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Summary
Background For clinical decision making, it is crucial to identify patients with stage IV non-small cell lung cancer
(NSCLC) who may benefit from tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). In this
study, a deep learning-based system was designed and validated using pre-therapy computed tomography (CT)
images to predict the survival benefits of EGFR-TKIs and ICIs in stage IV NSCLC patients.

Methods This retrospective study collected data from 570 patients with stage IV EGFR-mutant NSCLC treated with
EGFR-TKIs at five institutions between 2010 and 2021 (data of 314 patients were from a previously registered study),
and 129 patients with stage IV NSCLC treated with ICIs at three institutions between 2017 and 2021 to build the ICI
test dataset. Five-fold cross-validation was applied to divide the EGFR-TKI-treated patients from four institutions
into training and internal validation datasets randomly in a ratio of 80%:20%, and the data from another institution
was used as an external test dataset. An EfficientNetV2-based survival benefit prognosis (ESBP) system was devel-
oped with pre-therapy CT images as the input and the probability score as the output to identify which patients
would receive additional survival benefit longer than the median PFS. Its prognostic performance was validated on
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the ICI test dataset. For diagnosing which patient would receive additional survival benefit, the accuracy of ESBP was
compared with the estimations of three radiologists and three oncologists with varying degrees of expertise (two, five,
and ten years). Improvements in the clinicians’ diagnostic accuracy with ESBP assistance were then quantified.

Findings ESBP achieved positive predictive values of 80¢40%, 75¢40%, and 77¢43% for additional EGFR-TKI survival
benefit prediction using the probability score of 0¢2 as the threshold on the training, internal validation, and external
test datasets, respectively. The higher ESBP score (>0¢2) indicated a better prognosis for progression-free survival
(hazard ratio: 0¢36, 95% CI: 0¢19−0¢68, p<0¢0001) in patients on the external test dataset. Patients with scores
>0¢2 in the ICI test dataset also showed better survival benefit (hazard ratio: 0¢33, 95% CI: 0¢18−0¢55, p<0¢0001).
This suggests the potential of ESBP to identify the two subgroups of benefiting patients by decoding the commonali-
ties from pre-therapy CT images (stage IV EGFR-mutant NSCLC patients receiving additional survival benefit from
EGFR-TKIs and stage IV NSCLC patients receiving additional survival benefit from ICIs). ESBP assistance improved
the diagnostic accuracy of the clinicians with two years of experience from 47¢91% to 66¢32%, and the clinicians with
five years of experience from 53¢12% to 61¢41%.

Interpretation This study developed and externally validated a preoperative CT image-based deep learning model to
predict the survival benefits of EGFR-TKI and ICI therapies in stage IV NSCLC patients, which will facilitate opti-
mized and individualized treatment strategies.

Funding This study received funding from the National Natural Science Foundation of China (82001904, 81930053,
and 62027901), and Key-Area Research and Development Program of Guangdong Province (2021B0101420005).

Copyright � 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study

We searched PubMed and Google Scholar on November
21, 2021, using the keywords: “artificial intelligence” OR
“deep learning” OR “machine learning” AND “EGFR-TKI”
OR “ICI” AND “non-small cell lung cancer”, yielded 450
results including 25 original studies that employed data
analysis to predict the survival of EGFR-TKIs or ICIs. How-
ever, only one study explores the potential of deep learn-
ing models for the prognosis of both EGFR-TKI and ICI
treatments using pre-therapy radiological images. None
of these studies compared diagnosis between the mod-
els and clinicians, nor evaluated the diagnostic accuracy
improvement to clinicians when assisted by a deep learn-
ing model for the prognosis of stage IV NSCLC.

Added value of this study

To the authors’ knowledge, this is the first study to eval-
uate improvement in diagnoses of radiologists and
oncologists with different levels of expertise of such sur-
vival benefits when assisted by a deep learning model.
The proposed ESBP is confirmed as a prognostic tool for
EGFR-TKI and ICI therapy, which suggests the potential
of ESBP to identify the two subgroups of benefiting
patients by decoding the commonalities from pre-
therapy CT images. With the assistance of ESBP, the
diagnostic accuracy of the clinicians with two and five
years of experience regarding the survival benefit from
EGFR-TKI treatment increased by 18¢14% and 8¢29%,
respectively, reaching a level comparable to the diag-
nostic accuracy of expert clinicians.

