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Summary

Intestinal flora provides an important contribution to
the development of pulmonary tuberculosis (PTB).
We performed a cross-sectional study in 52 healthy
controls (HCs) and 83 patients with untreated active
PTB to assess the differences in their microbiomic
and metabolic profiles in faeces via V3-V4 16S rRNA
gene sequencing and gas chromatography–mass
spectrometry. Patients with PTB had considerable
reductions in phylogenetic alpha diversity and the
production of short-chain fatty acids, dysbiosis of
the intestinal flora and alterations in the faecal meta-
bolomics composition compared with HCs. Signifi-
cant alterations in faecal metabolites were
associated with changes in the relative abundance
of specific genera. Our study describes the imbal-
ance of the gut microbiota and altered faecal meta-
bolomics profiles in patients with PTB; the results
indicate that the gut microbiota and faecal metabolo-
mic profiles can be used as potential preventive and
therapeutic targets for PTB.

Introduction

Human tuberculosis (TB) caused by Mycobacterium
tuberculosis (Mtb) is the leading global cause of death

among those attributable to a single pathogen. TB
resulted in the deaths of approximately 1.5 million peo-
ple in 2018. A quarter of the global population is infected
with TB, and approximately 3–5% of these individuals
will develop active TB during their lifetime. Additionally,
China has the second highest burden of multidrug-resis-
tant tuberculosis (MDR-TB), accounting for 14% of the
global cases of TB (WHO, 2019). Moreover, the emer-
gence of drug-resistant Mtb and a rise in TB–human
immunodeficiency virus (HIV) coinfection poses a sub-
stantial threat to public health.
The human gut microbiome (GM) is characterized by

diverse microbial communities of multiple phyla of bacte-
ria, archaea, viruses and microbial eukaryotes (Reyes
et al., 2012; Thomas et al., 2017), which play a signifi-
cant role in human health (Qin et al., 2010; Jiang et al.,
2019). GM is known to influence the energy metabolism
of the host (Turnbaugh et al., 2009; Robertson et al.,
2018) and indirectly or directly promote the maturation of
immune cells and normal development of immune func-
tion (Spiljar et al., 2017). For example, modulation of
macrophage-inducible C-type lectin (Mincle) by gut bac-
teria plays important roles in the regulation of the
immune response to Mtb that is dependent on dendritic
cells (DC) in the lung (Negi et al., 2019). Existing evi-
dence led researchers to investigate cross-talk between
the intestinal bacteria and the lung, which is defined as
the gut–lung axis (Budden et al., 2017). Dysbiosis of the
intestinal microbiota is relevant to numerous lung dis-
eases, such as chronic obstructive pulmonary disease
(COPD) (Rutten et al., 2014), asthma (Lee-Sarwar et al.,
2019), H7N9 virus infection (Qin et al., 2015) and Sta-
phylococcus aureus pneumonia (Gauguet et al., 2015).
Substantial evidence obtained in animals and humans

indicates that Mtb infection drives intestinal microbial
dysbiosis characterized by changes in the abundance of
specific taxa, particularly bacteria that produce short-
chain fatty acids (SCFAs), such as Ruminococcus and
Bifidobacterium (Khan et al., 2016; Hu et al., 2019,
Namasivayam et al., 2019). Potential limitation of Mtb by
indole propionic acid produced by the intestinal bacteria
has been demonstrated in vitro and in vivo (Negatu
et al., 2019). The present study investigated the potential
correlations between the host, diet and intestinal bacteria
by analysing the faecal metabolic profiles using untar-
geted gas chromatography–mass spectrometry (GC-MS)
combined with high-throughput sequencing of the 16S
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rRNA gene. This integrated omics analysis was used to
assess whether pulmonary tuberculosis (PTB) is related
to the changes in the composition and function of micro-
biota and to determine the mechanism of these associa-
tions, aiming to identify the candidate biomarkers for
PTB.

Results

Cholesterol levels were decreased in PTB patients

Eighty-three patients diagnosed with untreated active
PTB and 52 age- and sex-matched healthy controls
(HCs) were enrolled in this study. Table 1 presents the
detailed clinical characteristics of all subjects. With the
exception of blood glucose (BG) and albumin (Alb)
levels, other characteristics, including the serum levels
of total cholesterol (Tch) (P < 0.001), high-density
lipoprotein cholesterol (HDL) (P = 0.04997), low-density
lipoprotein cholesterol (LDL) (P = 0.002), and very-low-
density lipoprotein cholesterol (VLDL) (P < 0.001), were
significantly lower in patients than in HCs.

