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Abstract: Visual impairment and blindness are often caused by retinal ischemia-reperfusion (I/R)
injury. We aimed to characterize a new model of I/R in pigs, in which the intraocular pathways
were not manipulated by invasive methods on the ocular system. After 12 min of ischemia followed
by 20 h of reperfusion, reactivity of retinal arterioles was measured in vitro by video microscopy.
Dihydroethidium (DHE) staining, qPCR, immunohistochemistry, quantification of neurons in the
retinal ganglion cell layer, and histological examination was performed. Retinal arterioles of I/R-treated
pigs displayed marked attenuation in response to the endothelium-dependent vasodilator, bradykinin,
compared to sham-treated pigs. DHE staining intensity and messenger RNA levels for HIF-1α,
VEGF-A, NOX2, and iNOS were elevated in retinal arterioles following I/R. Immunoreactivity to
HIF-1α, VEGF-A, NOX2, and iNOS was enhanced in retinal arteriole endothelium after I/R. Moreover,
I/R evoked a substantial decrease in Brn3a-positive retinal ganglion cells and noticeable retinal
thickening. In conclusion, the results of the present study demonstrate that short-time ocular ischemia
impairs endothelial function and integrity of retinal blood vessels and induces structural changes in
the retina. HIF-1α, VEGF-A, iNOS, and NOX2-derived reactive oxygen species appear to be involved
in the pathophysiology.
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1. Introduction

Ischemia-reperfusion (I/R) events represent a major reason for various retinal disorders [1,2].
For example, breakdown of retinal blood flow, as observed in central retinal artery occlusion (CRAO),
is known to have a deleterious impact on visual acuity after already a short time period and represents
an ophthalmic emergency with an incidence of approximately 1 per 100,000 people [3]. The lack of
oxygen supply to the retina results in massive visual impairment and often in additional sequelae,
such as retinal and vitreous hemorrhage, retinal neovascularization, or neovascular glaucoma [4].
Arterial fibrinolysis has failed to improve the clinical outcome of CRAO compared to conservative
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treatment (e.g., aspirin, ocular massage) or was even shown to be harmful [5,6]. These studies suggest
that deleterious, yet poorly understood, molecular processes are activated already in the early phase of
retinal ischemia. Although duration of ischemia is a major factor determining tissue damage [7–9],
the experimental methods to induce retinal or ocular ischemia differ substantially and may also have an
impact on the experimental outcome. For example, raising intraocular pressure by cannulation of the
anterior chamber and administering saline solution leads to complete occlusion of retinal and ciliary
vessels and represents a favorable method to investigate overall alterations within the ocular system
due to complete ischemia. An advantage of this method is that it does not require much equipment
or technical expertise. However, this technique may also induce tissue damage by mechanical
disruption of cellular structures and direct triggering of reactive oxygen species (ROS) production,
which may hamper the interpretation of results [10–12]. Other models are based on the administration
of endothelin-1 or photosensitive rose bengal to induce a partial, dose-dependent vasoconstriction
of blood vessels [8,13,14]. The minimally invasive method of applying rose bengal allows for the
investigation of ischemia-related molecular pathways [15,16]. However, since a wide range of ocular
diseases is associated with reperfusion injury due to restoration of blood flow [1,17], rose bengal may
not be suitable to investigate I/R injury because vascular occlusion is induced permanently with this
method. Although application of endothelin-1 represents a non-invasive method to induce endogenous
vasoconstriction of vessels, it affects physiological pathways by binding to ETA and ETB receptors,
which may induce direct release of cytokines and ROS [18].

The goal of this study was to test a new method to induce transient ocular ischemia by complete
blockade of arterial blood flow to the eye and brain in pigs, which represent a large animal model with
similar ocular characteristics as humans [19–22]. We tested the hypothesis that 12 min of complete
ischemia are enough to induce vascular dysfunction and retinal tissue damage. Another objective of
this study was to determine potential molecular mechanisms that are activated after 12 min of ischemia
and 20 h of reperfusion.

