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Abstract

Background: Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the
recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 (Q91YX0),
also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite
microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages.

Methodology/Principal Findings: Here we characterise Themis2 protein for the first time and show that it acts as a
macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in
RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor
TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly I:C). Moreover, LPS-induced activation of the MAP kinases
ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-kB p65, was
unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human
macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon
LPS challenge and interacted with Lyn kinase (P25911), the Rho guanine nucleotide exchange factor, Vav (P27870), and the
adaptor protein Grb2 (Q60631). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously
interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF
production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow
precursors and was regulated by inflammatory stimuli both in vitro and in vivo.

Conclusions/Significance: We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage
inflammatory responses.
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Introduction

The engagement of Toll-like receptors (TLRs) on macrophages

by pathogen-associated molecular patterns (PAMPs) leads to the

generation of pro-inflammatory cytokines and mediators such as

TNF, IL-6 and cyclo-oxygenase 2 (Cox2) which not only represent

the acute response to infection or trauma but also shape pathogen-

specific adaptive immune responses [1]. Many of the signalling

components controlling these events are now well characterised

and include: Toll-like and IL-1 receptor (TIR) domain-containing

adaptors such as MyD88; the kinases IRAK 4 (IL-1 receptor

associated kinase 4) and TBK1 (TANK-binding kinase 1); the p38,

ERK and JNK MAP kinases; the IkB kinases and members of the

AP1, NF-kB and IRF (interferon regulatory factor) families of

transcription factors. Despite this, the search for novel TLR

signalling components has continued [2] motivated in part by the

fact that the above mentioned signalling components are common

to multiple TLRs and so only partially explain the receptor

specificity apparent in TLR responses [3].

Struck by recent data highlighting the role of tyrosine kinases [4,5]

and tyrosine kinase substrates [6,7,8] in TLR signalling we adopted a

proteomic approach to recover tyrosine phosphoproteins as putative

signalling components from a murine macrophage cell line [9]. This

led to the identification of Themis2, a member of a novel protein
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family named after its founding member, Themis1 (Thymocyte-

expressed molecule involved in selection) which is selectively

expressed in T lymphocytes [10,11,12] and is required for their

normal development. In contrast, Themis2 is predominantly

expressed in macrophages and B cells (BioGPS, http://biogps.gnf.

org). Here, we describe Themis2 protein for the first time, showing

that in macrophages Themis2 functions as a signalling scaffold to

regulate TLR responses in a receptor- and mediator-selective manner

while Themis2 protein levels are responsive to inflammatory stimuli in

vivo and in vitro. We speculate that Themis2 may represent a

physiological point of control in macrophage TLR responses.

Materials and Methods

Mice
Mouse models of influenza [13] and collagen-induced arthritis

[14] were performed as described elsewhere using C57Bl6 mice

maintained in specific pathogen free conditions. Husbandry and

experimental protocols were carried out in accordance with local

institutional (Kennedy Institute of Rheumatology Ethical Proce-

dures Review Committee) and UK Home Office guidelines.

Cell culture
RAW 264.7 murine macrophages (LGC, Teddington, UK)

were cultured in DMEM (Lonza, Wokingham, UK) supplemented

with 10% FCS (Biosera, Ringmer, UK) and penicillin/streptomy-

cin (Lonza). Primary human monocyte-derived macrophages

(MDMs) were generated by culture (3–5 days) of elutriated human

monocytes (80–95% purity) in M-CSF (100 ng/ml; PeproTech,

London, UK). Primary murine macrophages were generated from

5 day cultures of bone marrow cells in M-CSF (100 ng/ml).

Antibodies
Flag reagents were from Sigma (Poole, UK). Anti-phosphotyrosine

(4G10) reagents, Vav and Grb2 antibodies were from Upstate

Biotechnology (New England Biotech. Hitchin, UK). Antibodies to

Lyn, p65 and IRF3 were from Santa Cruz Biotechnology (Insight

Biotech. Wembley, UK). The anti-Cox2 antibody came from

Transduction Labs (BD Biosciences, Oxford, UK) and antibodies to

phosphorylated MAPKs were from Cell Signaling Technology (New

England Biotech.). Antibodies to total MAP kinases were gifted by

Professor J. Saklatvala (Imperial College London). Two affinity-

purified Themis2 rabbit polyclonal antibodies were prepared by

standard protocols (Eurogentech, Liege, Belgium) using peptides

(CVHKKDRKPNPQTQNS or CEVKVVTKDTRHPTDP) which

were respectively specific to murine Themis2, or cross-reactive with

human and mouse protein.

Cloning of Themis2
The Themis2 coding sequence was amplified by PCR from an

IMAGE plasmid (clone # 3155889; Geneservice, Cambridge, UK)

using primers with a 59 Spe1 site (gcgcactagtatggagccggtgccgctgca)

and a 39 Xba1 site (gcgctctagatcaaatttcttcatagtcatggtcatccatatccggg).

The Spe1/Xba1 digested PCR product was ligated into Xba1-

linearised pCMV-FLAG4 (Sigma).

Nucleofection of RAW cells
RAW cells were transfected using the Amaxa system according

to the manufacturer’s instructions for RAW cells (Lonza).

Luciferase assays
RAW cells were nucleofected with a firefly luciferase reporter

construct containing the 59 promoter of the human TNF gene

[15], relevant expression plasmids and a renilla luciferase construct

driven by the Themis2-insensitive thymidine kinase promoter.

Firefly and renilla luciferase activities were measured sequentially

using a Dual-Glo kit from Promega (Southampton, UK).