Implications of all the available evidence

The proposed model, which requires no additional
training of personnel, is clinically applicable to predict
the survival benefit of stage IV NSCLC patients and
improves the performance of non-expert radiologists
and oncologists to the level of experts. The ESBP model
may have value as an automated screening tool to tri-
age stage IV NSCLC patients whose EGFR-TKIs and ICIs
survival benefit status is uncertain, thus potentially
improving the probability of treatment benefit and
increasing the efficiency of treatment-related labor and
costs.
Introduction
Lung cancer is the second-most commonly diagnosed
malignancy and the leading cause of cancer-related
deaths worldwide.1 Non-small cell lung cancer (NSCLC)
accounts for 80−85% of all lung cancer cases.2 It is
www.thelancet.com Vol 51 Month , 2022
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recommended that stage IV NSCLC patients who are
unable to undergo surgical resection be tested to deter-
mine their epidermal growth factor receptor (EGFR) sta-
tus and PD-L1 expression. A positive EGFR mutation
identifies a distinct NSCLC patient subgroup with a bet-
ter prognosis, in whom EGFR tyrosine kinase inhibitors
(TKIs) are critical for prolonging life,3−5 and immune
checkpoint inhibitors (ICIs) significantly improve the
survival benefit of patients with PD-L1 expression.6

Previous studies have reported a treatment response
observed in 70% of EGFR-mutant NSCLC patients fol-
lowing the clinical administration of EGFR-TKI drugs,
whereas the objective response rate of ICIs in NSCLC
patients was only ≤45%.4,7,8 In clinical practices, EGFR
mutations occur in 40−60% of patients with NSCLC,
which is much higher than in patients with PD-L1
expression and other mutation subtypes.9 Although
Osimertinib has been demonstrated to be effective
against acquired TKI resistance caused by secondary
T790M mutations, the risk of treatment failure remains
uncertain, because definite biomarkers, that identify
patients who would receive an additional survival bene-
fit from EGFR-TKI, are rare.10 To date, the median pro-
gression-free survival (PFS) of EGFR-TKI responders is
approximately 9¢5 months.11 With the increasing clini-
cal usage of ICI therapies, it is critical to develop com-
puter-assisted prognostic tools to aid patient selection
for EGFR-TKI and ICI administration; this would help
target patients who have a high probability of benefiting
from these drugs while reducing the labor and expense
associated with treating patients who may not benefit
from them.

Artificial intelligence (AI), particularly deep learning,
has already shown potential for assisting in NSCLC
treatment.12,13 For example, AI can automatically extrap-
olate the subtle heterogeneity hidden in computed
tomography (CT) images and identify latent semantics
that are often undetectable by the human eye.14,15 Two
recent studies indicate that the deep learning systems
for predicting EGFR mutation status inform the efficacy
of evaluating EGFR-TKI and ICI therapy.16,17 Although
encouraging preliminary results have been published
regarding the use of AI in the prognosis of stage IV
NSCLC patients, studies are rare that compare the prog-
nostic accuracy of deep learning models for the predic-
tion of EGFR-TKI survival benefit with that of
radiologists and oncologists with different levels of
expertise. Even rarer are studies that evaluate the
improvement of the clinicians’ diagnoses of EGFR-TKI
survival benefit with the assistance of deep learning
models.

The EfficientNet architectures, especially the state-of-
the-art EfficientNetV2, have demonstrated to assist the
diagnoses of COVID-19 and other diseases via transfer
learning.18−21 This study was aimed at training and
independently validating an EfficientNetV2-based sur-
vival benefit prognosis (ESBP) system to evaluate the
www.thelancet.com Vol 51 Month , 2022
survival benefits for both EGFR-TKI and ICI in stage IV
NSCLC on pre-therapy CT images. The performance of
ESBP was compared with that of radiologists and oncol-
ogists at three expertise levels (trainee, competent, and
expert) on the same test set to assess whether ESBP
added value to the current stage IV NSCLC clinical treat-
ment paradigms.
Methods

Study design and participants
A retrospective multicenter study was conducted in
China to collect stage IV EGFR-mutant NSCLC patients
who received EGFR-TKI therapy at five independent
institutions between January 1, 2010, and June 30, 2021
(Shanghai Pulmonary Hospital, Guangdong Provincial
People’s Hospital, West China Hospital, and two cen-
ters of The First Affiliated Hospital of University of Sci-
ence and Technology of China), and stage IV NSCLC
patients treated with ICI therapy at three independent
institutions between January 1, 2017, and June 30, 2021
(Shengjing Hospital of China Medical University,
Liaoning Cancer Hospital and Institute, and The First
Affiliated Hospital of University of Science and Tech-
nology of China). In total, 570 EGFR-TKI-treated stage
IV EGFR-mutant NSCLC patients and 129 ICI-treated
stage IV NSCLC patients were enrolled in this study.
The study’s workflow is presented in Figure 1. The
EGFR-TKI datasets were of the patients with positive
EGFR mutation who underwent the recommended
EGFR-TKI therapy (including the first to third genera-
tion TKI drugs). Among them, three hundred and
ninety-eight patients received the EGFR-TKI drugs as
their first-line treatment (21 censored), and 158 received
it as their second-line treatment (49 censored). The
third-generation TKI drug Osimertinib was adminis-
tered to 33 patients, whereas 385 and 152 patients,
received first-generation and second-generation EGFR-
TKI drugs, respectively. The ICI test dataset consisted
of patients who were recommended for ICI therapy and
received the appropriate ICI treatment regimen. Among
them, 19 patients with PD-L1 expression of higher than
50% were recruited, and 48 of whom received immuno-
therapy combined with chemotherapy.