2. Results

2.1. Effects of I/R on Monitoring Parameters

At baseline, cerebral oxygen saturation was similar in I/R- and sham-treated pigs (44.9 ± 3.10%
and 45.7 ± 2.08%, respectively). During occlusion of vessels supplying the eyes and brain, cerebral
oxygen saturation dropped to 24.5 ± 2.33% in the I/R group, while it remained stable at the same time
point in the sham group (48.3 ± 5.41%), indicative of ischemia due to reduced blood flow, as shown in
Figure 1A. Furthermore, occlusion caused severe tachycardia in the I/R-treated group (125 ± 11.3 bpm
versus 81.5 ± 5.52 bpm in I/R versus sham, respectively), as shown in Figure 1B. Mean arterial pressure
(MAP) was similar in both groups at baseline but increased in the I/R group when cerebral blood
flow was interrupted (125 ± 14.0 mm Hg versus 73.3 ± 4.08 mm Hg in I/R versus sham, respectively),
as shown in Figure 1C.

2.2. Effects of I/R on Vascular Responses in Retinal Arterioles

Baseline diameters measured 5 min after cannulation were similar in retinal arterioles from sham-
and I/R-treated pigs, as shown in Table 1. Vascular responses in retinal arterioles were measured after
development of myogenic tone, which did also not differ between both groups, as shown in Table 1.
Vasoconstriction responses to the thromboxane mimetic, U46619, were similar in retinal arterioles from
I/R- and sham-treated pigs, as shown in Table 1 and Figure 2A. Likewise, endothelium-independent
vasodilatory responses to sodium nitroprusside (SNP) were similar in I/R- and sham-treated pigs,
as shown in Table 1 and Figure 2B. In contrast, responses to the endothelium-dependent vasodilator,
bradykinin, were impaired in arterioles of the I/R group. Table 1 and Figure 2 show baseline diameters
and maximum diameter changes of both groups in response to pharmacological substances used.
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Figure 1. Time courses of cerebral oxygen saturation measured by INVOS™ 5100C (A), of heart rate 
(B) and of mean arterial blood pressure (MAP) (C) at baseline (BL), during the occlusion time of 12 
min (occlusion), 30 min after releasing the occlusion, and after a reperfusion time of 10 and 20 h. Data 
are expressed as mean ± SE (n = 6 per timepoint and group, * p < 0.05, *** p < 0.001, **** p < 0.0001). I/R 
= ischemia-reperfusion. 
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and of mean arterial blood pressure (MAP) (C) at baseline (BL), during the occlusion time of 12 min
(occlusion), 30 min after releasing the occlusion, and after a reperfusion time of 10 and 20 h. Data are
expressed as mean ± SE (n = 6 per timepoint and group, * p < 0.05, *** p < 0.001, **** p < 0.0001).
I/R = ischemia-reperfusion.

Table 1. Initial diameter (baseline) 5 min after cannulation; basal arteriolar tone after 45 min of
equilibration (myogenic tone) in % from baseline. Maximum vascular diameter changes of retinal
arterioles to the thromboxane mimetic, U46619, to sodium nitroprusside (SNP) and to bradykinin in %
from baseline (myogenic tone). Data are presented as means ± SE.
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Figure 2. Concentration-dependent responses in retinal arterioles from I/R- and sham-treated pigs to
U46619 (A), the endothelium-independent vasodilator, SNP (B), and to the endothelium-dependent
vasodilator, bradykinin (C). Data are expressed as mean ± SE (n = 6 per concentration and group;
* p < 0.05, ** p < 0.01, **** p < 0.0001).

2.3. Messenger RNA Expression Levels in Isolated Retinal Arterioles

The primer sequences used for PCR analysis are listed in Table 2. In isolated retinal arterioles from
I/R-treated pigs, mRNA expression levels were increased for the hypoxic markers, HIF-1α and VEGF-A,
compared to sham-treated pigs (HIF-1α ≈ 1.7-fold; * p < 0.05 and VEGF-A ≈ 2.2-fold, * p < 0.05, n = 6
per group), as shown in Figure 3A. In contrast, there were no differences in mRNA expression levels for
the inflammatory cytokines, TNF-α and IL-1β, among both groups, as shown in Figure 3B. Furthermore,
I/R elicited markedly increased mRNA expression levels for the prooxidant redox enzyme, NOX2
(≈ 28-fold, ** p < 0.01), as shown in Figure 3C. By analyzing mRNA expression levels of all three nitric
oxide synthase isoforms (NOS), we found that I/R raised expression for inducible NOS (iNOS) by
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≈ 2.2-fold (* p < 0.05), whereas the expression for endothelial and neuronal NOS (eNOS and nNOS,
respectively) did not differ between the two groups, as shown in Figure 3D.

Table 2. Primer sequences for mRNA expression studies.