Cytokine ELISAs
Cytokines present in supernatants were captured and detected

using appropriate antibody pairs (R and D Systems, Abingdon,

UK) and a LabScan fluorescence plate reader.

Generation of stable transfectants
RAW cells were nucleofected with appropriate expression

plasmids (5 mg) and selected (14 days) in complete medium

containing G418 (750 mg/ml, Lonza). Resistant cells were

expanded and FLAG-tagged protein expression verified by

western blot.

RNA interference
siRNAs (Dharmacon, Epson, UK) targeted to human Themis2

(siRNA A: caauguguacagcaagauu, siRNA B: gaucccgucuacgcug-

gauu), STAT3 (ccaacaaucccaagaaugu) or a pool of non-targeting

siRNAs (cat. # D-001206-13) were mixed (20 min, RT) with

Dharmafect 1 (Dharmacon, Thermo Scientific, Epsom, UK) in

serum-free OptiMem (Invitrogen). RNA interference (100 nM

siRNAs, 2 h) was performed on human MDMs on days 3 and 5

post isolation. On day 7 cells were challenged, or not, with LPS

(1 ng/ml, 8 h). Secreted TNF was measured by ELISA and cell

lysates analysed by western blot.

Immunoprecipitations
Detergent extracts of RAW cells (2–56107 for western blotting

or 16109 for proteomic experiments) were cleared by centrifuga-

tion (5 min, 130006g) pre-incubated (2 h, 4uC) with protein G

sepharose (GE healthcare) then with 4G10- or anti-Flag-agarose or

anti-Lyn and protein G sepharose beads (2 hr, 4uC, 10 ml beads/

plate of cells). Beads were washed (x5) in lysis buffer and bound

proteins eluted by boiling in 2X SDS PAGE sample buffer or, for

proteomic experiments, with FLAG peptide (1 mM, o/n) and

concentrated using a 1D SDS PAGE clean up kit (GE Healthcare,

Chalfont St. Giles, UK).

Statistics
Where appropriate, differences between datasets were analysed

using a two-tailed paired Students T test.

Tandem mass spectrometry
Protein bands were manually excised and digested in-gel with

trypsin using an Investigator Progest robot (Genomic Solutions,

Huntingdon, UK). Tandem electrospray mass spectra were

recorded using a Q-Tof hybrid quadrupole/orthogonal accelera-

tion time of flight spectrometer (Waters, Manchester, UK)

interfaced to a Micromass CapLC capillary chromatograph using

conditions and parameters described previously [16]. Spectra were

searched against the SwissProt database (version 57.11 of 24th

November 2009; 512,994 sequences) using a locally installed

version of MASCOT (Matrix Science, London UK).

Tandem mass spectrometric analysis of protein
phosphorylation sites

Protein phosphorylation site analysis was performed by LC-MS

on an LTQ-orbitrap with multistage activation. Digests were

separated on a Biosphere C18 trap column (0.1 mm id 62 mm,

Nanoseparations, Holland) connected to a PepMap C18 nano
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column (75 mm 615 cm, Dionex Corporation) fitted to a Proxeon

Easy-LC nanoflow LC-system (Proxeon, Denmark). The HPLC

system was coupled to a linear ion trap-orbitrap hybrid mass

spectrometer (LTQ-Orbitrap, Thermo Fisher Scientific Inc) via a

nanoelectrospray ion source (Proxeon Biosystems) fitted with a

5 cm Picotip FS360-20-10 emitter. The spray voltage was set to

1.2 kV and the temperature of the heated capillary was set to

200uC. Full scan MS survey spectra (m/z 350–1800) in profile

mode were acquired in the Orbitrap with a resolution of 60,000

after accumulation of 500,000 ions. The five most intense peptide

ions were fragmented by collision-induced dissociation with

multistage activation of the neutral loss of phosphoric acid from

the parent ion (neutral loss masses = 49, 32.33 and 24.5 for z = 2,3

and 4). Normalized collision energy of 35%, activation Q 0.250

and activation time 30 ms in the LTQ after the accumulation of

10,000 ions were used with maximal filling times of 1,000 ms for

the full scans and 150 ms for the MS/MS scans. Precursor ion

charge state screening was enabled and all unassigned charge

states, as well as singly charged species, were rejected. The lock

mass option was enabled for survey scans to improve mass

accuracy. Data were acquired using LTQ-orbitrap 2.5.5 software

and analysed using Xcalibur 2.0.7 software. Mascot generic files

were created from the raw files using raw2msm (gift from M.

Mann, Max Plank Institute for Biochemistry, Martinsried,

Germany) and were searched on a local Mascot server

(matrixscience.com) against a local database containing the Flag-

Themis2 construct sequence with the following criteria. Precursor

mass accuracy (10 ppm), MSMS mass accuracy (0.6 Da), enzyme

(Trypsin, missed cleavages = 1), Fixed modifications (Carbamido-

methylation of cysteine), Variable modifications (Oxidation of

methionine, phosphorylation of S, T, Y), minimum ion score = 20.

Criteria for protein identification
Scaffold (version 2.2.03, Proteome Software Inc., Portland, OR)

was used to validate tandem mass spectrometry based peptide and

protein identifications. Peptide identifications were accepted if

they could be established at greater than 95.0% probability as

specified by the Peptide Prophet algorithm [17] and protein

identifications were accepted if they contained at least 2 identified

peptides and were of greater than 99.0% probability according to

the Protein Prophet algorithm [18]. Proteins that contained similar

peptides and could not be differentiated based on MS/MS analysis

alone were grouped to satisfy the principles of parsimony.