We acquired the pre-therapy CT scans from the local
PACS (Picture Archiving and Communication System)
and the demographic data from each participating hos-
pital. This study was approved by the institution’s ethics
committee, and informed consent was waived due to
the retrospective nature of the study. Diagnostic CT
scans taken within one month before drug administra-
tion were required for all eligible patients. Demographic
information, including sex, age, smoking status, perfor-
mance status score, histopathological subtype, EGFR
mutation subtype (EGFR-TKI patients), tumor propor-
tion score (ICI-treated patients), and the administered
3



Figure 1.Workflow of this study.
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therapeutic regimen, was required. Patients who had a
history of systemic anticancer therapy for advanced dis-
ease, resection, or missing follow-up records were
excluded.

This study used progression-free survival (PFS),
measured from the date of drug administration to the
time of disease progression by RECIST 1.1 criteria (at
least a 20% increase in the sum of diameters of target
lesions, or the appearance of one or more new lesions)22

or the time of death, whichever occurred earlier. PFS
was used to measure additional survival benefit, and the
prognostic performance of ESBP for evaluating the
additional survival benefit were then quantified.
Patients who were alive without progression records
were censored at the date of the last follow-up.23 The
analysis focused on PFS instead of overall survival
because, in patients with stage IV NSCLC, the evalua-
tion of overall survival could be affected by confounding
factors such as other treatments after the EGFR-TKI/
ICI treatment mentioned in this retrospective study.24

Based on the follow-up, all EGFR-TKI patients
enrolled in this study with distinct disease progression
events according to RESIST 1.1 criteria were screened to
determine their PFS, and a median PFS of 9¢5 months
was determined. Blumenthal et al. confirmed a median
PFS of approximately 9¢5 months in the responders of
EGFR-TKI therapies based on the review of 14 trials of
targeted therapies.11 In addition, median PFS has
proven to be an effective cut-off value to classify the sen-
sitivity or insensitivity to targeted therapy in NSCLC
patients.25 Consequently, the median PFS of 9¢5
months was used as the cut-off value to define a patient
who would obtain additional EGFR-TKI survival benefit.
Patients classified into the low-risk group (good res-
ponders), whose PFS was higher than the median, were
considered to receive additional survival benefit, and the
high-risk (poor responders) group, whose PFS was
lower than the median, were excluded from receiving
additional survival benefit through EGR-TKI therapy.
Input data preparation
Local radiologists reviewed and delineated the regions of
interest of the included NSCLC on CT images. The entire
primary tumor, and at least 10 mm of its peripheral
region, were included and then resized to 224 £ 224 pix-
els using spline interpolation. For central tumors, the
peripheral region was obtained with the tumor as the cen-
ter. Meanwhile, for adhesive tumors, the peripheral region
was obtained by manually determining the direction of
expansion of the tumor into the lung parenchyma. Data
augmentation including translation, flipping, rotation,
and zooming was used and each image was normalized
before it was input into the model for training (as pre-
sented in Supplementary Section A1). To obtain a robust
model for processing images from diverse sources and of
varied quality, the parameters and protocols of the CT
scans were not limited.
Model development and validation
As shown in Figure 1, five-fold cross-validation was used
for the patients treated with EGFR-TKI therapy from
four participating institutions to divide a training and
an internal validation dataset randomly in an 80:20
ratio. To develop the ESBP classifier, a state-of-the-art
EfficientNetV2 architecture,20 pre-trained on ImageNet,
was used and fine-tuned via transfer learning on the
training dataset, which used two-dimensional images as
input and output image-level probabilities for survival
benefit diagnosis. Image-level probabilities were aggre-
gated into a scan-level probability by considering the
mean of the CT slices including the primary tumor(s),
which, when a patient had more than one pre-therapy
www.thelancet.com Vol 51 Month , 2022
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scan analyzed, was further averaged to obtain the
patient-level score for survival benefit diagnosis. A
threshold of the patient-level scores was subsequently
selected using X-tile26 software to dichotomize the
patient data into subgroups that received additional sur-
vival benefit or not. Based on the threshold, the diagnos-
tic accuracies on the training and internal validation
datasets were obtained. The final ESBP model and the
threshold were determined when the optimal diagnostic
accuracy was achieved on the internal validation dataset.
The final ESBP model was then validated on the exter-
nal test dataset consisting of EGFR-TKI-treated patients
from the other one participating institution. To further
verify the ESBP model’s performance, it was applied to
the ICI test dataset to test its prognostic performance in
ICI-treated stage IV NSCLC patients. The ESBP model
is implemented using PyTorch (Version: 1.7.1), and the
training details and hyper-parameters for this model are
presented in Supplementary Section A1.