Gene Name Primer Sequence

NOX1 F: TCAGTTTTATTTCTGGCTGCTTGG
R: CTTTCTCAGGGTGCGCCTAC

NOX2 F: CACTTCACGCCACGATTCAC
R: TTGACTCGGGCGTTCACAC

NOX4 F: GTCCCAGTGTGTCTGCGTTAG
R: TCTCGAAATCGTTCTGTCCAGTC

eNOS F: CTACAGGACCCAAGATGGGC
R: TGAAGCAGGGTACAGGGTCT

nNOS F: ATTTTCGGAGTCACCCTGCG
R: AGCTGAAAACCTCATCTGTGTCT

iNOS F: ACTATTTCTTCCAGCTTAAGAGCC
R: CTCGTAGGGAAATACAGCACCA

TNF-α F: TTCTGCCTACTGCACTTCGAG
R: TGAGACGATGATCTGAGTCCTT

IL-1β F: ATAGTACCTGAACCCGCCAAG
R: GTGCAGCACTTCATCTCTTTGG

HIF-1α F: CGTGCGACCATGAGGAAATG
R: GTGAAGTACTTTCCATGTTGCAG

VEGF-A F: ATAGAGCGAGGCAAGAAAATCCC
R: ACACGTCTGCGGATCTTGTA

β-actin F: TGGACTACCTCCTGTCTGCT
R:CCTAGGGGTGGGTTTCTGTG
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Figure 3. Messenger RNA expression for hypoxic markers (HIF-1α, VEGF-A) (A), inflammatory
cytokines (TNFα, IL-1ß) (B), prooxidant redox enzymes (NOX1, NOX2, NOX4) (C), and individual
nitric oxide synthase (NOS) isoforms (eNOS, nNOS, iNOS) (D). Data are presented as fold-change in
mRNA expression levels in I/R-treated relative to sham-treated pigs. Data are presented as mean ± SE
(n = 6 per group; * p < 0.05, ** p < 0.01).

2.4. Immunofluorescence

Immunoreactivity to the hypoxic markers, HIF-1α and VEGF-A, to the prooxidant redox enzyme,
NOX2, as well as to iNOS was increased in the endothelium of retinal arterioles from I/R-treated pigs,
which is in line with the elevated mRNA expression levels found in the arterioles, as shown in Figure 4.
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2.5. Levels of Reactive Oxygen Species

Dihydroethidium (DHE) staining of retinal arteriole cross-sections revealed enhanced fluorescence
intensity in the vascular wall of arterioles from I/R-treated pigs, indicative of elevated ROS
concentrations compared to sham-treated pigs, as shown in Figure 5.
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2.6. Cells in the Retinal Ganglion Cell Layer

To examine whether cell viability was affected in the retinal ganglion cell (RGC) layer of this I/R
model, the density of DAPI-positive cells, which represents the overall cell density in the RGC layer,
and the density of Brn3a-positive cells, representing the RGC population, was determined. Figure 6
shows the area selected for cell counting from the midperiphery of the porcine retina.
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The density of DAPI-stained cell nuclei in the RGC layer did not differ between I/R- and
sham-treated pigs (2254 ± 130 cells/mm2 versus 2009± 178 cells/mm2), as shown in Figure 7. In contrast,
a reduction in density of Brn3a-positive cells by 34.3% was observed in I/R-treated pigs compared to
sham-treated pigs (424 ± 45.2 cells/mm2 versus 645 ± 64.4 cells/mm2), as shown in Figure 7.Int. J. Mol. Sci. 2019, 20, x 7 of 16 
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Figure 7. Representative pictures of DAPI-positive cells in sham-treated (A) and in I/R-treated pig
retinas (B). No differences in density of DAPI-positive cells were detected between both groups (C).
Pictures of Brn3a-stained cells in sham-treated (D) and in I/R-treated pigs (E). Of note, density of
Brn3a-stained cells was markedly reduced in the I/R group (F). Data are presented as mean ± SE (n = 6
per group; * p < 0.05). Scale bar = 100 µm.
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2.7. Retinal Histology

Compared to retinal tissue from sham-treated pigs, as shown in Figure 8A, retinas of I/R- treated
pigs displayed fluid accumulation in the nerve fiber layer, especially localized around the arterioles,
as shown in Figure 8B. In addition, derangement of the arterial wall architecture was visible in retinal
arterioles from the I/R group, suggesting a disturbed vascular integrity. In addition, the RGC layer
appeared disorganized in the I/R-treated group. Retinal thickness was markedly increased following
I/R-treatment compared to sham-treatment (318 ± 41 µm versus 216 ± 12 µm, respectively), as shown
in Figure 8C.Int. J. Mol. Sci. 2019, 20, x 8 of 16 
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layer; GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer
plexiform layer; ONL = outer nuclear layer; PL = photoreceptor layer. Scale bar = 100 µm.