Results

Identification of Themis2
In a phosphoproteomic screen of RAW 264.7 cells [9] we

identified five peptides (Table S1) from a predicted protein based

on a transcript at that point denoted ICB1 (Induced on Contact

with Basement membrane) [19], now named Themis2, a relative

of the recently identified protein Themis1 [10,11,12]. While

Themis2 protein has not hitherto been reported Themis2 mRNA

is expressed primarily in macrophages and B cells (BioGPS). In

contrast Themis1 is predominantly expressed in T lymphocytes.

Murine Themis1 and Themis2 share 29% identity and 65%

homology at the amino acid level (Fig. S1).

Themis2 is tyrosine phosphorylated and interacts with
Lyn kinase

Themis2 lacks any predicted enzymatic activity or protein

interaction domains but, consistent with its identification in anti-

phosphotyrosine immunoprecipitates of RAW macrophages [9], it

does contain a number of predicted sites of tyrosine phosphory-

lation (NetPhos 2.0). Most prominent among these is Y660, part of

a YEEI motif, a putative peptide substrate for Src or Fes family

kinases [20]. Indeed, Y660 was the only detectable site of inducible

tyrosine phosphorylation in tandem mass spectrometric analyses of

Flag-tagged Themis2 immunoprecipitated from stably transfected

RAW cells stimulated with pervanadate (Fig. S2). To examine

whether Themis2, like Themis1 in T cells [10], is inducibly

tyrosine phosphorylated by physiological stimulation we chal-

lenged RAW cells with LPS, immunoprecipitated phosphotyr-

osine-containing proteins and blotted for endogenous Themis2. As

depicted in Figure 1a, LPS induced the time-dependent accumu-

lation of phosphotyrosine on Themis2 without affecting the total

levels of Themis2 protein expression (Fig. S3). Once phosphory-

lated, the YEEI motif containing Y660 is predicted to bind to Src

family kinase SH2 (Src homology 2) domains [21]. This prompted

us to examine whether Themis2 might interact with a member of

the Src kinase family, particularly one, such as Lyn [22],

previously linked to TLR4 signalling. Anti-Flag immunoprecipi-

tates, from LPS-stimulated stable RAW cell transfectants express-

ing Flag-tagged Themis2, were blotted with either anti-Flag-HRP

or anti-Lyn kinase (Fig. 1b). LPS stimulation led to the co-

immunoprecipitation of Lyn with Themis2 which increased up to

1 hour but returned to baseline by 2 hours, correlating closely with

the time course of Themis2 tyrosine phosphorylation (Fig. 1a, Fig.

S3). The time-dependent increase in the recovery of Lyn also

initially correlated with increased expression of Flag-Themis2

upon LPS challenge (Fig. 1c). As discussed below, this we

attributed this up-regulation to the LPS sensitivity of the CMV

promoter in the Flag expression vector. However, compared to the

1 h time point, Lyn co-precipitation with Themis2 was lost by 2 h

(Fig. 1b) notwithstanding increased levels of Themis2 protein

expression (Fig. 1c) suggesting that the interaction of Lyn with

Themis2 may be regulated by LPS-stimulation. Confirming the

fidelity of the Lyn/Themis2 interaction, Flag-tagged Themis2 was

detectable in anti-Lyn immunoprecipitates of LPS-treated, but not

resting, Flag-Themis2 expressing RAW cells, nor in Lyn

immunoprecipitates of matched numbers of identically treated

untransfected RAW cells (Fig. S4).

To assess whether Y660 might be a site of LPS-inducible

tyrosine phosphorylation we generated a point mutant of Themis2

in which Y660 was replaced with phenylalanine (Y660F). Given

the LPS-dependent induction of Themis2 expression apparent in

Figure 1c noted above, we took care in these experiments to

mitigate against this artefact by loading progressively reduced

Figure 1. Themis2 is inducibly tyrosine phosphorylated and
interacts with Lyn kinase. Panel a. RAW cells were challenged with
LPS (10 ng/ml) for the indicated period. Phosphotyrosine-containing
proteins were recovered with 4G10-agarose, and western blotted with
anti-Themis2 antibodies. Panels b,c. Anti-Flag immunoprecipitates of
LPS-stimulated RAW cells stably expressing Flag-tagged Themis2 were
western blotted with anti-Flag-HRP and anti-Lyn kinase. Data shown is
representative of three similar experiments.
doi:10.1371/journal.pone.0011465.g001
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amounts of cell material at later time points. Thus, LPS-induced

tyrosine phosphorylation of Flag-tagged wild type Themis2 was

readily detectable (Fig. 2a). Consistent with Y660 being phos-

phorylated in response to LPS, no tyrosine phosphorylation of the

Y660F mutant was detected despite similar levels of tagged protein

expression.

Speculating that this site might also be involved in the

interaction between Themis2 and Lyn, we compared the

association of Lyn with wild type Themis2, the Y660F mutant

or the control protein bacterial alkaline phosphatase (BAP)

(Fig. 2b). In Flag immunoprecipitates of two independently

generated pools (labelled a and b) of RAW cells stably over-

expressing different amounts of wild-type Themis2, Lyn was

successfully co-immunoprecipiated in quantities closely mirroring

the levels of Themis2 expression. In cells expressing similar levels

of Y660F mutant Themis2, or two independently generated pools

of stable BAP transfectants (labelled a and b), no Lyn was detected,

consistent with a role for Y660 in the Themis2/Lyn interaction.

