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Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all

the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most

unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport

measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance

under parallel electric and magnetic fields, that is, unlike most metals whose resistivity

increases under an external magnetic field, we observe that our high mobility TaAs samples

become more conductive as a magnetic field is applied along the direction of the current for

certain ranges of the field strength. We present systematically detailed data and careful

analyses, which allow us to exclude other possible origins of the observed negative

magnetoresistance. Our transport data, corroborated by photoemission measurements,

first-principles calculations and theoretical analyses, collectively demonstrate signatures of

the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
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T
he principles of physics rest crucially on symmetries and
their associated conservation laws. Over the past century,
physicists have repeatedly observed the violations of

apparent conservation laws in particle physics, each time leading
to new insights and a refinement of our understanding of nature.
One of the most interesting phenomena of this type is the
breaking of a conservation law of classical physics by quantum-
mechanical effects, a so-called anomaly in quantum field theory1.
Perhaps the most primitive example is the so-called chiral
anomaly associated with Weyl fermions2–6. A Weyl fermion is a
massless fermion that carries a definite chirality. Due to the chiral
anomaly, the chiral charge of Weyl fermions is not conserved by
the full quantum-mechanical theory. Historically, the chiral
anomaly was crucial in understanding a number of important
aspects of the standard model of particle physics. The most
well-known case is the triangle anomaly associated with the decay
of the neutral pion p0 (refs 3,4). Despite having been discovered
more than 40 years ago, it remained solely in the realm of
high-energy physics.

Recently, there has been considerable progress in under-
standing the correspondence between high-energy and condensed
matter physics, which has led to deeper knowledge of important
topics in physics such as spontaneous symmetry breaking, phase
transitions and renormalization. Such knowledge has, in turn,
greatly helped physicists and materials scientists to better
understand magnets, superconductors and other novel materials,
leading to important practical device applications. Here, we
present the signatures of the chiral anomaly in a low-energy
condensed matter Weyl system. In order to measure the chiral
anomaly in a solid-state system, one needs to find a perturbation
that couples differently to the two Weyl fermions of opposite
chiralities. This is most naturally realized in a Weyl semimetal, in
which the two Weyl cones are separated in momentum space.
Recent theoretical and experimental advances have shown that
Weyl fermions can arise in the bulk of certain novel semimetals
with nontrivial topology7–16. A Weyl semimetal is a bulk
crystal whose low-energy excitations satisfy the Weyl equation.
Therefore, the conduction and valence bands touch at discrete
points, the Weyl nodes, with a linear dispersion relation in all
three momentum space directions moving away from the Weyl
node. The nontrivial topological nature of a Weyl semimetal
guarantees that Weyl fermions with opposite chiralities are
separated in momentum space (Fig. 1a), and host a monopole
and an antimonopole of Berry flux in momentum space,
respectively (Fig. 1b). In this situation, parallel magnetic and
electric fields can pump electrons between Weyl cones of opposite
chirality that are separated in momentum space (Fig. 1a). This
process violates the conservation of the the chiral charge,
meaning that the number of particles of left and right chirality
are not separately conserved5,17–26, giving rise to an analogue of
the chiral anomaly in a condensed matter system. Apart from this
elegant analogy and correspondence between condensed matter
and high-energy physics, the chiral anomaly also serves as a
crucial transport signature for Weyl fermions in a Weyl
semimetal phase. Furthermore, theoretical studies have recently
suggested that it has potential applications27.

In this paper, we perform magneto-transport experiments on
the Weyl semimetal TaAs12–14,16. We observe a negative
longitudinal magnetoresistance (LMR) in the presence of
parallel magnetic and electric fields, which is indicative of the
chiral anomaly due to Weyl fermions. On the other hand, due
to the complicated nature of the magnetoresistence28–38, an
unambiguous demonstration of the chiral anomaly remains
lacking despite the volume of works reporting negative LMR39–44.
Our data and careful analyses, which go beyond a simple
observation of a negative LMR, allow us to systematically exclude

other possible origins for the observed negative LMR. These data
strongly support the chiral anomaly due to Weyl fermions in
TaAs. Our studies demonstrate a low-energy platform where the
fundamental physics of Weyl fermions and quantum anomalies
can be studied in a piece of solid metal17–27.

