score.

https://doi.org/10.1371/journal.pone.0213197.g011
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mean ± SE. For analysis of within group changes, repeated measures ANOVA for m-sequence

and chaotic code was carried out separately on the individual VAS scores. A Greenhouse-Geis-

ser correction with a significance level α = 0.05 was employed for analysis of within group

changes in VAS scores for m-sequence code and chaotic group VAS scores. Then the post hoc

analysis with Bonferroni correction was used for each pair comparison within the m-sequence

and chaotic code groups while α set as 0.008.

Wilcoxon signed ranks test was employed for the analysis of the accuracy results yielded

from 10-fold cross-validation and also comparing the accuracy changes between CCA and

STB results over the stimulation time of 0.344 seconds (single epoch) to 6.2 seconds (18

epochs, single trial), the threshold was set at α = 0.05 for these analyses.

Results

Figs 12 and 13 show the grand average of evoked responses to m-sequences and chaotic codes.

The grand averages of response for each stimuli was calculated by averaging all epochs in 10

trails and then across all channels and finally averaged for all subjects. For illustrating the exist-

ing delay between the m-sequence responses, the auto-correlation of Rm1
(response to M1) and

its cross-correlation with other responses Rmi
ði ¼ 2 : 4Þ are shown in Fig 12. The similar

results for the chaotic codes responses are presented in Fig 13.

Fig 14 shows the results of 10-fold validation over the stimulation time for m-sequence and

chaotic codes. Increase in the stimulation times means the increase in the numbers of averaged

epochs (code repetition) in test trials (from 1 to 18 epochs, from 0.344 to 6.2 seconds) for

cross-validation.

Fig 12. Grand average and cross-correlations of evoked responses to m-sequences. The grand average responses to codes Mi (i = 1:4) is shown with

waveforms of Rmi
their corresponding standard errors are shown with dotted plots (top) and the auto-correlation of response Rm1

and its cross-correlation with

the responses Rmi
ði ¼ 2 : 4Þ is shown with the waveforms of CRmi

(bottom). The delay between responses could be decoded from cross-correlation waveforms

where they are maximum.

https://doi.org/10.1371/journal.pone.0213197.g012
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The accuracies of target identification for 10-fold cross-validation for full stimulation time

of a trial (6.2 seconds) are reported in Table 2. The maximum mean accuracy values of

93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence

codes for all subjects respectively.

Statistical analysis results

Significantly higher accuracy rates were obtained by Wilcoxon signed ranks test for STB

method when we compared it with the CCA method accuracy rates at different stimulation

times for both m-sequence and chaotic codes. Table 3 shows the comparison of accuracies

results of CCA and STB methods for different stimulation times.

Wilcoxon signed ranks test showed no significant changes in the accuracy rates of STB

method for the target identification of a single trial for the m-sequence and chaotic code

groups (Z = -1.016, p = 0.31). Additionally, no significant results were observed when the accu-

racies of the m-sequence and chaotic codes groups were compared using CCA method for the

single trial accuracies (Z = -1.204, p = 0.22).

Between group fatigue analysis results

Chaotic codes resulted in significantly less VAS score (4.9076 ±2.1981) compared to the m-

sequence codes (5.8152±2.6207) analyzed by paired t-test (t (43) = 4.054, p = 0.0005) as shown

in Fig 15.

Fig 13. Grand average and cross-correlations of evoked responses to chaotic codes. The grand average of responses to codes Chi (i = 1:4) is shown with

waveforms of Rchi
their corresponding standard errors are shown with dotted plots (top) and the auto-correlation of response Rch1

and its cross-correlation with

the responses Rchi
ði ¼ 2 : 4Þ is shown with the waveforms of CRchi

(bottom). The delay between responses could be decoded from cross-correlation waveforms

values (as shown) where they were maximum.

https://doi.org/10.1371/journal.pone.0213197.g013
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Within group fatigue rate analysis results

No statistical changes were seen in the analysis of within group comparison of VAS scores

with repeated measures ANOVA in m-sequence group (F (1.765, 79.434) = 0.754, p = 0.45).

Repeated measures ANOVA showed significant changes in the value of VAS scores in cha-

otic code (F (2.523, 113.521) = 5.345, p = 0.003). Post hoc analysis using Bonferroni correction

with α = 0.008, showed significant differences between Ch3 and Ch1. Mean values of VAS

scores of Ch1 and Ch3 were 4.58±2.32 and 5.19±2.34 respectively (p = 0.002). No significant

results for other pairs of chaotic codes were seen.

Fig 16 shows the subjective fatigue scores of individual m-sequence and chaotic codes.