Themis2 interacts with Vav and Grb2
To examine in an unbiased manner whether Themis2 might

interact with proteins in addition to Lyn kinase, we immunopre-

cipitated Flag-tagged Themis2 or BAP, and identified co-

immunoprecipitating proteins by SDS-PAGE and tandem mass

spectrometry (Fig. S5). Peptides (Table S1) defining the Rho family

guanine nucleotide exchange factor (RhoGEF), Vav, were

identified in Themis2 but not BAP pull-downs. To test the fidelity

of this apparent interaction and to determine whether Grb2, a

known interaction partner of Themis1 [12,23], might also interact

with Themis2, similar anti-Flag immunoprecipitations were

western blotted for Vav and Grb2. Both Vav and Grb2

immunoreactivity was detectable in pull downs of Themis2 but

not BAP (Fig. 3a). In contrast to the interaction between Themis2

and Lyn, its association with Vav was not obviously affected by

LPS challenge. Similarly Grb2 was detectable in anti-Flag pull-

downs of resting cells but increased with LPS challenge though this

was possibly related to increased Themis2 expression in the

activated cells. As referred to above, this LPS-dependent up-

regulation presumably stems from the CMV promoter in the Flag

expression vector, since the control protein, BAP, was similarly up-

regulated by LPS-treatment.

Figure 2. A Y660F mutation of Themis2 inhibits its LPS-induced
tyrosine phosphorylation and Lyn interaction. Panel a. Flag-
tagged Themis2, or a Y660F mutant, was immunoprecipitated from LPS-
stimulated (10 ng/ml, 0–120 min) stable RAW cell transfectants. For
each time point the relative number of cell equivalents of immuno-
precipitated material analysed is indicated. Flag immunoprecipitates
were western blotted for phosphotyrosine with 4G10-HRP, stripped and
reprobed with anti-Flag-HRP. Panel b. Flag-tagged proteins were
immunoprecipitated from RAW cells stably expressing Themis2, BAP
or the Y660F mutant point mutant of Themis2. For Themis2 and BAP,
two independently generated pools of stable transfectants (denoted a
or b) were compared. Immunoprecipitates were western blotted for
Flag and Lyn kinase. In each panel a representative of three similar
experiments is shown.
doi:10.1371/journal.pone.0011465.g002

Figure 3. Vav and Grb2 associate with Themis2. Panel a. Flag-
tagged Themis2 or BAP was immunoprecipitated from matched
numbers of stable RAW cell transfectants which had been activated
or not with LPS (10 ng/ml, 60 min). Flag-tagged Themis2 and
associated Vav or Grb2 were detected by western blot. Vav and Grb2
present in whole cell lysates from Themis2 expressing RAW cells is
shown for reference (input). Panel b. Flag-tagged proteins were
immunoprecipitated from matched numbers of stable RAW cell
transfectants over-expressing wild type Themis2 (Thms2) or its proline
(2PA) or tyrosine (Y660F) mutants. Flag-tagged protein and associated
Vav and Grb2 were detected by Western blot. In each case a
representative of three similar experiments is shown.
doi:10.1371/journal.pone.0011465.g003
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Notably, the proline-rich sequence (PPPRPPK) found in

Themis1, a potential binding site for SH3 domains such as those

found in Grb2 and Vav, is conserved in Themis2. Indeed, an

identical sequence is conserved in the Grb2-binding proteins Gab1

and Gab2 and is implicated in their interaction with Grb2 in vivo

and in vitro [24]. To examine whether this sequence might be

important in regulating the interactions of Themis2 with Grb2 we

generated proline to alanine point mutants (denoted 2PA) of

prolines 2 and 4 of the PPPRPPK motif to read PAPRAPK

(mutated sites indicated in bold face). Compared to wild type

Themis2, the Y660F and, most strikingly, the 2PA mutant

exhibited reduced capacity to interact with Grb2 despite similar

levels of tagged protein expression. The interaction of Themis2

with Vav appeared unaffected by either Y660F or 2PA mutations

(Fig. 3b).

Themis2 modulates LPS-induced MAP kinase signalling
Having established interactions between Themis2 and several

signalling components we wondered whether Themis2 might

impact on signalling pathways in which these proteins are

implicated. Vav null macrophages [25] exhibit defects in LPS-

induced ERK and p38 MAPK signalling while JNK responses are

normal [25]. Grb2 is also known to modulate MAPK signalling

[26]. In preliminary experiments we therefore compared the

kinetics (0–120 min) of LPS-induced MAP kinase signalling in

untransfected RAW cells or stable Themis2 transfectants (Fig. S6).

Themis2 over-expression appeared to enhance the longevity and

magnitude of LPS-induced p38 activation while marginally

inhibiting JNK activation in the same cells. Further investigations

focussed on those time points (0–30 minutes) at which differences

were most apparent. Notably matching the profile of pathways

modulated in Vav-deficient macrophages, Themis2 appeared to

enhance the LPS-induced activation of both p38 and ERK

compared to parental RAW cells whereas activation of JNK in the

same cells was unaffected (Fig. 4a, b). Moreover, the LPS-induced

nuclear localisation of NF-kB p65 and IRF3 was unaffected by

Themis2 over-expression either acutely (0–60 min, Fig. 5a) or at

later time points (2–4 h, Fig. 5b), again mirroring Vav null

macrophages [25].

Themis2 over-expression selectively up-regulates TLR4-
mediated TNF production

To determine whether these effects on signalling might have

functional consequences we compared TNF release in RAW cells

Figure 4. Themis2 over-expression modulates LPS-induced p38 and ERK activation. Parental RAW cells or stable Themis2 transfectants
were challenged or not with LPS (10 ng/ml) as indicated. Whole cell extracts were resolved by SDS PAGE and western blotted with antibodies for the
phosphorylated MAP kinase indicated then stripped and re-probed with the relevant total MAPK antibody. Panel a depicts a representative of four
similar experiments which were analysed by scanning densitometry, the means 6 sem of which are shown in panel b. Values were normalised using
total antibody data for each protein and expressed relative to the 15 min time point in parental RAW cells.
doi:10.1371/journal.pone.0011465.g004
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stably over-expressing Themis2 or a control protein, BAP,

stimulated with ligands for TLR2 (PAM3), TLR3 (poly I:C) or

TLR4 (LPS). Themis2 over-expression enhanced LPS-induced

TNF production (approx. 2-fold) without significantly affecting

that induced by PAM3 or poly I:C (Fig. 6a).