Mtb infection decreased the alpha diversity and affected
the composition of the gut microbiome

A sequencing run generated 11 448 333 reads, and
94.56% of these reads (10 822 567 reads) passed the
quality screening. The reads were clustered into 875
operational taxonomic units (OTUs) based on a similarity
of 97%. A Venn diagram showed that 99 OTUs and 74
OTUs were unique in the HC and PTB groups respec-
tively (Fig. 1B).
Microbiota diversity was then evaluated using the fol-

lowing indexes: Chao1, ACE, Shannon, Simpson and
observed species. The rarefaction cures for the two
groups showed the number of identified OTUs
approached a plateau, indicating that the bacterial

diversity of the intestinal flora in the HC group was
higher than that in the PTB group (Fig. S1B). In addition,
the number of observed species in PTB patients was
markedly lower than that in HCs (254.02 � 44.65 vs.
206.17 � 52.17, respectively, P = 9.78e-8) (Fig. S1A),
and the alpha diversity, which was assessed by the
Chao1, ACE, Shannon and Simpson indexes, was sig-
nificantly lower in the PTB group than in the HC group
(P = 1.70e-7, 1.06e-7, 7.90e-5, and 0.0021 respectively)
(Fig. 1A). The results of the principal coordinate analysis
(PCoA) based on unweighted UniFrac (Adonis,
P < 0.01) (Fig. 1C) and non-metric multidimensional
scaling (NMDS) based on unweighted UniFrac (stress
value = 0.191, MRPP, P < 0.01) (Fig. S1C) indicated
that the dissimilarity maintained a tendency of separation
and showed partial overlap between PTB patients and
HCs.

The microbial abundance was shifted in the PTB group

Metastat-based and linear discriminant analysis (LDA)
effect size (LEfSe) analyses were performed to identify
different distributions of the faecal microbiota. The PTB
and HC groups had statistically significant differences in
five predominant phyla: Firmicutes, Bacteroidetes, Acti-
nobacteria, Fusobacteria and Verrucomicrobia. The rela-
tive abundances (proportions) of Firmicutes and
Bacteroidetes were 63.81% and 27.82% in the HC group
and 48.84% and 44.92% in the PTB group respectively
(Fig. 2A).
At the family level, the PTB group had significantly

greater abundances of Bacteroidaceae (30.36% vs.
17.19%, q = 0.004), Tannerellaceae (2.38% vs. 0.94%,
q = 0.019), Fusobacteriaceae (2.15% vs. 0.17%,
q = 0.014) and Erysipelotrichaceae (1.44% vs. 0.89%,
q = 0.034) than the HCs group. The PTB group also had
markedly lower abundances of Bifidobacteriaceae (0.9%

Table 1. Clinical characteristics of the cohort

Variable HC (n = 52) PTB (n = 83) P value

Gender, Man, n (%) 21 (40.38%) 47 (56.63%) 0.078
Age (year) 32(26-37) 30(25-48) 0.486
Laboratory analyses
Albumin (g l-1) 48.3(46.75-49.7) 45.95 (43.83-48) <0.001
Serum creatinine (mmol l-1) 64 (56-78) 68 (58-81) 0.5
Haemoglobin (g l-1) 144 (135-154) 138 (129.25-150.75) 0.075
Triglycerides (mmol l-1) 1.13 (0.75-1.39) 0.98 (0.73-1.43) 0.785
Total cholesterol (mmol l-1) 4.59 (0.72) 3.88 (0.75) <0.001
High-density lipoprotein (mmol l-1) 1.31 (1.11-1.58) 1.19 (0.98-1.4) <0.05
Low-density lipoprotein (mmol l-1) 2.60 (0.6) 2.21 (0.65) 0.002
Very-low-density lipoprotein (mmol l-1) 0.59 (0.45-0.73) 0.41 (0.32-0.57) <0.001
Serum fasting blood glucose (mmol l-1) 4.77 (0.39) 4.97 (0.59) 0.042
IFN-c release assay 52 (�) 83 (+)

Data are represented as mean (SD) or median (interquartile range).
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vs. 4.99%, q = 0.012), Lachnospiraceae (23.89% vs.
33.95%, q = 0.004), Ruminococcaceae (15.51% vs.
21.59%, q = 0.01), Marinifilaceae (0.27% vs. 0.55%,
q = 0.022), Eggerthellaceae (0.027% vs. 0.19%,
q = 0.004) and Barnesiellaceae (0.091% vs. 0.35%,
q = 0.014) than the HCs (Fig. 2B).
At the genus level, the abundances of 102 genera,

including 10 dominant (≥ mean 1% abundance in either
group) and 92 less dominant genera, differed between
the two groups. The dominant genera, including Bac-
teroides, Parabacteroides, Fusobacterium and Lachno-
clostridium, were notably enriched in the PTB group
compared with the HC group, whereas Blautia, Rose-
buria, Bifidobacterium, unidentified Ruminococcaceae,
Fusicatenibacter and Romboutsia were enriched in the
HCs group compared with the PTB group (Fig. 2C).

LEfSe analysis was used to identify the key pheno-
types contributing to the differences between the groups.
According to the LDA score, the optimal-enriched taxa in
the stool microbiome of the PTB group were Bac-
teroidales, Prevotellaceae and Bacteroides vulgatus,
whereas Firmicutes, Clostridiales, Lachnospiraceae,
Ruminococcaceae, Actinobacteria, Bifidobacteriales and
Blautia were more abundant in the HCs (Fig. 2D).