In addition, to compare the survival benefits of the
poor and good responders by the ESBP with that of the
NSCLC patients undergoing chemotherapy, advanced-
stage NSCLC patients undergoing first-line chemother-
apy were enrolled from three participating institutions.
The enrollment details of the chemotherapy patients
are presented in Supplementary Section A2.
Accuracy comparison and reproducibility analysis
A reader study was conducted to compare the perfor-
mance of ESBP on EGFR-TKI survival benefit predic-
tion with that of clinicians and to evaluate its impact on
their performance. Three radiologists and three oncolo-
gists, with varying degrees of expertise, reviewed the
same external test dataset. The two experts were profes-
sors with more than ten years of experience in radiology
and oncology; the competent group consisted of two
attending doctors with five years of experience in each
field; and two trainee residents with two years of experi-
ence in each field.

All the clinicians were blinded for the follow-up, and
the images were de-identified for their assessments. For
each patient, the pre-therapy CT scan and clinical informa-
tion, including sex, age, smoking history, histopathological
subtype, and TNM stage, were provided to ensure that the
clinicians’ diagnostic procedures were consistent with the
actual clinical workflow. All the clinicians recorded their
diagnoses on whether the patient would receive additional
survival benefit from EGFR-TKI therapy (i.e., assessing
whether the PFS could be higher than the median of 9¢5
months). Improvements to the clinicians’ diagnosis were
determined by comparing the first round of diagnosis
without ESBP assistance, and the second round of ESBP
assistance with the diagnostic result after a 4-week wash-
out. The predicted survival benefit score (in continuous
values) for each patient from ESBP, the final dichotomized
prediction (by the threshold of X-tile) based on the scores,
www.thelancet.com Vol 51 Month , 2022
and the overall accuracy were presented to the clinicians
for their second-round diagnostic decision. At the study’s
conclusion, the clinicians were asked whether, if available,
they would use an artificial intelligence-based survival pre-
diction tool to triage patients for the clinical diagnosis of
EGFR-TKI survival benefit.

The manual segmentation of tumors in CT images
requires professional expertise in delineating the tumor
boundaries, a process that is highly susceptible to subjec-
tive experience. Therefore, an inter-observer reproducibil-
ity experiment was conducted to demonstrate that the
proposed ESBP model is insensitive to variations in tumor
boundaries delineated by different observers. Accurate
manual delineation of the primary lung tumors was not
required in this experiment and two other local radiolog-
ists were only asked to draw the approximate regions of
the lung tumors. The example of tumor segmentation is
presented in Supplementary Figure S3. To compare the
scores for the accurately segmented tumor images, all
image processing procedures were identical to those
described earlier, and the images were fed into the pro-
posed ESBP model to obtain the patient-level scores.

In addition, a previous study indicated that to predict
EGFR mutation status, the images of lungs containing
lesions produced better performance than the images of
lung tumors.27 Therefore, an ad-hoc comparative experi-
ment was conducted using the lung images containing
the primary tumor to train and test an ESBP model.
The lung region was automatically segmented using an
adaptive region-growing algorithm.28 The Efficient-
NetV2 architecture and hardware conditions for train
the two models were identical. Further details are pre-
sented in Supplementary Section A3.
Statistical analysis
For prognostic stratification, the ESBP scores were used
to divide the patients into two subgroups for which the
median PFS and hazard ratio (HR) were calculated, and
the Cox proportional hazard assumption was evaluated.
The prognostic performance of ESBP was validated
using a Kaplan−Meier survival analysis, a log-rank test,
an HR with 95% confidence level (CI), and a Harrell’s
concordance index (C-index) with 95% CI. Sample size
evaluation was performed using PASS (Version: 21.0.3,
NCSS, LLC, UTAH).29

For diagnostic classification, a time-dependent
receiver operating characteristic (ROC) analysis was per-
formed with 95% Wald CIs using the continuous ESBP
score. In addition, a Kaplan−Meier survival analysis, a
log-rank test, and an HR with 95% CI were used to eval-
uate the benefit difference between the two subgroups
classified by each clinician.

For the reader study, the benefit prediction agreement
between the two clinicians at each level when unassisted
by ESBP was calculated using Fleiss’ k.30 A McNemar’s
test31 was used to evaluate the effect of ESBP on the
5
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clinicians’ predictions by comparing their diagnostic
accuracy with and without ESBP assistance. In addition,
Fleiss’ k was used to evaluate the variation in the survival
benefit prediction of ESBP using the segmentation
images of different radiologists on the same dataset.