3. Discussion

There are several new findings in this study. First, we present a new porcine model of ocular
ischemia by inducing global cerebral ischemia. Remarkably, 12 min of ischemia and 20 h of reperfusion
resulted in marked endothelial dysfunction of retinal arterioles. Second, ROS levels and mRNA
expression levels for HIF-1α, VEGF-A, NOX2, and iNOS were elevated in retinal arterioles and
immunoreactivity to HIF-1α, VEGF-A, NOX2, and iNOS was increased in retinal arteriole endothelium.
Third, a significant loss of RGCs and morphological changes of the retina were observed following
I/R. To the best of our knowledge, this is the first model on pigs investigating the effects of short-time
ischemia on retinal vascular function and retinal morphology. The findings suggest that retinal tissue
is very susceptible to already short periods of ocular ischemia.

A variety of ischemic models in brain research has already been established, starting from cerebral
occlusion time periods of 10 min [23] over 30 min to up to 2 h [24], all of them resulting in neuronal
ischemic damage of brain structures. In contrast, the time period resulting in irreversible retinal
damage remains controversial due to a variety of experimental designs and methods across different
species. Of note, retinal ischemia can be triggered by two vessel occlusion (2VO), also termed bilateral
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common carotid arteries occlusion (BCCAO), leading to a 50% retinal ischemia, as well as by combined
occlusion of vertebral arteries and common carotid arteries, also called four vessel occlusion (4VO),
resulting in complete retinal ischemia of 95–100% [25], which is the case in the present study.

In the current study, we observed endothelial dysfunction of retinal arterioles and structural
changes in retinal tissue of I/R-treated pigs. Recent studies have been more and more focused
on the association between endothelial dysfunction and the severity of vision-threatening diseases
like primary open angle glaucoma and diabetic retinopathy due to the important role of an intact
endothelium for proper regulation of retinal perfusion [26–28]. In the present study, retinal arteriole
dilation after I/R was blunted in response to the endothelium-dependent vasodilator, bradykinin,
but not to the endothelium-independent vasodilator, SNP, indicative of endothelial dysfunction. Since
NOX2 expression and ROS production were increased in retinal arterioles of I/R-treated pigs, oxidative
stress appears to be a trigger factor for endothelial dysfunction. As a consequence of ischemic injury
and retinal artery occlusion, retinal damage was previously shown to come along with an increased
expression of the hypoxic marker, HIF-1α, and its target genes VEGF, NOX2, and iNOS [14,29], which
is supported by the present study. Moreover, several studies suggested iNOS to contribute to the
pathophysiology of diabetic retinopathy [30,31]. Furthermore, upregulation of iNOS in endothelial
cells induced by I/R was associated with apoptosis, cell migration, and endothelial cell dysfunction [32].
To further search for potential sources of ROS in this model, we investigated expression levels of
prooxidant NOX enzymes, which were shown to be involved in various retinal diseases [15,33].
Remarkably, mRNA expression for NOX2 was elevated in retinal arterioles and immunoreactivity to
NOX2 was enhanced in the retinal arteriole endothelium of I/R-treated pigs, suggesting this enzyme to
be a potential source of ROS and involved in the onset of endothelial dysfunction in our model. Various
laboratories, including our own, have shown a link between hypoxia-induced HIF-1α upregulation
and enhanced NOX2 expression in other disease models [34–36]. Moreover, the retinal edema, which
we observed in the vicinity of arterioles from I/R-treated pigs suggests that already 12 min of ocular
ischemia are sufficient to induce a noticeable disruption of the inner blood–retinal barrier, which is
in line with the upregulated VEGF-A expression. We have previously observed similar changes in
a porcine model of acute respiratory distress syndrome [34]. VEGF increases vascular permeability
and promotes pathological neovascularization in various ocular diseases, such as age-related macular
degeneration and diabetic retinopathy, and its expression is also regulated by HIF-1α during hypoxic
conditions [37]. A loss of vascular integrity was also shown by increased leakage of sodium fluorescein
tracers and infiltration of monocytes into the ischemic eye at 72 h after ischemic stroke using a 90 min
transient middle cerebral artery occlusion (MCAO) model in mice [38]. The authors also observed a
delayed inflammatory response by increased mRNA levels for proinflammatory cytokines, such as
TNF-α, after 90 min of ocular ischemia and 8 h of reperfusion, which is in disagreement with our model,
but may be explained by differences in species characteristics and the duration of ischemia.