To examine whether other inflammatory mediators might be

similarly affected LPS-stimulated RAW cells were analysed in parallel

for the generation of TNF and IL-6 (Fig. 6b). While Themis2 over-

expression enhanced the production of TNF, IL-6 production from

the same cells was unaffected. In separate similar experiments,

Themis2 over expression also failed to alter the LPS-induced

expression of a third inflammatory mediator, Cox2 (Fig. S7).

Having observed differences in the formation of Themis2

signalling complexes resulting from mutations in Y660 or the

proline-rich motif (PPPRPPK) we wondered whether these

changes might impact on the ability of Themis2 to promote

TLR-induced TNF production. Supporting the functional impor-

tance of both putative protein interaction sites, the LPS-induced

production of TNF protein by RAW cells stably expressing either

Y660F or 2PA mutants was significantly reduced (approx. 50%

inhibition, p,0.05, n = 6) relative to cells expressing wild type

Themis2 (Fig. 6c). Consistent with the previously observed

receptor specificity of Themis2 (Fig. 6a), TNF produced in

response to PAM3 (TLR2) or poly I:C (TLR3) was not

significantly different in cells expressing wild type Themis2 or its

mutants.

To assess whether Themis2 was necessary for LPS-induced

TNF production in primary human macrophages we used two

siRNAs previously shown to inhibit Themis2 mRNA expression in

a human ovarian cancer cell line [27]. As shown in Figure 6d we

observed partial reduction (20–50%) of Themis2 protein expres-

sion by both siRNAs compared with either a non-targeting control

oligo or an oligo targeting the transcription factor STAT3.

Consistent with RAW cell over-expression data, LPS-induced

TNF release from primary human macrophages partially depleted

of Themis2 was significantly inhibited (n = 4, p,0.05) by both

siRNAs (Fig. 6e).

While regulated transcription contributes to LPS-dependent

control of TNF protein expression in RAW macrophages [28] it is

also regulated post transcriptionally [29], largely through AU-rich

elements (AREs) present in the 39 untranslated region (39UTR) of the

mature mRNA transcript. To distinguish between these two modes

of regulation we used a luciferase reporter containing the 59

promoter of human TNF but lacking the 39 UTR that is required for

post transcriptional regulation [15]. Compared with an empty vector

control, transient transfection with Flag-tagged Themis2 significantly

enhanced (approx. 2-fold) the LPS-induced expression of luciferase

(Fig. 6f) suggesting that the effect of Themis2 on TNF protein levels is

at least partially attributable to a transcriptional effect.

Regulation of Themis2 expression
Because Themis2 mRNA is up-regulated during differentiation

of HL-60 cells into monocyte-like cells [30] we examined whether

Themis2 protein expression might be regulated during differen-

tiation of primary macrophages. Consistent with the mRNA data

reported above Themis2 protein was present in both adherent

(macrophage-enriched) and non-adherent (lymphocyte-enriched)

murine splenocyte populations but was undetectable in undiffer-

entiated bone marrow cells. In vitro differentiation of these

precursors into macrophages, by culture in the presence of M-

CSF, induced expression of Themis2 (Fig. 7a).

Themis2 mRNA expression is also reported to be regulated by

IFNc [27] or estrogen [31] treatment of ovarian cancer cell lines.

Similarly, Themis2 protein was up-regulated by treatment (48hrs)

of RAW macrophages with pro-inflammatory stimuli (IFNc, mean

fold increase6sem: 1.5860.09, n = 3) but inhibited by anti-

inflammatory stimuli (TGFb, 0.5760.04, n = 3; dexamethasone,

0.4760.16, n = 3) without any detectable effect on actin expression

in the same cells (Fig. 7b).

The regulation of Themis2 protein levels by pro- and anti-

inflammatory stimuli in vitro prompted us to examine whether

similar regulation of Themis2 expression might occur during in vivo

inflammatory responses. We measured Themis2 protein expres-

sion in adherent (macrophage-enriched) or non-adherent (B cell-

enriched) splenocyte populations in a murine model of arthritis.

Using a collagen-induced arthritis model [14], mice immunised

with collagen but failing to develop arthritis exhibited no change in

Themis2 expression. In contrast, in those mice developing arthritic

symptoms following collagen immunisation Themis2 expression in

either adherent or non-adherent splenocytes was abolished

(Fig. 7c). Similarly, in an infectious disease model, infection of

mice with influenza virus led to a complete but transient loss of

Themis2 expression in whole splenocytes (Fig. 7d) that broadly

coincided with peak levels of weight loss (Fig. 7e), an indirect

measure of lung inflammation [13].

Discussion

Themis1 is the recently identified founder member of a family

of five proteins defined on the basis of two repeats of a CABIT

Figure 5. Themis2 over expression has no effect on LPS-
induced nuclear localisation of NF-kB p65 or IRF3. Nuclear
extracts of parental RAW cells or stable Themis2 transfectants were
prepared following LPS challenge for the periods indicated (0–60 min,
panel a; 0–4 hr, panel b), western blotted as shown then stripped and
re-probed for actin. A representative of three similar experiments is
shown.
doi:10.1371/journal.pone.0011465.g005
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domain [11] and is selectively expressed in T cells [10,11,12].