Discussion

In this study, we successfully used chaotic codes to evoke c-VEPs and found that the chaotic

codes significantly reduced subjective fatigue compared to the conventional m-sequence code.

We showed that the proposed code was able to evoke distinctive identifiable responses in EEG

comparable with the m-sequence code that is currently employed in c-VEP response genera-

tion and code modulated based BCIs.

For the first time in code modulated based studies, chaotic codes presented as visual stimuli

were identified successfully from their corresponding VEPs. The four shifted versions of m-

sequence and chaotic codes used in this study had 8 bits circular delays ahead of pervious

code. From Figs 12 and 13, it could be seen that the imposed delays of 0.088 seconds in

between the presented chaotic code stimuli similar to the m-sequence code were preserved in

their corresponding grand average responses. This delay time could be observed and detected

in the peaks of the auto-correlation and cross-correlation of responses to each code (Figs 12

Fig 14. Accuracies of target identification for the m-sequence and chaotic codes obtained from 10-fold cross-validation with CCA and STB methods over

stimulation time. Time duration for each epoch was 0.344 seconds and the total stimulation time for all 18 epochs was 6.2 seconds. The accuracy increased

over stimulation time in both the methods. The dashed line shows that the STB is faster than CCA in reaching 70% accuracy.

https://doi.org/10.1371/journal.pone.0213197.g014
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Table 2. Accuracies of target identification results of the 10-fold cross-validation for a trial for m-sequence and chaotic code for all subjects.

m-sequence codes chaotic codes

CCA STB CCA STB

Subjects Mean (%) SD (%) Mean (%) SD

(%)

Mean (%) SD (%) Mean (%) SD

(%)

S1 92.5 2.8 100 0 97.5 0.6 100 0

S2 95 1.1 80 1.1 80 3.8 70 3.8

S3 42.5 4.2 20 9.4 60 3.0 55 1.1

S4 100 0 100 0 100 0 100 0

S5 67.5 4.2 95 1.1 90 3.0 100 0

S6 90 1.6 100 0 82.5 4.2 100 0

S7 95 1.1 100 0 82.5 1.4 95 1.1

S8 100 0 65 7.2 100 0 55 9.4

S9 100 0 100 0 100 0 100 0

S10 100 0 70 6.6 100 0 90 1.6

S11 97.5 0.6 100 0 87.5 1.7 100 0

S12 87.5 1.7 100 0 52.5 6.1 95 1.1

S13 100 0 100 0 100 0 95 1.1

S14 100 0 100 0 100 0 100 0

S15 85 3.0 95 1.1 82.5 4.2 100 0

S16 100 0 100 0 92.5 1.4 100 0

S17 70 2.5 85 1.6 67.5 5.6 60 4.4

S18 97.5 0.6 100 0 87.5 4.5 100 0

S19 90 1.6 100 0 87.5 1.7 100 0

S20 100 0 100 0 100 0 90 1.6

S21 87.5 3.1 100 0 75 6.9 90 1.6

S22 97.5 0.6 90 1.6 92.5 1.4 95 1.1

S23 100 0 100 0 100 0 95 1.1

S24 100 0 100 0 97.5 0.6 95 1.1

S25 100 0 100 0 97.5 0.6 100 0

S26 100 0 100 0 100 0 100 0

S27 100 0 100 0 100 0 100 0

S28 100 0 90 1.6 87.5 1.7 95 1.1

S29 72.5 6.1 95 1.1 87.5 1.7 100 0

S30 97.5 0.6 100 0 92.5 2.8 100 0

S31 97.5 0.6 100 0 97.5 0.6 100 0

S32 92.5 2.8 100 0 92.5 2.8 90 1.6

S33 100 0 100 0 97.5 0.6 100 0

S34 100 0 100 0 100 0 100 0

S35 100 0 100 0 100 0 100 0

S36 62.5 7.2 80 3.8 70 9.4 75 2.7

S37 97.5 0.6 100 0 87.5 3.1 95 1.1

S38 80 5.2 100 0 90 1.6 100 0

S39 57.5 8.4 75 2.7 72.5 4.7 90 1.6

S40 97.5 0.6 100 0 92.5 2.8 100 0

S41 92.5 1.4 100 0 87.5 3.1 95 1.1

S42 67.5 5.6 100 0 75 8.3 100 0

S43 100 0 100 0 100 0 100 0

S44 100 0 100 0 95 1.1 100 0

(Continued)
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and 13 lower panels). The time when cross-correlation function was maximum determined

the existing lag time between the intended stimuli and non-shifted version of codes. For exam-

ple, the lag time between the response to Ch1 (zero bit shift) and Ch2 (8 bits shift) was 0.088

seconds which is represented as 8 bits between their corresponding stimuli (note that each bit

shift is 1/90 seconds).