Role of the funding source
The funders had no role in the study design, data collec-
tion and analysis, decision to publish, or preparation of
the manuscript. The corresponding authors confirm
that they had full access to the data and had the final
responsibility for deciding to submit the manuscript for
publication.
Results
A summary of the demographic variables and clinical
characteristics of the EGFR-TKI training, internal vali-
dation, and external test datasets, and the ICI test data-
set is provided in Table 1. There were no statistically
significant differences in age, sex, smoking history, his-
topathological subtype, EGFR mutation subtype, PFS,
or the administered therapeutic regimen between the
EGFR-TKI datasets (P > 0¢05).

Based on the result of five-fold cross-validation, the
ESBP model was obtained when the best accuracy was
EGFR-TKI

Training and internal validation (N = 478)

PFS < 9¢5 PFS > 9¢5 PFS

Number 249 229 36

Age, years (SD) 58 (2¢4) 59 (5¢9) 61

Sex

Male 106 86 12

Female 143 143 24

Smoke (yes) 46 46 13

Pathology

ADE 230 221 33

Others 19 8 3

EGFR mutation

19-del 92 90 14

21L858R 77 70 11

Other 80 69 11

PD-L1 status

≥50% NA NA NA

1%−49% NA NA NA

Other NA NA NA

Median PFS (SD) 6¢0 (2¢7) 15¢9 (10¢5) 5¢5

Table 1: Baseline characteristics and PFS of the patients treated with EG
training and internal validation datasets (five-fold cross-validation), an
the ICI test dataset.
Note: The data from the training and internal validation datasets are combined b

the ESBP model, and the data in the training and internal validation datasets are d

ADE = Adenocarcinoma, SD: standard deviation, NA: not applicable. PFS is meas
achieved on the internal validation dataset. The sub-
groups were defined using an ESBP threshold of 0¢2
calculated by X-tile, above which patients were predicted
to be low-risk. Such results indicate improved survival
benefit (good responders), whereas those below were
classified as at high risk of not receiving the expected
survival benefit (poor responders). The results indicated
that the ESBP classifier was a strong predictor of PFS in
the primary analysis of the 386 patients in the EGFR-
TKI training dataset [for high-risk (187 patients a with
median PFS of 6¢4 months) vs. low-risk (199 patients
with a median PFS of 18¢2 months), HR: 5¢07, 95% CI:
3¢80−6¢78, P < 0¢0001], the EGFR-TKI internal valida-
tion dataset [for high-risk (31 patients with a median
PFS of 5¢0 months) vs. low-risk (61 patients with a
median PFS of 17¢5 months), HR: 3¢50, 95% CI: 1¢76
−6¢95, P < 0¢0001], and the EGFR-TKI external test
dataset [for high-risk (28 patients with a median PFS of
7¢2 months) vs. low-risk (64 patients with a median
PFS of 17¢6 months), HR: 2¢77, 95% CI: 1¢50−5¢30, P <
0¢0001]. When using the ESBP threshold of 0¢2 on the
ICI test dataset, the higher scoring patients (91 cases
with a median PFS of 7¢0 months) showed significantly
better survival benefit than the lower scoring patients
(38 cases with a median PFS of 3¢0 months, HR: 0¢33,
95% CI: 0¢18−0¢55, P < 0¢0001), as shown in Figure 2.
ICI

External test (N = 92) ICI test (N = 129)

< 9¢5 PFS > 9¢5 PFS < 9¢5 PFS > 9¢5

56 41 88

(9¢5) 60 (7¢5) 59 (8¢2) 63 (5¢5)

28 30 62

28 11 26

9 30 55

53 40 80

3 1 8

16 NA NA

11 NA NA

29 NA NA

NA 4 15

NA 5 17

NA 32 56

(2¢6) 16¢6 (7¢6) 4¢0 (2¢6) 13¢6 (7¢9)

FR-TKI enrolled from four hospitals to construct the EGFR-TKI
d the patients to construct the EGFR-TKI external test dataset, and

ecause five-fold cross-validation was performed to train and internal validate

ifferent in each fold.

ured in months.

www.thelancet.com Vol 51 Month , 2022



Figure 2. Kaplan−Meier analysis of progression-free survival by the EfficientNetV2-based survival benefit prediction system (ESBP) classifier, evaluated on training (A), internal validation (B),
and external test (C) datasets, and further validated on the ICI test dataset (D).
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Diagnosis accuracy First diagnosis Second diagnosis P value (McNemar’s test)

ESBP 76¢08% NA NA

Radiologists

Trainee 47¢93% 68¢50% <0¢0001
Competent 51¢03% 60¢86% <0¢0001
Expert 65¢09% 70¢70% 0¢180