Themis2 is a previously uncharacterised member of this family

whose mRNA is selectively expressed in B cells and macrophages.

The data presented here describe Themis2 protein for the first

time and characterise its function in macrophages.

We demonstrate that Themis2 behaves as a regulator of TLR

signalling with an unusually specific mode of action, controlling

the generation of TNF induced by TLR4 engagement without

affecting TNF generated in response to ligands for TLRs 2 or 3,

nor the TLR4-dependent production of other inflammatory

mediators such as IL-6 or Cox2. Such specificity is in marked

contrast to the majority of known TLR signalling components

which are common to multiple TLRs [1,2]. The molecular basis of

this specificity remains to be clarified but may be explained by its

interaction with the RhoGEF Vav. The tyrosine phosphorylation

of Vav, linked to activation of its RhoGEF activity [32], is induced

following TLR4 engagement on RAW cells [33]. Moreover,

contrary to the sharing of signalling components by different TLRs

noted above, several RhoGEFs and members of the Rho/Rac

family GTPases they regulate, have been shown to modulate TLR

signalling in a receptor or mediator-selective manner. These

include RhoA [34] and the RhoGEFs Def6 [35], AKAP13 [36]

and Vav itself [25]. Further supporting a role for Vav in the effects

of Themis2, the deficits resulting from genetic deletion of all three

Vav proteins strikingly mirror the events modulated by over-

expression of Themis2. Thus, LPS-induced TNF responses are

Figure 6. Themis2 regulates TLR-induced cytokine expression. Panel a. Parental RAW cells or cells stably over-expressing Themis2 or BAP
were challenged (o/n) as indicated. TNF production was measured by ELISA. Data represent the mean 6 sem of six experiments. * denotes p,0.05.
Panel b. Parental or stably transfected RAW cells were challenged (o/n) with LPS and the presence of TNF and IL-6 in supernatants was analysed by
ELISA. Data were normalised against values obtained in parental RAW cells and represent the mean 6 sem of nine experiments. * denotes p,0.05.
Panel c. RAW cells stably over-expressing wild-type Themis2 or the 2PA or Y660F mutants were stimulated (o/n) with LPS (10 ng/ml), PAM3 (10 ng/ml)
or poly I:C (20 mg/ml). TNF in cell supernatants was measured by ELISA and expressed relative to the levels generated by wild type Themis2
transfectants. Data represent the mean 6 sem of 6 experiments. * denotes p,0.05, ** denotes p,0.005. Panels d and e. Primary human macrophages
were transfected, or not, on days 3 and 5 with the siRNA indicated (100 nM). On day 7, levels of Themis2 protein and actin were measured by western
blot (panel d) and LPS-induced generation of TNF was measured by ELISA (panel e). Data represent the mean 6 sem of four experiments, * denotes
p,0.05. Panel f. Parental RAW cells were nucleofected with constructs (2 mg each) encoding renilla luciferase, TNF-firefly luciferase and either Flag-
tagged Themis2 or the empty CMV Flag vector. LPS-induced (10 ng/ml, 4 hrs) levels of firefly luciferase activity were normalised against levels of
renilla luciferase in the same triplicate wells then expressed as a percentage of the level detected in empty vector-transfected cells. Data represent
the mean 6 sem of nine experiments. ** denotes p,0.001.
doi:10.1371/journal.pone.0011465.g006
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deficient in Vav null macrophages despite normal IL-6 and Cox2

production [25]. This parallel extends to the signalling pathways

affected: LPS-induced p38 and ERK MAP kinase activation are

inhibited in Vav null macrophages while JNK and NF-kB

responses are spared [25]. Similarly, RAW cells over-expressing

Themis2 exhibit enhanced LPS-induced p38 and ERK activation

despite normal JNK responses and nuclear localisation of NF-kB

and IRF3.

How might the noted effects on p38 and ERK signalling

modulate TNF production? While the role of p38 and ERK in

LPS-induced TNF expression is now well established they are

believed regulate both overlapping and distinct elements of the

process. ERK activation is associated with the regulation of TNF

transcription, possibly via the phosphorylation of AP1 family

members such as Egr1 [37,38]. Thus, it is possible that the up-

regulation of transcription of the TNF-luciferase reporter by

Themis2 (Fig. 6f) is causally linked to the up-regulation of LPS-

induced ERK phosphorylation (Fig. 4a, b). p38 activation

modulates TNF protein expression by regulating the expression

and function of the ARE-binding protein Tristetraprolin (TTP)

and thereby robustly enhancing the stability of TNF message

[29,39,40]. However, ERK also regulates TTP protein stability

[39] and ERK and p38 activities can jointly regulate TNF mRNA

stability [41]. Therefore it is entirely possible that such post-

transcriptional mechanisms also contribute to the observed effects

of Themis2 on TNF protein expression. It will therefore be of

interest, in future experiments, to examine whether Themis2 has

any effect on TNF mRNA stability.

The correlation in the pathways and cytokines modulated by

Vav deletion and Themis2 over-expression suggest that the

functional impact of Themis2 on these events is mediated

primarily through its interaction with Vav. The molecular basis

of this interaction is now the focus of ongoing work in our

laboratory. Vav contains an SH2 domain and two SH3 domains

which could respectively mediate interaction through tyrosine

phosphorylation of Themis2, for example at Y660, or through

proline-rich sequences such as that common to both Themis1 and

2 (PPPRPPK). Our data suggest that the interaction with Vav is

both constitutive (Fig. 3a) and independent of Y660 (Fig. 3b),

arguing against an association mediated by the Vav SH2 domain

and inducible tyrosine phosphorylation on Themis2. In addition,

alanine point mutants of prolines 2 and 4 (indicated in bold face) of

the PPPRPPK motif had no obvious effect on the Vav/Themis2

interaction despite inhibiting its interaction with Grb2 (Fig. 3b,

discussed below) arguing against this motif as a Vav binding site.