Untargeted metabolomics profiles

Faecal metabolite assessment was performed in all par-
ticipants, and a total of 744 different features were
examined. To further characterize the overall metabolo-
mic changes, we performed PCA, and an OPLS-DA of
the faecal profiles showed distinct clusters in the PTB

Fig. 1. Comparison of the intestinal microbiota richness and diversity in patients with PTB versus healthy controls. A. The alpha diversity was
assessed using the ACE, Chao1, Shannon and Simpson indexes, which showed significant differences between the PTB and HCs groups.
***P < 0.001. B. Venn diagram showing the shared and unique operational taxonomic units (OTUs) in the flora of the two groups. C. A PCoA
based on Unweighted Unifrac distance showed that the distribution of the microbial community in the PTB group was strikingly different from
that of the HCs group (P < 0.01). PCoA, principal coordinate analysis; PTB: pulmonary tuberculosis; HCs: healthy controls.
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and HC groups, indicating that Mtb infection alters the
metabolomic profile. Moreover, the two groups clearly
segregated along PC1, accounting for 35.7% of the vari-
ance (Fig. 3A). The OPLS-DA of the faecal metabolomic
profile (R2X = 0.456, Q2 = 0.752) demonstrated more
pronounced differences between the PTB and HC
groups than with those obtained with the PCA models
(Fig. 3B). To prevent overfitting, sevenfold cross-valida-
tion and 200 response permutation tests were employed
to validate the model, indicating that the original models
had better predictive power than the newly calculated
OPLS-DA models based on randomly assigning class
labels (Q2inter = �0.412).
Significant metabolites were identified based on the

OPLS-DA model with VIP values > 1 and P val-
ues < 0.05 (two-tailed Student’s t-test). As shown in
Fig. 3C, the metabolic phenotype of patients with PTB
was characterized by alterations in 26 faecal metabolites
(Table S1), including 17 elevated and nine downregu-
lated metabolites, and these metabolites are involved in

the following pathways: ABC transporters, phenylalanine
metabolism, taurine and hypotaurine metabolism, phos-
phatidylinositol signalling system, sulfur metabolism,
galactose metabolism, inositol phosphate metabolism,
primary bile acid biosynthesis, ascorbate and aldarate
metabolism, steroid biosynthesis, glycine, serine and
threonine metabolism, neuroactive ligand–receptor inter-
action, aminoacyl-tRNA biosynthesis, cysteine and
methionine metabolism, tyrosine metabolism, carbon
metabolism, biosynthesis of amino acids and neuroactive
ligand–receptor interaction.

Mtb infection decreased the production of SCFAs in
faeces

The levels of isobutyric acid, butyric acid, 2-metylbutic
acid and valeric acid were markedly lower in the PTB
group than in the HCs (P < 0.0001, P < 0.05,
P < 0.0001, P < 0.0001, respectively, Fig. 4), whereas
the level of propionic acid was non-significantly lower in

Fig. 2. Taxonomic features of the faecal microbiota of patients with PTB and controls. Comparisons of the relative abundances of intestinal
microbiota between the PTB and HCs groups were conducted at the phylum (A), family (B) and genus (C) level; #P < 0.05. A LEfSe analysis
identified the differentially abundant taxa between the PTB and HCs groups. The HC-enriched taxa are indicated with a negative LDA score
(red), and the taxa enriched in the patients with PTB are characterized by a positive score (green). Only taxa with an LDA threshold greater
than 4.0 are displayed (D). LDA, linear discriminant analysis. The circular cladogram was derived from the LEfSe analysis and showed the rela-
tionship between the most differentially abundant taxa in the patients with PTB (green) and the HCs (red). HCs, healthy controls; LEfSe, linear
discriminant analysis effect size; PTB, pulmonary tuberculosis.
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the PTB group than in the HCs (P > 0.05). However, no
significant elevation in acetic acid concentration was
noticed in the PTB group.

Discriminant models of PTB based on tree-based
features

To further explore the diagnostic value of the faecal
microbiome for PTB, we constructed a random forest-
based classification model to accurately distinguish PTB
patients from HCs. A 10-fold cross-validation used a
training dataset (n = 94), which included 58 PTB patients
and 36 healthy controls, to select specific genus mark-
ers, and 30 genus markers were selected from each
sample based on the results. The training of the random
forest classifier involved the calculation of the feature
importance of these 30 genera and their relative abun-
dances (Table S2), and the features were ranked
according to their contribution to the model. The vital
genera identified based on the model were described