Oncologists

Trainee 47¢90% 64¢13% 0¢007
Competent 55¢20% 61¢95% 0¢532
Expert 65¢23% 75¢20% 0¢097

Table 2: Diagnostic accuracy of the EfficientNetV2-based survival benefit prediction (ESBP) system and the clinicians at each expertise
level. The first diagnosis represents the accuracy without ESBP assistance, and the second denotes the accuracy with ESBP assistance. The
P value indicates the statistical significance of the improvement between the two rounds of diagnosis. NA: not applicable.
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These results indicate that the ESBP score could predict
survival benefit with a C-index of 0¢755 (95% CI: 0¢720
−0¢791) on the EGFR-TKI training dataset, 0¢672 (95%
CI: 0¢610−0¢725) on the EGFR-TKI internal validation
dataset, and 0¢690 (95% CI: 0¢650−0¢728) on the
EGFR-TKI external test dataset. The proportional haz-
ard assumption evaluation indicated that the ESBP
score does not violate the assumption (P = 0¢37 and 0¢
58 on the EGFR-TKI dataset and ICI dataset). The time-
dependent ROC curves on the three EGFR-TKI datasets
are shown in Supplementary Figure S4.

On the external test dataset used for the reader study,
the overall diagnostic accuracy of ESBP was 76¢08%, as
shown in Table 2. The positive predictive value (PPV) of
ESBP, which represents the patients were predicted as
good responders truly received a PFS >9¢5 months, was
80¢40%, 75¢40%, and 77¢43% on the training, internal
validation, and external test datasets, respectively, as
shown in Supplementary Table S4.
Figure 3. Improvements in the performance of the trainee, compe
assistance. Striped bars indicate the result without ESBP assistance.
The results indicated a significant survival benefit
difference between the ESBP good responders and
first-line chemotherapy NSCLC patients (123 patients
with a median PFS of 4¢1 months, HR = 0¢18, 95%
CI = 0¢15−0¢26, P < 0¢0001). Moreover, a statistically
significant survival difference was found between the
ESBP poor responders and the first-line chemotherapy
NSCLC patients (HR = 0¢73, 95% CI = 0¢50−1¢04,
P = 0¢007). The results are presented in Supplemen-
tary Figure S1.

The results as shown in Figure 3 indicate that, when
ESBP assisted the trainee, competent, and expert radiol-
ogy and oncology clinicians, an improvement was
achieved in almost all sensitivity, specificity, PPV, and
negative predictive value (NPV) indicators. The diagno-
sis accuracy of the trainee radiologist who had only two
years of experience increased from 47¢93% to 68¢50%,
and that of the competent radiologist with five years of
experience from 51¢03% to 60¢86%, reaching a level
tent, and expert clinicians in radiology and oncology with ESBP
PPV: positive predictive value, NPV: negative predictive value.

www.thelancet.com Vol 51 Month , 2022
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similar to that of the expert (65¢09%) with more than
ten years of radiology experience. Similarly, with ESBP
assistance, the diagnostic accuracy of the trainee oncolo-
gist improved from 47¢90% to 64¢13%, and that of the
competent oncologist from 55¢20% to 61¢95%, which is
comparable to that of the expert oncologist unassisted
by ESBP (65¢32%), as shown in Table 2.

The McNemar’s test indicated that ESBP signifi-
cantly improved the performance of the trainee and
competent radiologists (both P < 0¢0001). The three
radiologists’ first round of diagnoses found no signifi-
cant difference in the survival benefit between the good
responders and poor responders diagnosed by
the trainee and competent radiologists (P = 0¢75 and
P = 0¢32, respectively). When assisted by ESBP, a signif-
icant survival difference was found between the poor
responders and good responders predicted by the
trainee (HR: 2¢67, 95% CI: 1¢30−5¢47, P < 0¢0001). For
the competent radiologist, statistics indicated that the
predicted good responders obtained a median PFS of
16¢0 months, which was significantly superior to that of
the predicted poor responders (median PFS: 10¢3
months, HR: 0¢26, 95% CI: 0¢15−0¢46; P = 0¢0031).
When assisted by ESBP, a numerically modest improve-
ment in diagnosis accuracy was observed for the expert
radiologist (5¢61%). The Kaplan−Meier survival curves
of the two rounds of diagnosis by the radiologists are
presented in Figure 4.