To assess whether retinal neuron viability was affected after 12 min of ischemia and 20 h of
reperfusion, we determined overall cell density in the RGC layer by counting DAPI-positive cells and
RGC density by counting Brna3a-positive cells. In the retina, Brn3 transcription factors, including
Brn3a, are exclusively expressed in RGCs [39]. Although we did not find marked changes in overall cell
density, we observed a decrease in RGC density by ≈34% in I/R-treated pigs. These findings suggest
that the subgroup of RGCs may be especially vulnerable to I/R. Since the density of Brna3a-positive
cells was only 28.6% and 21.1% of the overall cell density in the RGC layer of sham- and I/R-treated pigs,
respectively, selective loss of RGCs in the I/R group may have remained undetected when looking only
at the overall cell density. The density of Brn3a-positive cells in the sham group was close to previously
reported porcine RGC density data of the same retinal region obtained by retrograde labeling of RGCs
with Fluoro-Gold [40], suggesting that the Brn3a antibody bound specifically to RGCs. Moreover,
the overall cell density was in line with previously reported cell density data obtained by the Nissl
staining method [41].
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Bardy et al. demonstrated hemodynamic changes and impairment of cell function in miniature
pigs by experimental microembolization for 10 min only, which is supported by the present study [42].
A study by Osborne et al. has shown in a rat model of BCCAO that 24 min of blood flow cessation
followed by 6 days of reperfusion enhanced glial fibrillary acidic protein expression in the retina,
suggesting that this relatively short period of ischemia already affected retinal tissue homeostasis [43].

In contrast to these findings, a series of studies by Hayreh et al. on primates revealed that CRAO
elicited retinal damage not before a duration of 105 min, indicative of a high retinal tolerance to ischemic
injury [44,45]. One explanation for the discrepancies between the studies may be the extent and type
of occlusion of vessels supplying the retina. In those animal models, where the retinal circulation
was selectively blocked, residual oxygen and glucose supply to the retina may be maintained by the
choroidal network. Conversely, in the models with complete ocular ischemia, including the present
one, the choroidal supply is also blocked, which may be a reason for the shorter ischemic tolerance of
retinal tissue. Another explanation may be species differences with regard to retinal vascular supply
and ischemic tolerance [46]. Although porcine eyes constitute an established and validated model
in vision research due to high morphological resemblance to human eyes, e.g., with respect to the
mean area of retina and vascularization, ischemia-induced retinal damage is still poorly understood in
pigs [20,21].

In conclusion, complete cerebral ischemia presents a feasible method to induce ocular ischemia
without direct manipulation of the eye. A disadvantage of this method is that it requires a high level of
technical effort and expertise. A major new finding of this study is that only 12 min of ocular ischemia
followed by a reperfusion period of 20 h induced endothelial dysfunction in retinal arterioles, retinal
thickening, indicative of edema due to vascular leakage, and RGC loss. Hypoxia-induced changes,
such as upregulation of HIF-1α, VEGF-A, NOX2, and iNOS, as well as oxidative stress, appear to be
involved in the pathophysiology.

4. Materials and Methods

4.1. Animals

All experimental protocols were approved by the Animal Care Committee of Rhineland-Palatinate,
Germany (date of approval: 11 June 2013), and adhere to the EU Directive 2010/63/EU for animal
experiments. Male German Landrace pigs (Sus scrofa domesticus, 12–16 weeks, 33–36 kg) were
obtained from a local farm and sedated for transport by an intramuscular injection of azaperone and
ketamine (4 mg/kg). After arrival at the research facility, anesthesia was induced by intravenous
injection of fentanyl (4 µg/kg), propofol (3 mg/kg), and atracurium (1.5 mg/kg) via an ear vein
cannula and maintained by continuous infusion of fentanyl (10 µg/kg/h) and propofol (6 mg/kg/h).
After endotracheal intubation, volume-controlled ventilation was maintained with the following
settings: tidal volume 8 mL/kg; positive end-expiratory pressure 5 cm H2O, FiO2 = 0.3; inspiration
to expiration ratio 1:2; and variable respiration rate to achieve an end-tidal pCO2 < 6 kPa. Rectal
temperature was continuously monitored, and body temperature was maintained using a heating
blanket throughout the experiment. Arterial and venous catheters were placed via ultrasound guidance
into the femoral vessels for central venous vascular access and invasive blood pressure monitoring.
Hemodynamic parameters, such as arterial pressure and heart rate, were continuously measured.
Cerebral oxygen saturation (rSO2) was quantified with a self-adherent near infrared spectroscopy
probe placed bilaterally on the forehead. The rSO2 values were updated and displayed in five-second
intervals with the INVOS™ 5100C Cerebral/Somatic Oximeter (Somanetics Corporation, Troy, MI,
USA), providing a highly sensitive real-time parameter for changes in cerebral blood flow.