based on a mean decrease in the Gini index (Fig. 5A).
The area under the curve (AUC) obtained using the
training datasets was 0.872 (95% confidence interval
(CI): 0.804–0.94), showing that patients with PTB could
be successfully distinguished from the HCs (Fig. S2).
Based on the test set, the probability index (POBD)
value obtained for patients with PTB was markedly
higher than that obtained for the HCs (P < 0.001)
(Fig. 5B). Consistent with this finding, the AUC of the
receiver operating characteristic (ROC) curve for the test
dataset (n = 41) was 0.851 (95% CI: 0.737–0.965)
(Fig. 5C). ROC analysis was used to verify the diagnos-
tic ability of these biomarkers. The AUC values for four
genera, Fusobacterium (AUC = 0.738), Fusicatenibacter
(AUC = 0.789), Tyzzerella (AUC = 0.732) and
Anaerotruncus (AUC = 0.707), were higher than 0.7,
suggesting that the diagnostic efficacy was adequate
(Fig. S3A). The model including all four genera had a
relatively better diagnostic ability (AUC = 0.81)
(Fig. S3B).

Fig. 3. Faecal metabolic changes associated with Mtb infection. A. PCA score plot comparing the patients with PTB (red) and the HCs (blue).
B. Score plot of the OPLS-DA showing the patients with PTB (red) and the HCs (blue). C. Volcano plot showing the important metabolites
included in the OPLS-DA model. HCs, healthy controls; PTB, pulmonary tuberculosis.
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We also constructed a random forest classifier to
specify the diagnosis of PTB based on various faecal
metabolites. A training set (n = 94) was used to deter-
mine the significant metabolite markers; the results of
10-fold cross-validation identified 12 differential metabo-
lites (Table S3). As shown in Fig. 5D, a mean decrease
in the Gini index-based feature importance was deter-
mined for each of the 12 parameters involved in the
model. The ROC curve analysis of the training set
revealed that the classifier model had an outstanding
performance with regard to predicting PTB, with an AUC
of 0.993 (95% CI: 0.982–1; Fig. S2). A significantly
higher POBD value was obtained in the test set for the
PTB patients than for the HCs (P = 5.62e-08)
(Fig. 4GE). Interestingly, the AUC-ROC obtained in the
test set (n = 41) was 0.998 (95% CI: 0.991–1; Fig. 4F).
A total of 12 metabolites showed potential diagnostic
value, with AUC values above 0.9, and the models
based on a combination of top five metabolites accord-
ing to the Gini index, namely 1-tetracosanol, 3-hydroxypi-
colinic acid, behenic acid, pyrophosphate and
tromethamine, demonstrated fair discrimination for PTB
(AUC = 0.996) (Fig. 3C and D).

Correlations between the gut microbiota and other data

To further explore the correlation between the genera
and various indicators, including faecal metabolites and
biochemical parameters, we conducted Spearman corre-
lation analysis (Fig. 6A). TG was positively correlated
with 4 genera that were enriched in HCs, namely Blau-
tia, Megasphaera, Rhodococcus and Bilophila
(P < 0.05). The levels of Tch, LDL and VLDL were posi-
tively associated with Rhodococcus, Romboutsia, Gor-
donibacter and Fusicatenibacter and negatively
associated with Cetobacterium, Weissella, Dorea and
Campylobacter. Moreover, HDL was positively correlated
with Ezakiella and Elusimicrobium, and Glu was nega-
tively correlated with Dorea and Blautia.
A heat map was used to examine the associations

between intestinal bacteria and the faecal metabolome
(Fig. 6B); the results showed that 5 metabolites enriched
in HCs, namely indoxyl sulfate (IS), resorcinol, orcinol,
inositol and o-phosphoserine, were positively correlated
with the relative abundances of Fusicatenibacter, uniden-
tified Lachnospiraceae, Barnesiella, Raoultibacter,
Dorea, Tyzzerella, unidentified Ruminococcaceae,

Fig. 4. Mycobacterium tuberculosis (Mtb) infection significantly decreased production of short-chain fatty acids (SCFAs) in faeces. The faecal
concentrations of SCFAs mainly including acetic acid, propionic acid, isobutyric acid, butyric acid, 2-metylbutic acid and valeric acid were deter-
mined by GC-MS. All data are presented as means � SEM. *P < 0.05, and ***< 0.0001 according to non-parametric Mann–Whitney U test.
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Anaerotruncus, Butyricicoccus, Bilophila, Collinsella,
Roseburia and Candidatus Soleaferrea (P < 0.05). Thir-
teen upregulated metabolites in the PTB group, namely
2-keto-l-gluconate, ribonic acid, 5-aminolevulinic acid,
taurine, 1,4-butanediol, 3-hydroxymethylglutaric acid, 3-
hydroxypicolinic acid, 4-hydroxy-3-methoxyphenylglycol,
4-hydroxycyclohexylcarboxylic acid, aconitic acid, erythri-
tol, tromethamine and hydrocinnamic acid, were nega-
tively correlated with the abundances of Blautia,
Agathobacter, Roseburia, Candidatus Soleaferrea,
Anaerotruncus, Tyzzerella and Butyricicoccus
(P < 0.05).