As shown in Figure 5, no significant survival differ-
ence was found between the two subgroups (P = 0¢25
and P = 0¢78, respectively) determined by the trainee
and competent oncologists in the first-round diagnosis.
Assisted by ESBP, the results indicate that a significant
diagnosis accuracy improvement of 16¢23% was found
(P = 0¢007, McNemar’s test) for the trainee oncologist.
However, the diagnosis by the competent oncologist
showed no significant survival difference in the second
round of diagnosis (P = 0¢26). For the expert oncologist,
ESPS assistance significantly improved the survival dif-
ference between the predicted good and poor respond-
ers in the second round of diagnosis (median PFS: 17¢3
months vs. 9¢1 months, HR: 0¢39, 95% CI: 0¢22−0¢70,
P < 0¢0001) compared with the first round of diagnosis
(median PFS:14¢5 months vs. 9¢7 months, HR: 0¢55,
95% CI: 0¢34−0¢88, P = 0¢012).

Without ESBP assistance, the inter-reader agree-
ment (Fleiss’ k) in predicting survival benefit between
the radiologist and oncologist with the same level
of competence was 0¢37 (P = 0¢0004, trainee), 0¢22
(P = 0¢0344, competent), and 0¢42 (p = 0¢0060, expert),
respectively. In addition, when compared to the ESBP
model trained by the lung images containing primary
tumors, the results indicated that the model based on
lung images obtained better diagnostic accuracy than
the model based on lung tumor images (90¢55% vs. 86¢
52%) on the training dataset. However, the model based
on lung tumor images was more effective on the
www.thelancet.com Vol 51 Month , 2022
two test datasets (63¢30% vs. 71¢73%, and 65¢86% vs.
76¢08%), as shown in Supplementary Section A3.

To evaluate inter-observer bias using Fleiss’ k, agree-
ments of 0¢87 (P = 0¢507) and 0¢89 (P = 0¢651) were
obtained by comparing the scores from the two radiolo-
gists’ approximate segmentation with the aforemen-
tioned scores. Regarding computation, the developed
ESBP algorithm was capable of analyzing as many as
118 CT slices per second. After the study, five of the six
clinicians stated that they would be willing to use an AI
algorithm to triage patients automatically for the predic-
tion of survival benefit for EGFR-TKI therapy.
Discussion
We developed and validated a non-invasive and clinically
applicable model to predict the additional survival bene-
fits of both EGFR-TKIs and ICIs in stage IV NSCLC by
deep learning analysis of pre-therapy CT images. Addi-
tionally, we confirmed that the proposed model was
able to triage stage IV NSCLC patients with uncertain
survival benefit, and in a reader study, achieved diagnos-
tic accuracy on par with that of experts in radiology and
oncology for diagnosing the additional survival benefit
of EGFR-TKIs. Moreover, we showed that the deep
learning model enabled trainee and competent-level
radiologists and oncologists to improve their EGFR-TKI
survival benefit diagnosis accuracy to expert level, with-
out additional training.

Studies indicate that in current clinical settings, only
70% of patients with EGFR-positive mutation respond to
EGFR-TKI drugs, whereas 18%−45% PD-L1 expressed
stage IV NSCLC would respond to ICI therapies.4,7,8,32 As
the largest gene mutation-targeted subpopulation in
NSCLC, the EGFR-TKI responders have a median PFS of
approximately 9¢5 months.11 Thus, an approach that could
accurately predict which patients could gain additional sur-
vival benefit through EGFR-TKIs would provide evidence
for more precise clinical implementation of EGFR-TKI
treatment. However, the assessment of EGFR-TKI benefit
for individual stage IV EGFR-mutant NSCLC patients cur-
rently lacks sufficient sensitivity to stratify the potential sur-
vival benefit for precise clinical decisions. This is further
compounded by the low inter-reader agreement on the
task (k < 0¢42 in the three paired clinician groups). The
results indicated that the patients in the external test data-
set predicted to be good responders of EGFR-TKI by ESBP,
obtained a PPV of 77¢43% for additional survival benefit
evaluation. Therefore, in the clinical guidelines setting, if
all stage IV EGFR-mutant NSCLC patients predicted to
have a high probability of additional survival benefit were
considered for EGFR-TKI therapy, those that would receive
additional survival benefit will be significantly increase
compared with the current 50% (by median).

The clinical applicability and advancement of exist-
ing image-based studies on evaluating the benefit of
EGFR-TKIs and ICIs are limited by small sample sizes
9