However, Themis2 contains a number of motifs conforming to the

patterns (RxPxxP, PxxPxR or PxxP) reported for SH3 ligands, any

one of which could mediate the interaction with Vav. Mutational

analyses of these putative SH3-binding motifs, now underway in

our laboratory, will help to define the site of interaction between

Themis2 and Vav and address its functional significance.

While further study is required to clarify the role of Vav, our

current data do support a role for other protein/protein

Figure 7. Regulation of Themis2 expression. In panels a–d,
detergent extracts of matched numbers of cells were western blotted
for Themis2 and actin. Data are representative of three similar
experiments. Panel a. Whole splenocytes were separated into non-
adherent (lymphocyte-enriched, L) and adherent (macrophage-en-
riched, M) populations; bone marrow cells undifferentiated (BM) or
M-CSF-differentiated macrophages (MW). Panel b. RAW cells were
treated (48 hrs) with or without IFNc (10 ng/ml), TGFb (20 ng/ml) or
dexamethasone (0.1 mM). The relative levels of expression in this

experiment, corrected for actin expression levels, are presented below
each lane. A representative of three similar experiments is presented.
Panel c. Lymphocyte-enriched (L) or macrophage-enriched (M)
splenocyte populations were recovered as above from control mice
(con), immunised but disease-free mice (imm) or immunised arthritic
mice (arth) 10 days after immunisation with type II collagen. Panels d,e.
Mice (5 per time point) were inoculated (50HAU of X31 influenza,
nasally) or not, weighed and splenocytes recovered at the indicated
time points. Weight (mean6sem) is expressed as a percentage of the
value measured at time zero for each animal.
doi:10.1371/journal.pone.0011465.g007
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interactions in Themis2 function. The Src family kinase Lyn

appears to interact with Themis2 in a manner that correlates with

the tyrosine phosphorylation of Themis2 (Fig. 1a) and is at least

partially dependent on Y660 since the interaction is lost in the

Y660F Themis2 mutant (Fig. 2). Using tandem mass spectrometry

we directly demonstrated the tyrosine phosphorylation of Y660 in

vivo, albeit using a robust chemical stimulus, pervanadate. The

same phosphopeptide was not detectable in a similar study using

Themis2 derived from LPS-treated RAW cells (data not shown),

probably a reflection the lower stoichiometry achieved using a

physiological stimulus. However, the fact that mutation of Y660

abolishes the LPS-induced tyrosine phosphorylation of Themis2

(Fig. 2) strongly suggests that this site is indeed targeted during LPS

signalling. Together, these data suggest a model in which LPS

drives the tyrosine phosphorylation of Themis2 at Y660 which

allows Lyn to bind via its SH2 domain. The functional importance

of this interaction is supported by the observation that the ability of

Themis2 to promote LPS-induced TNF production is significantly

inhibited by mutation of Y660 (Fig 6c). How might the loss of Lyn

binding impact upon LPS signalling? As discussed above Vav is

known to be a target of LPS-regulated tyrosine phosphorylation

[33], and this controls its RhoGEF activity [32]. Indeed, the Src

family kinase Hck, a close relative of Lyn, is reported to

phosphorylate Vav following LPS challenge of RAW macrophages

[33]. One possibility under active investigation is that by providing

a platform on which both proteins are recruited, Themis2 might

serve to facilitate the tyrosine phosphorylation of Vav by Lyn.

The data presented here also suggest that, as reported for its

relative Themis1 [12,23], Themis2 interacts with the adaptor

protein Grb2. Our data are consistent with a role for the

PPPRPPK motif in this interaction since mutation of prolines 2

and 4 in this sequence simultaneously inhibited interaction with

Grb2 (Fig. 3b) and the ability of Themis2 to promote LPS-induced

TNF release (Fig. 6c). Together these data strongly suggest that the

Themis2 protein complex defined here must be retained intact for

optimal LPS-induced TNF release. The reported interaction

between Grb2 and Themis1 [12] is proposed to involve both SH2

and SH3 domains of Grb2. In this light it is notable that the

Y660F mutation of Themis2 also appears to reduce its interaction

with Grb2, although not to the extent of the 2PA proline mutant

(Fig. 3b). Thus, like the Themis1, the interaction between Themis2

and Grb2 may involve contributions from both proline-rich and

phosphotyrosine ligands.

While little literature precedent exists describing a role for Grb2

in TLR signalling, the strategy of clustering together the same

group of signalling proteins appears to have been adopted by at

least one pathogen to subvert TLR signalling in B cells. The

murine gammaherpesvirus 68 (MHV68) protein, M2, interacts

with Grb2 [42], Vav, and the Src kinase Fyn [43]. Akin to the

effects of Themis2 over-expression reported here, M2 augments

the LPS-driven proliferation of B cells and selectively regulates the

generation of some inflammatory mediators (e.g. IL-10) but not

others (e.g. RANTES) [44]. While MHV68 M2 and Themis2

share little amino acid sequence homology they both appear to

function as scaffolds for assembling signalling complexes of Vav,

Grb2 and members of the Src kinase family and seemingly share

the capacity to modulate LPS responses and selectively modulate

inducible cytokine production.