Discussion

In general, the diversity and taxonomic numbers of the
intestinal microbiota in patients with PTB were

significantly lower than those in HCs, which was consis-
tent with the observed loss of metabolic diversity and
indicated that the levels of the metabolites, such as
SCFAs, and the metabolite classes were considerably
reduced in the PTB group. Our study is one of the first
to demonstrate PTB-related alterations in the human
intestinal bacteria and metabolism using integrated multi-
omics data; our findings may provide inspiration for
future disease diagnosis and intervention.
Consistent with previous studies, our microbiome anal-

yses revealed a disrupted microbiota in patients with
PTB, and this disruption involved a significant decrease
in the predominant bacterial species and a reduced bac-
terial diversity (Hu et al., 2019). Consistent with these
findings, Khan et al. (2016) previously reported that
antibiotic-mediated gut dysbiosis can promote Mtb infec-
tion and dissemination, which is closely related to

Fig. 5. Prediction of PTB using random forest models. A and D. Top 30 genera and 12 metabolites predicting PTB. The x-axis suggests the
mean decrease in the Gini index. (B) and (E) The probability index (POBD) value was notably increased in patients with PTB compared with
the HCs in the test set (n = 41). The y-axis indicates the probability of samples with a predicted diagnosis of PTB. Each dot represents a single
subject. C and F. The area under the curve for the random forest model obtained with the test set (n = 41). PTB: pulmonary tuberculosis; HCs:
healthy controls.
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Fig. 6. Correlation analysis between gut microbial and biochemical parameters (A) and faecal metabolites (B). The depth of the colour in the
heat maps signifies the strength of the correlation: red represents a positive correlation, whereas blue indicates a negative correlation.
*P < 0.05, **P < 0.01, ***P < 0.001. Green colour represents features enriched in PTB group, while red colour represents features enriched in
HCs. HCs, healthy controls; PTB, pulmonary tuberculosis.
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decreases in interferon gamma (IFN-c)- and tumour
necrosis factor-alpha (TNF-a)-releasing CD4 T cells and
an increase in Tregs observed in a mouse model of
infection. The data obtained in our study indicated con-
siderable downregulation of the abundances of beneficial
bacterial phylum Firmicutes and various genera, such as
Bifidobacterium, Blautia, Butyricimonas, Ruminococcus,
Roseburia and Dorea, in the PTB samples; these find-
ings suggested that dysregulation occurs in patients with
PTB. These genera were reported to influence the pro-
duction of SCFAs, particularly acetic, propionic and buty-
ric acids (Estaki et al., 2016; Rivi�ere et al., 2016). In our
study, Mtb infection contributed to a decrease in the pro-
duction of SCFAs, such as propionic acid, butyric acid,
isobutyric acid, 2-metylbutic acid and valeric acid, in fae-
ces, which is consistent with the findings of a previous
study (Hu et al., 2019). SCFAs, particularly butyrate,
inhibit inflammation through various effects, such as the
induction of Tregs, maintenance of the intestinal epithe-
lial barrier integrity and provision of energy to intestinal
cells (Sun et al., 2017).
Significantly lower TG, HDL, LDL and VLDL levels are

other interesting characteristics of patients with PTB,
which may result from a decrease in the protein and fat
intake due to a loss of appetite resulting from the infec-
tion. Downregulation of these parameters was also cor-
related with the degree of smear positivity (Deniz et al.,
2007). Moreover, a cholesterol-rich diet is advantageous
for accelerating smear-negative sputum conversion
(P�erez-Guzm�an et al., 2005). In this study, the serum
levels of cholesterol (VLDL and LDL) and Tch were posi-
tively correlated with the abundances of Romboutsia and
Gordonibacter and negatively associated with the rich-
ness of Cetobacterium, Weissella and Campylobacter. A
previous study suggested that the Cetobacterium genus
is enriched in individuals with a prudent dietary pattern
(Shikany et al., 2019). In this study, Dorea and Blautia
were negatively correlated with Glu. As reported previ-
ously (Berni Canani et al., 2016), Blautia is involved in
the synthesis of SCFAs, particularly butyric acids. As
expected, our study showed that the production of isobu-
tyric acid and butyric acid was significantly reduced in
the PTB group. Acetic and butyric acids mediate choles-
terol synthesis, fatty acid storage and glucose production
(Fang et al., 2019). Strengthening nutritional support and
prebiotic supplementation may shorten the duration of
the treatment and improve medication adherence and
even the treatment outcome.
To connect the structure of the microbiome community

to its function, we performed an integrated analysis of
the faecal metabolomics and intestinal bacteria. The
overrepresented metabolites, including ribonic acid, 2-
keto-l-gluconate, 4-hydroxycyclohexylcarboxylic acid, 2-
hydroxy-2-methylbutanoic acid, taurine, aconitic acid and