Results
ARPES band structure. We start by presenting the key aspects of
the bulk band structure of TaAs both in theory and in experi-
ment. According to our first-principles calculation13,14, in total
there are 24 bulk Weyl cones. We denote the 8 Weyl nodes that
are located on the kz¼ 2p

c as W1 and the other 16 nodes that are
away from this plane as W2 (Fig. 1c). There is a 13 meV offset
between the energies of the W1 and W2 Weyl nodes (Fig. 1e).
The pockets that arise from the Weyl fermions are shown in blue
in Fig. 1d. Apart from the Weyl cones, there are additional
(non-Weyl) hole-like bands crossing the Fermi level shown by the
red ring-shaped contours in Fig. 1d.

We independently study the bulk electronic structure via angle-
resolved photoemission spectroscopy (ARPES). This is important
because relying entirely on numerical band structure calculations
is not conclusive. Particularly, numerical band calculations have
little power in predicting the position of the chemical potential of
real samples, which is crucial for transport experiments. Figure 1f
shows an E� k|| dispersion map that cuts across the two nearby
W2 Weyl cones. The dispersion map reveals two linearly
dispersive bands. The k-space distance between the two crossing
points is about 0.08 Å� 1, consistent with the calculated results.
More importantly, our ARPES measurement shows that the
native chemical potential of the samples is very close to the
energy of the W2 Weyl nodes. Our data also reveals the W1 Weyl
cones. As shown in Fig. 1g, the energy of the W1 Weyl node is
below that of the W2 Weyl node (Fig. 1f), which is consistent
with band calculation results. Systematic ARPES data can be
found in the Supplementary Fig. 1 and Supplementary Note 1.
We also observe the trivial hole bands in ARPES. The essential
observations are listed as follows. There are three types of bands
at the Fermi level, the W1 and W2 Weyl nodes and a trivial hole-
like band. The native chemical potential is close to the energy of
the W2 Weyl nodes, which is 13 meV higher than that of the W1
Weyl nodes. Therefore, the W1 Weyl cones form electron-like
pockets, the trivial hole-like bands form hole-like pockets, and the
W2 Weyl cones have low-carrier concentration, which can be
electron- or hole-like depending on the specific position of the
native chemical potential with respect to the W2 Weyl node in
each sample batch.

Quantum oscillation data. We have performed magneto-trans-
port measurements on our TaAs samples, in order to probe the
band structure at the Fermi level (Supplementary Fig. 2 and
Supplementary Note 2). Our Hall data indeed reveal a coexistence
of electron and hole carriers. We obtained critical band para-
meters, such as Fermi wavevector, Fermi velocity, chemical
potential, carrier mobilities and so on, from the Shubnikov de-
Haas (SdH) oscillation data. All band parameters obtained from
the SdH oscillations are consistent with first-principles calcula-
tion and ARPES results. Most importantly, this enables us to
determine the position of the chemical potential with respect to
the Weyl nodes, as shown in Fig. 2i. We name the samples by a
letter (a or c) followed by a number (1–5). The letter ‘a’ or ‘c’
means that the electrical current is along the crystallographic a-
or c-axes. The number ‘1–5’ refers to a sequence of the samples’
chemical potential with respect to the energy of the W2 Weyl
node from below the node to above the node (Fig. 2i). We also
provide the Fermi energy of the TaAs samples determined
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by different approaches in Supplementary Note 3 and Supple-
mentary Table 1.

Longitudinal magnetoresistance. We now present our LMR
data, without a pre-biased assumption of their origin. Figure 2a–e
show the LMR data of five different batches of samples. The LMR
data show three main features as a function of the magnetic field,
as schematically drawn in Fig. 2f. At very small fields close to
B¼ 0, we observe a sharp increase of the LMR. Following the
sharp increase, the LMR is found to decrease in an intermediate
B field range. This is the negative LMR. While further increasing
the B field, the LMR starts to increase again. We note that because
features I and II likely have independent origins, the LMR is not
necessarily absolutely negative (we do, however, observe absolute
negative LMR in samples c2 and c4). Hence, more precisely, we
speak of negative LMR in this paper, if the resistivity decreases
with an increasing B field. In addition to these general features,
we observe other more sample-dependent features: for sample c4,
our data show clear quantum oscillations at a quite wide B field
range of 0.5 TrBr8 T. For other samples, the quantum oscil-
lations are much weaker but they are still visible. For sample a5,
the LMR increases monotonically as a function of the B field. No
negative LMR is observed.