4.2. Materials

Components for the Krebs–Henseleit buffer were obtained from Carl Roth GmbH, Karlsuhe,
Germany. The vasodilator, bradykinin (Sigma-Aldrich Chemie GmbH, Steinheim, Germany; purity
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≥98%), induces endothelium-dependent vasodilation in various blood vessels, including porcine
retinal arterioles [47,48]. The endothelium-independent vasodilator, sodium nitroprusside (SNP;
Sigma-Aldrich; purity ≥99%) is a donor of nitric oxide (NO) [49]. The vasoconstrictor, U46619 (Cayman
Chemical, Ann Arbor, MI, U.S.; purity ≥98%), is a thromboxane A2 (TP) receptor agonist [50]. The stock
solution of U46619 was dissolved in dimethyl sulfoxide (DMSO), whereas bradykinin and sodium
nitroprusside were dissolved in phosphate buffered saline (PBS).

Antibodies against NOX2 (ab129068, 1:100), VEGF-A (ab9570, 1:100), and iNOS (ab15323, 1:100)
were purchased from Abcam, Berlin, Germany. The antibody directed against HIF-1α (NB100-654, 1:100)
was obtained from Bio-Techne GmbH, Wiesbaden, Germany. For the NOX2, HIF-1α, and VEGF-A
antibodies used in this study, we have previously shown an increased immunoreactivity in retinal
arteriole endothelium of hypoxic pigs with acute respiratory distress syndrome [34]. The secondary
antibody was coupled with Rhodamine Red-X (111-035-045, 1:200) and was purchased from
Dianova GmbH, Hamburg, Germany. For immunostaining of RGCs, a goat polyclonal brain-specific
homebox/POU domain protein 3A (Brn3a) antibody purchased from Santa Cruz Biotechnology
(sc-31984, Santa Cruz, CA, USA, 1:750) was used. The antibody was directed against an epitope close
to the N-terminus of the human Brn3a protein and was shown to be suitable for RGC detection in rats
and mice [51,52]. The amino acid sequence of this region is identical in humans, pigs, mice, and rats.
In pilot experiments performed in porcine retinal-cross sections, we found positive immunoreactivity
only in a portion of cells localized in the RGC layer, suggesting specific binding to RGCs. Donkey
anti-goat IgG Alexa Fluor 568 (A11057, Life Technologies, Carlsbad, CA, USA 1:400) was used as
secondary antibody.

4.3. Surgical Procedure

Cerebral ischemia was induced in six pigs (I/R group). After sternotomy, carotid and right vertebral
inflow were occluded by clamping the innominate artery, containing right and left carotid and right
subclavian artery, just distal of the aortic arch. The left subclavian artery was clamped equally proximal
to occlude inflow via the left vertebral artery. Effective clamping and consecutive cerebral ischemia
were confirmed by an INVOS™ 5100C Cerebral/Somatic Oximeter (Medtronic GmbH, Meerbuch,
Germany) and by an increase of blood pressure and heart rate, as well as by dilated non-reactive pupils.
After 12 min, clamping was released, and blood flow restored. After initial stabilization, pigs were
monitored, and normal hemodynamic parameters were maintained for the next 20 h. Sham surgery
was also conducted in six pigs. In this group, apart from the occlusion of arteries, the same surgical
preparation was conducted as in the I/R group.