3-hydroxymethylglutaric acid, and the underrepresented
metabolites, such as o-phosphoserine, mg (0:0/14:0/0:0),
terephthalic acid, IS and squalene, participate in the
lipid, carbon and amino acid metabolic pathways. Previ-
ous studies have reported that squalene, an intermediate
in cholesterol synthesis, has pleiotropic activity, such as
antioxidant, anti-inflammatory, and drug carrier effects,
that enhances immune responses (Kim and Karadeniz,
2012). Squalene has been verified to have antituberculo-
sis activity in vitro (Jim�enez et al., 2005). A significantly
positive correlation between squalene and the abun-
dance of Blautia was detected. Aromatic amino acids (ty-
rosine, phenylalanine and tryptophan) are involved in the
production of indoles (IS) and phenols (hydrocinnamic
acid) by intestinal bacteria, such as Clostridium, which
belongs to the order Clostridiales (Russell et al., 2013;
Dodd et al., 2017) and was markedly decreased in
patients with PTB. In addition, the level of IS, which is a
specific bacteria-generated uraemic toxin of tryptophan,
was notably altered in the faecal samples from the
patients, apparently due to appetite loss. Published evi-
dence indicates that dietary protein intake promotes the
production of IS (Poesen et al., 2015).
Patients with PTB and healthy individuals demon-

strated not identical intestinal bacteria and faecal meta-
bolic profiles. Interestingly, this study is the first to
investigate the faecal metabolic profile of PTB patients.
Previous studies have found significant differences in
the composition of intestinal bacteria between patients
with PTB and HCs (Hu et al., 2019) and demonstrated
the key role of intestinal bacteria in the host immune
responses against Mtb (Gupta et al., 2018). Early diag-
nosis and treatment are essential for PTB. In many
countries, direct sputum smear microscopy is the most
commonly used method for the diagnosis of PTB, which
has various disadvantages, including low sensitivity (20–
60%) (Steingart et al., 2006; Steingart et al., 2006), and
challenges due to the characteristics or habits of the
patients, such as the inability to produce sputum (Alnour,
2018). Additionally, Mtb culture, which is recommended
as a reference standard, has a higher sensitivity; how-
ever, diagnosis using this test requires 2–6 weeks of
analysis in a biosafety level III laboratory facility (Drob-
niewski et al., 2012). Molecular tests such as Cepheid
Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) and line
probe assays directly identify drug-resistant TB through
examining specific gene mutations (e.g. the rpoB, katG,
inhA genes), and can be completed in just a few hours
and demonstrate good diagnostic performance both in
clinical isolates and specimens (Steingart et al., 2014).
But the application of technology is ultimately limited by
the inability to produce sputum. To improve the TB pre-
vention and control, alternative approaches for the diag-
nosis of sputum-free PTB patients should be explore.
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Importantly, stool metabolites are considered the prod-
ucts of intestinal bacteria, host cells and diet. Integrative
analysis showed the functional status of intestinal bacte-
ria and the integration with the host cells, which further
enhances our understanding of the functions of host-res-
ident microbes (Zierer et al., 2018). The correlation
between gut bacteria and metabolites provides crucial
information on the development of PTB, which can be
used for potential prevention and the identification of
therapeutic targets, particularly for smear- and culture-
negative patients.
Several limitations of the present study should be

noted. Our cross-sectional, observational study enrolled
patients prior to the treatment, and the results of this
study need to be confirmed in prospective multicentre
studies in different regions through shotgun microbiome
metagenomics to improve the resolution of the taxo-
nomic functional composition of the microbiome and
immunological studies. The 16S rRNA gene sequencing
targets only bacteria and does not target parasites,
viruses and fungi that are also involved in microbial-
linked faecal metabolites. Shotgun metagenomic analy-
sis can be used to determine the differences in the func-
tional genes present in the gut microbiome of HCs and
patients with PTB. Additionally, our study did not involve
patients with drug-resistant PTB or patients with non-TB
lung diseases as controls; hence, our analytical models
require validation in additional studies. The subjects did
not adhere to a standardized diet. Diet has a broad influ-
ence on the intestinal bacteria in individuals (Gentile and
Weir, 2018). Nevertheless, due to the technical short-
comings of GC-MS, the whole metabolomic phenotype
of the stool samples from patients with PTB should be
explored using a combination of various technologies,
such as liquid chromatography–MS and nuclear mag-
netic resonance (NMR) spectroscopy. Finally, longitudi-
nal studies of patients with cured PTB should address
the cause-and-effect relationships between intestinal
bacteria and the development of PTB.

Conclusion

The study provides a detailed description of the dis-
ruption of the faecal flora in a cohort of patients with
PTB, and the results showed that this disruption is
characterized by a decrease in the community diversity
and changes in the composition and profile of faecal
metabolites. Biomarkers based on the faecal micro-
biome and metabolome can discriminate patients with
PTB from healthy individuals. Thus, it is unclear
whether the models can distinguish patients with PTB
from patients with other diseases. Additional studies
are needed to investigate the link between intestinal
bacteria and PTB.