For the target identification of c-VEP to corresponding lag times in each group (m-

sequence and chaotic code), we used CCA which is a common method for c-VEP analysis. We

also used STB method recently introduced for the target identification in code modulated

evoked potentials [9]. By increasing the stimulation time (increasing the numbers of epochs to

be averaged), the accuracies of target identification increased; for m-sequence code, the total

accuracies achieved were 91.13±13.8% and 94 ± 14.4% by CCA and STB methods respectively.

For chaotic codes, the total accuracies of 89.5 ± 11.7% and 93.6 ± 11.9% were achieved by CCA

and STB methods respectively (Table 2). The results of data analysis showed the m-sequence

and chaotic codes in target identification results had no significant differences for both

methods.

Our results for m-sequence and chaotic codes show that the total accuracy was over 70% in

CCA method after approximately 2 seconds (6 epochs). Also, in STB method for m-sequence

and chaotic codes after approximately 1 seconds (3 epochs) and 1.5 second (4 epochs) respec-

tively, the total accuracy was 70% (Fig 14), which is acceptable in BCI applications [100].

Table 2. (Continued)

m-sequence codes chaotic codes

CCA STB CCA STB

Total accuracy Mean (%) SD (%) Mean (%) SD

(%)

Mean (%) SD

(%)

Mean (%) SD (%)

91.13 13.8 94.0 14.4 89.5 11.7 93.6 11.9

https://doi.org/10.1371/journal.pone.0213197.t002

Table 3. Statistical results for accuracy values of paired t-test in the comparison between STB and CCA methods for m-sequence and chaotic codes.

m-sequence code Chaotic code

Number of epochs Stimulation time (sec) Z p value Z p value

1 0.344 -4.105 0.0005 -2.699 0.007

2 0.68 -5.324 0.0005 -2.974 0.003

3 1.03 -4.579 0.0005 -3.703 0.0005

4 1.37 -4.562 0.0005 -3.756 0.0005

5 1.72 -3.962 0.0005 -3.113 0.002

6 2.06 -3.752 0.0005 -3.228 0.001

7 2.40 -4.011 0.0005 -3.193 0.001

8 2.75 -3.469 0.001 -3.835 0.001

9 3.09 -3.211 0.001 -3.390 0.001

10 3.44 -2.984 0.003 -3.633 0.0005

11 3.78 -2.660 0.008 -3.384 0.001

12 4.12 -2.449 0.014 -3.363 0.001

13 4.47 -2.024 0.043 -3.368, 0.001

14 4.81 -2.314 0.021 -2.794 0.005

15 5.16 -2.312 0.021 -2.682 0.007

16 5.50 -2.350 0.019 -2.946 0.003

17 5.84 -2.321 0.020 -2.922 0.003

18 6.19 -1.916 0.05 -2.788 0.005

https://doi.org/10.1371/journal.pone.0213197.t003
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Our results indicate that the STB method was significantly better than CCA method espe-

cially at the shorter stimulation time for m-sequence codes (Fig 14 and Table 3). However, for

the longer stimulation time, STB method was comparatively more significant than CCA

method for chaotic codes (Fig 14 and Table 3). In addition, the accuracy increased faster with

STB compared to the CCA method (Fig 14). Therefore we can conclude that STB is faster than

CCA as the 70% accuracy was achieved sooner with it. In a previous c-VEP based study, STB

method has also been shown to be better than SVM method [9].

The most important result of our study is the significant reduction of subjective fatigue in

the chaotic codes group compared to the m-sequence codes (Fig 15). Reason for higher subjec-

tive fatigue in the m-sequence group is the fact that while both the codes had broad band fre-

quency spectrum, the spectral properties of m-sequence codes used in our study were more

towards lower frequency spectrum (Fig 4) which causes more subjective fatigue and visual dis-

comfort compared to the higher frequencies visual stimuli [69, 90] and have high risk of pho-

tosensitive epileptic seizures [101].

In addition, reduction of fatigue and visual discomfort as seen in the chaotic group was

because of the fact that chaotic stimuli had higher frequency spectral distribution as shown in

Fig 4. Frequency components higher than 30 Hz reduce the probability of occurrence of

fatigue and visual discomfort because high frequency components are hardly visible and

imperceptible to human eye [69].