4.4. Measurement of Vascular Reactivity in Retinal Arterioles

After pigs had been monitored for 20 h following I/R, they were sacrificed by inducing cardiac arrest
via application of high doses of propofol (200 mg) and potassium chloride (40 mmol) intravenously.
Next, the eyes were enucleated and transferred into ice-cold Krebs–Henseleit buffer of the following
ionic composition (in mM): 118.3 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3,
11 glucose. After opening the eye globe, the retina was carefully isolated as described previously [34].
Retinal arterioles of the first order were then isolated and cleaned from surrounding retinal tissue by
Vannas scissors and fine-point tweezers. Vascular measurements were conducted after cannulation of
blood vessels onto two micropipettes as described previously [53,54]. Only when the luminal arteriole
diameter decreased by at least 30% in response to 100 mM KCl, the vessel was used for experiments.
Concentration–response curves were started after development of basal tone, which was achieved
after an equilibration time of 45 min. A myogenic tone of 30%–50% of the initial diameter was defined
as preconstricted for the following concentration–response curves to vasodilators. If not achieved,
the thromboxane mimetic, U46619 (Cayman Chemical, Ann Arbor, MI, U.S.), was titrated into the
circulating Krebs–Henseleit buffer to achieve proper preconstriction.
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4.5. Measurement of Reactive Oxygen Species

Retinal arterioles together with surrounding retinal tissue were isolated immediately after
enucleation, embedded in Tissue Tek OCT compound (Sakura Finetek Europe, Alphen aan den Rijn,
Netherlands), frozen in liquid nitrogen, and stored at −80 ◦C until use. For staining, cryosections
of 10 µM thickness were placed on Superfrost Plus slides (Thermo Fisher Scientific, Menzel-Gläser,
Braunschweig, Germany) and 1 mL of 5 µM dihydroethidium (DHE, Thermo Fisher Scientific, Waltham,
MA, U.S.) solution was dropped onto each slide. Then, all slides were placed in a light-protected and
humidified chamber and incubated at 37 ◦C for 30 min. Oxidized DHE sections were analyzed as
described previously [34,55].

4.6. Quantitative PCR

Directly after enucleation, vessels were isolated in cold Krebs–Henseleit buffer using fine-point
tweezers and microscissors, washed in cold phosphate buffered solution (PBS, Thermo Fisher Scientific,
Braunschweig, Germany), transferred into a 1.5 mL tube, and snap-frozen. Homogenization of tissue
was performed in lysis buffer (1.0% NP40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mmol/l NaF,
80 mmol/l TRIS, pH 7.5). Quantitative PCR was performed according to the manufacturer’s protocol
by using a light cycler (LC480, Roche Diagnostics, Mannheim, Germany) and a StepOnePlus device
(Applied Biosystems, Foster City, CA, USA). SYBR Green (Thermo Fisher Scientific) was utilized for
fluorescent detection of DNA generated during PCR. Relative mRNA levels were quantified using
comparative threshold (CT) normalized to the β-actin gene. Primer sequences are presented in Table 2.

4.7. Immunohistochemistry

Retinal tissue containing first-order retinal arterioles was excised for immunohistochemical
evaluation and embedded in Tissue Tek OCT compound (Sakura Finetek Europe). After freezing in
liquid nitrogen, the tissue was stored at −80 ◦C until use. Frozen sections of 10 µm thickness were
cut and fixed in 4% paraformaldehyde (pH 7.4) solution for 20 min. Next, slides were rinsed with
PBS and incubated at room temperature with blocking solution containing 0.1% Triton-X-100 and 0.1%
bovine serum albumin for 30 min. Next, primary antibodies directed against HIF-1α, VEGF-A, NOX2,
and iNOS were diluted in blocking solution and incubated for 2 h at room temperature. Thereafter,
each slide was washed in PBS three times for 5 min and incubated for 1 h at room temperature with a
secondary Rhodamine Red-X-coupled antibody (Dianova GmbH). For negative controls, the primary
antibody was omitted.