Experimental procedures

Subject recruitment

The study protocol received ethics approval from the
Ethics Committee of The First Affiliated Hospital, College
of Medicine, Zhejiang University (no. 1426). Each sub-
ject signed a written informed consent form before enrol-
ment, and his/her clinical characteristics were collected.
The Mtb infection status of all participants was

assessed by the T-SPOT.TB test (Oxford Immunotec,
UK). Healthy controls were recruited from the local com-
munity. The diagnosis of confirmed and clinically diag-
nosed PTB was based on the diagnostic criteria for PTB
(WS288-2017) (China). Briefly, all patients with positive
T-SPOT.TB results were prospectively recruited if they
had at least one of the following symptoms characteris-
tics of PTB: cough (≥2 weeks), fever (≥2 weeks), night
sweats, history of haemoptysis, weight loss, loss of
appetite, fatigue and radiological features. Active PTB
patients met one of the following criteria: (i) positive bac-
teriological evidence; (ii) positive histological examina-
tion; (iii) positive GeneXpert MTB/RIF; and (iv) a good
response to anti-TB therapy at the two-month follow-up
after the exclusion of other pulmonary infections. Addi-
tionally, all healthy subjects had negative T-SPOT.TB
tests. Subjects who had other diseases or had recently
taken antibiotics were excluded. Finally, the study
included 83 patients who were newly diagnosed with
PTB prior to chemotherapy and 52 HCs. All faecal and
blood samples were freshly collected and stored at
�80°C until analysis.

Biochemical analysis

Blood samples were collected for biochemical analysis
using the automated equipment and standard methods.
Alb, glucose (Glu), Tch, triglycerides (TG), HDL-c, LDL,
VLDL and serum creatinine (Scr) were examined using a
Hitachi 7600 automatic biochemical analyser.

V3-V4 16S rRNA gene sequencing analysis

DNA was extracted from faeces using a QIAamp DNA
stool mini kit (Hilden, Germany) according to the manu-
facturer’s protocols with minor modifications. The bacte-
rial 16S rRNA gene was amplified by PCR using the
forward primer 341F (5’-CCTAYGGGRBGCASCAG-3’)
and the reverse primer 806R (5’-GGACTACNNGGG-
TATCTAAT-3’) with the barcode and then sequenced
using the Ion S5TMXL platform. Initially, the raw reads
were generated by removing the barcode and primer
sequences using Cutadapt (V1.9.1) (Langille et al.,
2013). High-throughput sequencing reads were quality-
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filtered and processed with Quantitative Insights Into
Microbial Ecology (QIIME) (version 1.9.1). Briefly, the
effective sequences were clustered to the same OTUs
with ≥ 97% identity using Uparse in QIIME software
(Uparse v7.0.1001). Then, the analysis of the taxonomic
assignment of representative sequences of each OTU
was conducted using the Mothur method and the
SSUrRNA database in SILVA132 (Edgar, 2013). The
alpha and beta diversities were analysed based on these
normalized output data. QIIME was employed to calcu-
late the alpha diversity (observed OTUs, Chao1, Shan-
non, Simpson and ACE) and beta diversity. Venn
diagrams and rarefaction curves were plotted using R
(version 3.6). PCoA was performed using the WGCNA,
stat and ggplot2 packages in R, and the differences in
the sample groupings obtained by PCoA and NMDS
were compared by permutational multivariate analysis of
variance (PERMANOVA and MRPP in the vegan pack-
age in R). LEfSe analyses were performed using the
website http://huttenhower.sph.harvard.edu/galaxy/ with
the LDA score threshold of 4. Metastats analyses were
conducted at various taxonomic levels (phylum, family
and genus), and the differences between the groups
were examined with permutation tests. Additionally, P
values were adjusted using the Benjamin and Hochberg
false discovery rate method to obtain the q values. To
assess the correlations between these data, Spearman
correlation coefficients were calculated using the cor and
cor.test functions in R and the correlation matrix. The
sequence data of this study have been deposited in the
GenBank Sequence Read Archive (SRA) of NCBI under
the accession code BioProject PRJNA684468.

Sample processing and GC-MS analysis of the
metabolomic profile

Faecal metabolomic profiling was performed as reported
previously (Ye et al., 2018). Briefly, the metabolites were
extracted by mixing 30-mg stool samples with 800 µl of
precooled methanol (Sigma-Aldrich, St. Louis, MO,
USA). After centrifugation at 14 000 rpm at 4°C for
15 min, the supernatant was collected through a 0.22-
µm Millipore filter membrane and transferred into a new
Eppendorf tube containing 20 µl of the internal standard
(1 mg ml-1 heptadecanoic acid). The samples were dried
under a stream of nitrogen (Aosheng, Hangzhou, China).
The remaining aliquot of the stool sample was dissolved
in 50 µl of 15 mg ml-1 methoxyamine hydrochloride
(Sigma-Aldrich) in anhydrous pyridine (Sigma-Aldrich)
and incubated at 37°C for 24 h. Then, 50 µl of N,O-
bistrifluoroacetamide (BSTFA) with 1% trimethylsilyl chlo-
ride (TMCS) (Sigma-Aldrich) was added, and the mixture
was vortexed for 1 min and incubated at 70°C for 2 h.
Untargeted metabolomic analysis was performed using