Additionally, visual stimuli with excessive contrast energy at medium frequencies spectrum

at the range of 10 to 30 Hz such as m-sequence codes used in our study can increase the eye

discomfort level [75]. It is obvious from the comparison of spectral content of m-sequence

Fig 15. Averaged subjective fatigue scores of all m-sequence and chaotic codes of all the subjects. The chaotic codes VAS score was significantly lower than

the m-sequence codes,�p = 0.0005, n = 44.

https://doi.org/10.1371/journal.pone.0213197.g015
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code and chaotic code as shown in Fig 4 that the m-sequence code had more dominant peaks

within the medium frequency range while the chaotic codes had more dominant peaks within

the frequency component higher than 30 Hz. Considering the above reasons for the significant

reduction of subjective fatigue by chaotic codes, we suggest their use for designing ergonomic

c-VEP based BCI applications.

Another possible reason for the significant reduction of subjective fatigue with chaotic

codes used in our study is the closeness of chaotic behavior to the 1/f spectral property [76, 77]

which is observed in natural scenes and phenomena. It is widely reported that most of natural

phenomena exhibit the 1/f type of spectral properties [75, 102–104]. Interestingly, visual sys-

tem encoding is more efficient when encountering the stimuli with spatial and temporal pat-

terns resembling 1/f amplitude spectral features [75, 105]. Visual stimuli with the above

characteristics and patterns such as chaotic codes, generate sparse cortical responses in the

receptive fields of neurons in the primary visual cortex [106]. As the hemodynamic responses

mainly reflect the local field activity of neurons [107], the sparseness in the number of firing

the neurons may lead to lesser demand for oxygenated blood and hence less fatigue.

fMRI and near infrared spectroscopy (NIRS) show that the oxygenation is more prominent

when the visual stimuli are relatively uncomfortable [107, 108] as seen with the m-sequence

codes that have pseudo-random behavior and flat wideband spectrum [78, 79] increasing the

probability of discomfort level.

Our results of within group comparisons of individual VAS scores of m-sequences and cha-

otic codes show that the m-sequence (M1 −M4) did not cause significantly different fatigue

Fig 16. Subjective fatigue scores of individual m-sequence and chaotic codes. There was significant difference between VAS score of chaotic codes Ch1 and

Ch3 (for each code n = 44 and �p = 0.002).

https://doi.org/10.1371/journal.pone.0213197.g016
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level. However, in the chaotic code group, Ch1 code’s VAS score was significantly less than Ch3

(Fig 16). The significance value of this within group difference is very less compared to the

overall difference in the fatigue level between the m-sequence and chaotic code group. We

don’t have any explanation for this result and suggest further studies on chaotic codes in c-

VEP based studies to find exact reason for it.

Importance of chaotic visual stimuli and suggestions for future works

Researches during last few years have shown that in several areas of visual system, information

processing involves dynamical and nonlinear processes as seen in retinal ganglion cells [109,

110], retina [111], lateral geniculate nucleus [104] and visual cortex [112]. In addition, spatial

integration of information in retinal ganglion cells [109, 110] and colored visual stimuli pro-

cessing of primary visual cortex [113] also involve nonlinear dynamics. Visual stimuli with

chaotic dynamics involve not only primary visual cortex but also parietal-occipital and parietal

areas of the brain [114]. We thus suggest use of chaotic visual stimuli for future c-VEP based

studies as these conform to the biological reality of nervous system. Further research is also

suggested for neural processes in visual cortex on mechanisms of lesser fatigue with chaotic

dynamical stimuli.

The results of this study also suggest use of chaotic codes and nonlinear analysis as it may

be the underlying nonlinear dynamics in chaotic stimuli that can be decoded better than con-

ventional analysis method used for target identification.

As this study is the first of its kind in c-VEP based investigation, our limitation was that we

didn’t study effect of change of logistic map parameter on target identification accuracy and

subjective fatigue values. Therefore in the future studies, we suggest optimum parameters for

generating chaotic code. We also suggest use of visual stimuli that are more close to the 1 /f

spectral property.

Finally, as the results of our study show that chaotic visual stimuli are identifiable by CCA

and STB methods and cause less fatigue compared to the conventional m-sequence codes, we

suggest further c-VEP studies using these two new and other methods for designing better

CDMA based BCI in future.

Conclusion

This study for a first time examined chaotic code used for evoking c-VEP in CDMA based

BCIs and compared the results with conventional m-sequence code widely used in code modu-

lated BCIs. Our results show that the chaotic code was decoded successfully from recorded

EEG responses and complied with the requirements needed for using it as a modulating code

in the c-VEP generation. Better fatigue reduction was achieved by using chaotic code com-

pared to the m-sequence code. We suggest use of chaotic code in c-VEP based studies for bet-

ter application of BCI.
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