For immunohistochemical visualization of RGCs, retinas were carefully separated from the
pigment epithelium by injection of Krebs buffer. In each retina, the optic disc was used as a reference
point. To minimize localization-dependent variations in RGC density, we have chosen a retinal piece
of 3 × 3 mm localized in the nasal superior midperiphery of the retina. The lower temporal corner of
this area was localized 7 mm nasally and 7 mm superior to the optic disc center, as shown in Figure 6.
We have chosen this area because the retinal midperiphery represents the major part of the porcine
retina containing ≈70% of the RGCs and has a relatively homogeneous RGC density [40]. A pair of
compasses was used to localize and measure the area, which was harvested for cell staining. After
careful excision of the retinal piece and fixation with 4% paraformaldehyde for 30 min, the tissue
was washed in PBS + 0.5% Triton-X-100 twice for 10 min and then frozen for 15 min at −80 ◦ C.
Following this procedure, the tissue was thawed at room temperature and then washed twice with
PBS and 0.5% Triton-X-100. A primary antibody for Brn3a, an established tool for RGC staining [51,52],
was diluted in blocking buffer containing PBS + 2% Triton-X-100 + 2% fetal calf serum (FCS). After
incubation overnight at 4 ◦C, residual antibody was removed by washing the tissue three times
for 10 min with PBS + 0. 5% Triton-X-100. Then, retinal tissue was incubated with the secondary
antibody for 2 h at room temperature. Subsequently, the tissue was washed three times for 10 min with
PBS and mounted with 4’,6-diamidino-2-phenylindole (DAPI)-containing medium (VECTASHIELD®
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Mounting Medium with DAPI, H-1200, BIOZOL Diagnostica Vertrieb GmbH, Eching, Germany)
and cover-slipped. Next, in each stained piece of retina, 10 areas, each representing 0.138 mm2,
were photographed by fluorescence microscopy. Brn3a- and DAPI-positive cells were counted in
all 10 areas manually and semi-automatically using a macro [56] installed in ImageJ cell counting
software (version 1.52a) [57]. The counting procedure included the following steps: convert to 8-bit,
subtract background, auto threshold, run nucleus counter (smallest 800, largest 7000) as described
elsewhere [58]. The mean cell number was then determined for the 10 counted areas per piece of tissue,
and the cell density per mm2 calculated.

4.8. Retinal Histology

Retinal cryosections of 10 µM thickness, each containing a cross-section of a first-order retinal
arteriole taken from an area 2 mm superior to the visual streak, as shown in Figure 6, were fixed with
4% paraformaldehyde (Histofix, Roth, Karlsruhe, Germany) for 20 min at room temperature. Next,
tissue sections were washed with purified water twice for 5 min, immersed in hematoxylin for 3 min,
and washed another time with purified water for 5 min. Sections were placed into 95% ethanol for
1 min, followed by 1 min of staining in eosin solution. Subsequently, tissue dehydration was done
by ascending ethanol series (70%, 96%, and 100%) and washing in xylene (3 × 5 min). Subsequently,
the glass slides were mounted with Eukitt quick-hardening mounting medium (Sigma-Aldrich,
Steinheim, Germany) and visualized by transmitted light microscopy (Nikon, Yurakucho, Tokyo,
Japan). Retinal thickness was measured at five standardized positions, and the average was calculated
for each retinal cross section.

4.9. Statistical Methods

Time courses of tissue oxygenation, heart rate, and mean arterial pressure, as well as
concentration–response curves, were compared by two-way analysis of variance (ANOVA) for
repeated measurements and the Sidak’s multiple comparisons test. A two-sided unpaired t-test was
used to compare ROS levels, mRNA expression levels (∆CT values), cell density, and retinal thickness.
Data are presented as mean ± SE, and n represents the number of pigs per group. The significance
level was set at 0.05.

5. Conclusions

In conclusion, we developed a new porcine model, which induces endothelial dysfunction of
retinal arterioles by ocular and global brain ischemia and leads to retinal pathological changes, such as
edema and loss of RGCs after only 12 min of ischemia and 20 h of reperfusion. Moreover, our data
suggest that the HIF-1α-VEGF-A-NOX2 pathway plays a crucial role in inducing retinal vascular
endothelial dysfunction in the early phase of ocular ischemia.
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Abbreviations

BL Baseline
Brn3a Brain specific homebox/POU domain protein 3A
CRAO Central retinal artery occlusion
DAPI 4’,6-diamidino-2-phenylindole
DHE Dihydroethidium
DMSO Dimethyl sulfoxide
eNOS Endothelial nitric oxide synthase
FCS Fetal calf serum
GCL Ganglion cell layer
HIF-1α Hypoxia-inducible factor-1α
HR Heartrate
iNOS Inducible nitric oxide synthase
INL Inner nuclear layer
IL Interleukin
IPL Inner plexiform layer
I/R Ischemia-reperfusion
MAP Mean arterial blood pressure
NFL Nerve fiber layer
nNOS Neuronal nitric oxide synthase
NOX Nicotinamide adenine dinucleotide phosphate oxidase
ONL Outer nuclear la
OPL Outer plexiform layer
PBS Phosphate-buffered saline
RGC Retinal ganglion cell
ROS Reactive oxygen species
SNP Sodium nitroprusside
TNF- α Tumor necrosis factor alpha
U46619 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α
VEGF-A Vascular endothelial growth factor
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