an Agilent 7890A/5975C gas chromatography–mass
spectrometer system (Agilent Technologies, Santa Clara,
CA, USA).
The data obtained by the GC-MS analysis were pre-

processed using ChemStation (version E. 02. 02.
1431, Agilent, CA, USA) and Chroma TOF software
(version 4.34, LECO, St. Joseph, MI, USA). Metabo-
lites were annotated according to the untargeted GC-
MS database from Lumingbio and NIST. Principal
component analysis (PCA) and orthogonal partial least-
squares discriminant analysis (OPLS-DA) were per-
formed to visualize the differences between the
groups. Significant metabolites were identified accord-
ing to the OPLS-DA model with variable influence on
projection (VIP) values > 1 and P values < 0.05 (two-
tailed Student’s t-test).
SCFAs were extracted from 20 mg of faeces in 500 µl

of water containing 10 g ml-1 hexanoic acid-d3 as an
internal standard. After centrifugation at 150 000 rpm at
4°C for 5 min, the supernatant mixed with the same vol-
umes of ethyl acetate (5% sulfuric acid). Then, the mix-
ture was vortexed, centrifuged and incubated for 30 min
at 4°C. Standard mixtures of 6 SCFAs were prepared by
the same procedure.

Random forest-based classification models

Microbiome and metabolomic data were used to construct
separate random forest-based classification models (Brei-
man, 2001) using the randomForest R package; the rela-
tive abundance of all bacterial genera and relative
metabolite contents were used as separate independent
variables, and the group (HCs and PTB) was the depen-
dent variable. All datasets were partitioned into a training
set (70%) and a test set (30%) using random sampling. Ini-
tially, a 10-fold cross-validation was conducted using the
training set to select a classifier with the best performance
and the lowest cross-validation error. Subsequent training
of the random forest classifier involved the calculation of a
feature importance measure, which was defined as the
ranking based on a mean decrease in the Gini index, for
every feature of the training dataset. The ratio of the num-
ber of randomly generated decision trees for the predicted
samples of PTB to the number of HCs to the actual
observed number of the PTB samples based on the test set
was defined as the POBD, which was used to evaluate the
accuracy of the model. Additionally, the performance of the
models was evaluated using the test dataset based on the
AUC of ROC curves plotted using the pROC package in R.

Statistical analysis

The data are presented as the means � standard devia-
tions (SDs), means � standard error of the mean (SEM)
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or medians with interquartile ranges, as appropriate. The
Shapiro–Wilk test was used to examine the normality of
the data. Continuous variables with a normal distribution
were assessed using two-tailed independent sample t
tests, whereas the data that did not fit a normal distribu-
tion were assessed using a non-parametric Mann–Whit-
ney test. The categorical data were analysed using the
chi-squared test. Statistical significance was defined as
P < 0.05, and the analyses were performed with SPSS
(version 21, SPSS Inc., Chicago, IL, USA). Images were
generated by GraphPad Prism 8.0 and R.
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Supporting information

Additional supporting information may be found online in
the Supporting Information section at the end of the arti-
cle.
Fig. S1. Dysbiosis of the faecal microbiota in patients with
PTB. (A) The number of observed species was lower in the
PTB group than in the HC group. (B) Rarefaction curves
were constructed based on the amount of sequencing data
extracted and the number of corresponding OTUs. (C) A
NMDS based on Unweighted Unifrac distance showed that
the distribution of the microbial community in the PTB group
was different from that of the HCs group (stress
value=0.191). NMDS, nonmetric multidimensional scaling.
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Fig. S2. Prediction of PTB using random forest models. (A)
and (B) Area under the curve for the random forest model
obtained with the training set (n=94). PTB, pulmonary tuber-
culosis.
Fig. S3. Receiver operating characteristic (ROC) analysis of
metabolites. (A) ROC curves of Fusobacterium, Fusicateni-
bacter, Tyzzerella, and Anaerotruncus; (B) ROC curves of
the combination of Fusobacterium, Fusicatenibacter, Tyzzer-
ella, and Anaerotruncus; (C) ROC curves of 1-tetracosanol,
3-hydroxypicolinic acid, behenic acid, pyrophosphate, and

tromethamine; (D) ROC curves of the combination of 1-te-
tracosanol, 3-hydroxypicolinic acid, behenic acid, pyrophos-
phate, and tromethamine.
Table S1. Differential metabolites identified by GC-MS in
the PTB group compared with the HCs group.
Table S2. Genera used to establish a random forest classi-
fier for the diagnosis of PTB.
Table S3. Metabolites involved in the random forest model
for PTB diagnosis.
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