Figure 4. Kaplan−Meier analysis (evaluated by progression-free survival) of the poor and good responders, diagnosed by trainee, competent, and expert radiologists on the external test
dataset. A, B, and C represent the results without ESBP assistance, and D, E, and F represent the results with ESBP assistance.
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Figure 5. Kaplan−Meier analysis of the two subgroups diagnosed as poor or good responders (evaluated by progression-free survival) by trainee, competent, and expert oncologists on the
external test dataset. A, B, and C represent the results without ESBP assistance, and D, E, and F represent the results with ESBP assistance.
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and disparate execution models.33−35 Although previous
studies have verified pre-treatment image-based diag-
nostic tools to assist clinician decision-making of EGFR-
TKIs and ICIs administration,36,37 the results of this
study demonstrated that the ESBP score, derived from a
clinically accessible CT scan, can evaluate the survival
benefit of both EGFR-TKIs and ICIs in stage IV NSCLC
patients. Results of the previous study indicated that
radiological characteristics such as feature maps, associ-
ated with the favorable survival benefit of EGFR-TKIs
and ICIs in NSCLC patients, could be decoded by deep
learning network.16 Our study further revealed that the
potential commonalities of CT characteristics between
the two groups of patients could be decoded via ESBP.
In addition, recent studies showed that the activation of
EGFR is positively associated with the activation of PD-
L1, and the EGFR mutation is correlated with the upre-
gulation of the PD-L1 expression.38,39 Therefore, further
examination of the potential biological processes in com-
bination with radiologic heterogeneity, and examination
of the heterogeneous commonalities between the EGFR-
mutant NSCLC patients receiving additional survival
benefit from EGFR-TKIs, and the PD-L1 expressed
patients receiving additional survival benefit from ICI
therapy, will contribute to more precise clinical decision.

In addition, the results of this study indicate that ESBP
improves both the radiologists’ and oncologists’ diagnostic
accuracy of EGFR-TKI survival benefit in stage IV EGFR-
mutant NSCLC patients. By including more extensive data-
sets from seven participating units, our study investigated
the performance of oncologists and radiologists with differ-
ent degrees of expertise for the task of predicting additional
EGFR-TKI survival benefit. When assisted by ESBP, all six
clinicians showed improvements in both sensitivity and
PPV. In addition, a significant improvement was found in
the diagnostic accuracy (P < 0¢05) of trainee and compe-
tent radiologists and the trainee oncologist. More notably,
the difference in the survival benefit of two subgroups diag-
nosed by five of the six clinicians showed statistically signif-
icant discriminability improvements when assisted by
ESBP (P < 0¢05). The results demonstrated that ESBP out-
performed previous studies in clarifying the extent to
which an AI network can assist radiologists and oncologists
to improve survival benefit evaluation, and the advantage of
ESBP is to improve the performance of non-expert radiol-
ogists and oncologists to a level approximating that of
experts without additional training of personnel.

The results predicted that 30¢43% of the patients in the
EGFR-TKI external test dataset were poor responders
(median PFS: 7¢2 months), who were unable to receive
additional survival benefit through EGFR-TKIs. This find-
ing indicated that more frequent clinical follow-up and
monitoring strategies should be adopted for these patients
after administering EGFR-TKI therapy. In addition,
although a significant difference in PFS was presented
between the ESBP predicted poor responders and the
advanced NSCLC patients who received first-line
chemotherapy (P = 0¢007), the clinical decision-making of
first-line chemotherapy vs. targeted therapy still requires
caution for the ESBP predicted poor responders. As
reported in a previous study, the median PFS of the EGFR-
TKI non-responders was only four to five months,11 which
is lower than the median PFS of 7¢2 months among the
ESBP predicted poor responders in this study.

This study has some limitations. First, as datasets from
multiple institutions were involved, it relied on images
frommultiple scanners and with different kernels and slice
thicknesses. In the future, ESBP should be tested for pre-
analytical sources of variation, such as scanner
manufacturing, reconstruction kernels, and slice thick-
nesses. The mean of the image-level outputs was used to
estimate the patient-level score in this study, and future
studies should explore the performance of other fusion
approaches. As with other “black-box” neural networks,
the methodological understandability of ESBP was not dis-
cussed in this study. Efforts to enhance model interpret-
ability could help to increase the suitability of artificial
neural network deep learning models. In addition,
although the endpoint of PFS has been proved for efficacy
evaluation in previous EGFR-TKI prognosis studies,13,40

other endpoints such as overall survival and safety should
be considered during future deep learning model develop-
ment to facilitate better clinical decision-making. Finally,
previous studies have proved the radiologists’ manual
annotated semantic features for EGFR mutation status
prediction,41,42 combined with the inter-observer evaluation
results in this study (Fleiss’ k>0¢86), future work should
consider investigating the radiologists’ manual annotated
semantic features on the survival benefit prediction of
EGFR-TKI and ICI therapies.

In conclusion, an artificial intelligence-based system
was developed using accessible pre-therapy CT images
to accurately predict the survival benefits of EGFR-TKI
and ICI therapies for stage IV NSCLC patients. The pro-
posed ESBP assisted non-expert radiologists and oncolo-
gists to improve their accuracy of diagnosing EGFR-TKI
benefit to expert level. With further optimization and
validation on larger, more diverse datasets, the proposed
system could offer clinical value as an automated
screening tool for selecting patients with stage IV
NSCLC for better clinical outcomes.
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