Just as Themis1 is required for the development of T cells so

Themis2 is induced upon differentiation of macrophages from

bone marrow precursors under the influence of M-CSF. It is also

of interest that other modulators of macrophage phenotype

regulate the level of Themis2 protein expression. We show that

IFNc, a cytokine known to promote inflammatory macrophage

responses including TNF production [45], increases the expression

of Themis2 protein whereas TGFb and dexamethasone, which

inhibit LPS-induced TNF production [45], reduce Themis2 levels.

Since we also demonstrate that in vivo immune responses to both

inflammatory (CIA) and infectious (influenza) disease are also

associated with profound regulation of Themis2 protein levels it is

tempting to speculate that Themis2 expression may represent an

important physiological point of control by which macrophage

inflammatory phenotype and function, and specifically the

magnitude of TNF responses, may be dynamically regulated.

The mechanisms by which Themis2 protein levels are regulated

by inflammatory signals have yet to be investigated but it is worth

noting that the 39UTR of Themis2 contains several AREs

associated with the binding of proteins controlling mRNA stability

[46]. Indeed one sequence, UUAUUUAUU, found in the

Themis2 39UTR represents the cognate binding site for TTP

[47], a post-transcriptional regulator induced by inflammatory

stimuli and implicated in the control of the expression of multiple

inflammatory genes [48]. It will also be informative to dissect the

59 promoter region of Themis2 to define potential sites of

transcriptional regulation.

In summary, we identify Themis2 as a novel macrophage

signalling scaffold that selectively regulates TNF expression

downstream of TLR4 and whose expression is itself regulated

during macrophage differentiation and in vivo models of infectious

and inflammatory disease. As such, Themis2 could represent a

novel site at which therapies designed to intervene in chronic

inflammatory diseases involving TNF, such as rheumatoid

arthritis, might usefully be targeted.

Supporting Information

Table S1 Peptides defining Themis2 and Vav. a Mascot ion

scores reflect the probability (p) of chance identification of the

same peptide: scores.29 for the Themis2 search, or .30 for the

Vav search, denote p,0.05. b Scaffold probability reflects the

percentage confidence that each peptide sequence identified is a

non-random event. The Scaffold calculated probability scores for

each protein as a whole was 100%.

Found at: doi:10.1371/journal.pone.0011465.s001 (0.03 MB

DOC)

Figure S1 Comparison of murine Themis1 and Themis2.

Sequences were compared using the alignment tool in the ExPASy

proteomics server (http://us.expasy.org).

Found at: doi:10.1371/journal.pone.0011465.s002 (0.03 MB

DOC)

Figure S2 MS/MS detection of tyrosine phosphorylated Y660.

Flag-Themis2 from resting cells or pervanadate-treated cells was

isolated by immunoprecipiation, separated by SDS-PAGE and

digested with trypsin. The tryptic digests were analysed by LC-MS

on an LTQ-orbitrap and the c-terminal peptide

HSTmESHLLPDPDmDDHDpYEEI was identified from the

pervanadate treated sample (A) with a Mascot ion score of 31

(m represents oxidised methionine and pY represents phosphotyr-

osine). The extracted ion chromatogram of this phosphopeptide

ion (m/z = 913.349) from Themis2 isolated from resting and

pervanadate-treated cells is shown (B). Similar changes were

observed for the same peptide without oxidation (m/z = 902.686)

and with one oxidised methionine (m/z = 908.017) ( data not

shown).

Found at: doi:10.1371/journal.pone.0011465.s003 (0.33 MB TIF)

Figure S3 LPS-induced tyrosine phosphorylation of endogenous

Themis2. Phosphotyrosine-containing proteins were immunopre-
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cipitated from detergent extracts of LPS-treated RAW cells

(10 ng/ml, 0–120 min). Immunoprecipitates or input material

from each time point was western blotted for Themis2.

Found at: doi:10.1371/journal.pone.0011465.s004 (0.16 MB TIF)

Figure S4 Themis2 interacts with Lyn kinase. Untransfected

parental RAW cells or cells stably expressing Flag-tagged Themis2

were stimulated (1 hr), or not, with LPS (10 ng/ml). Immunopre-

cipitations with anti-Flag or anti-Lyn were performed on separate

aliquots of the same cleared extracts. Immunoprecipitates were

western blotted as indicated. Data depict a representative of three

similar experiments.

Found at: doi:10.1371/journal.pone.0011465.s005 (0.72 MB TIF)

Figure S5 Identification of Themis2 interacting proteins. Flag-

tagged and associated proteins were recovered using Flag-agarose

beads, eluted, concentrated, resolved and visualised as described in

Methods. Protein bands were digested with trypsin and peptides

identified by tandem mass spectrometry (see Supplementary Table

1) and validated using Scaffold software.

Found at: doi:10.1371/journal.pone.0011465.s006 (0.27 MB TIF)

Figure S6 Over-expression of Themis2 promotes LPS-induced

p38 but not JNK activation. Parental RAW cells or cells stably

over-expressing Themis2 were stimulated with LPS (10 ng/ml) for

the period indicated. Anti-phosphotyrosine-containing proteins

were immunoprecipitated from detergent lysates with 4G10-

agarose beads. The presence of total p38 and JNK MAPKs in

immunoprecipitates or input material was detected by western

blotting. A representative of five similar experiments is shown.

Found at: doi:10.1371/journal.pone.0011465.s007 (0.57 MB TIF)

Figure S7 Themis2 over-expression has no effect on LPS-

induced Cox2 expression. Matched numbers of parental RAW

cells or cells stably over-expressing Themis2 were challenged with

LPS (10 ng/ml) for the period indicated and detergent extracts

western blotted for Cox2 and actin. Data shown are representative

of four similar experiments.

Found at: doi:10.1371/journal.pone.0011465.s008 (0.61 MB TIF)
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