We study the systematic dependence of the LMR on different
parameters, including temperature, the angle between the E and B
fields, and the direction of the current with respect to the

crystallographic axis. The temperature-dependent data are shown
in Fig. 3a for sample a1. Most notably, the negative LMR (feature
II) shows a strong temperature dependence. At higher tempera-
tures, for example, TZ50 K, the negative LMR vanishes. The
dependence on the angle between the E and B fields are shown in
Fig. 3b–e. Our data show that the negative MR exhibits a very
strong angular dependence. It becomes quickly suppressed as one
varies the direction of the magnetic B field away from that of the
electric E field. The dependence on the direction of the current
with respect to the crystallographic direction is presented in
Fig. 2. The measurements were performed with current along the
crystallographic a axis for samples a1, a3 and a5, and with current
along the c axis for samples c2 and c4. In both cases, the negative
LMR is observed except for sample a5, whose chemical potential
is far away from the energy of the Weyl nodes (Fig. 2i).

Origins of the negative LMR. We now use these observations to
understand the origin of the negative LMR. First, it is well-known
that a negative LMR can arise in magnetic materials28. This
obviously does not apply to our non-magnetic TaAs samples. The
second possible origin is more classical due to geometry or size
effects of the samples, such as the current-jetting effect29,30. These
geometrical MR effects are also not consistent with our data,
because they do not vanish quickly as one raises temperature30,
and furthermore we have carefully shaped our samples to exclude
the geometrical effects (Supplementary Fig. 3 and Supplementary
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Figure 1 | Electronic band structure of the Weyl semimetal TaAs. (a) Schematics of the separation of the pairs of Weyl fermions in a Weyl semimetal with

opposite chiralities in momentum space, which is a direct consequence of its nontrivial topological nature. (b) Distribution of the Berry curvature near two
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and the W2 Weyl cones. (f) ARPES measured energy dispersions of the W2 Weyl cones. (g) ARPES measured energy dispersions of the W1 Weyl cones.
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Note 4). Third, we observe the negative LMR with current flowing
both along the crystallographic a- and c-axes. We note that TaAs
has a tetragonal lattice. Hence the a- and c-axes represent the
largest anisotropy that the system could offer. The fact that the
negative LMR is observed along both a- and c-axes proves that
anisotropies in the system cannot explain our data32. Fourth, in
the quantum limit, negative LMR can arise from the chiral, quasi
one-dimensional character of the Landau levels that are formed
by the band structure under magnetic fields. Essentially, it was
predicted31,33 that a negative LMR can arise in any 3D metal
irrespective of its band structure if the sample is in the ultra-
quantum limit, which means that one has ot � 1 (o is the
cyclotron frequency and t is the transport life time) and that
the chemical potential only crosses the lowest Landau level
(the Landau level index N¼ 0, see Supplementary Fig. 4). This
has been observed in doped semiconductor samples35. We have
carefully checked whether our negative LMR is due to this
mechanism. Particularly, one needs to be careful about the trivial
hole-like bands in TaAs, because if they were in the ultra-
quantum limit then it would have been entirely possible that the
observed negative LMR were due to these trivial bands, rather
than due to Weyl fermions in our samples. We note that the
negative LMR are observed at small magnetic fields (for example,

0.1 TrBr0.5 T for sample a1). We have checked the ot and
the Landau level index N of our samples quantitatively
(Supplementary Table 2), and our results show that all samples
are always in the semiclassical limit at the small magnetic fields
where the negative LMR are observed. Therefore, our data are
inconsistent with this origin31,33. Fifth, a recent theoretical work
has predicted a linear B-dependent magneto-conductivity in
small fields45. However, this is also inconsistent with our data
because predicted linear B-dependent magneto-conductivity
requires the system to lie in the ultra-quantum limit. That is,
only the lowest Landau band crosses the Fermi level, which is
clearly not the case for our systems under study. Finally, in the
semiclassical limit, nonzero LMR can arise from finite Berry
curvature, as follows from the semiclassical equations of motion.
Having excluded all other possibilities, we are led to conclude that
our observed negative LMR must have this origin. However, as
suggested in ref. 36 in addition to nonzero Berry curvature, an
approximately conserved chiral charge density with long
relaxation time—as found in Dirac and Weyl semimetals—is
required to yield a negative LMR. The observed negative LMR is
most likely to be attributed to Weyl nodes, in accordance with the
theoretical analysis of (refs 24,26 and 36). To confirm this picture
independent of the assumption of effective low-energy Weyl
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Hamiltonians, we have studied the contribution of Berry
curvature from each band carefully in a first-principles-derived
model for TaAs (see Fig. 4c,d and Supplementary Fig. 5 and
Supplementary Note 5). Our results show that in our TaAs
system the Berry curvature almost entirely arises from the Weyl
cones.

The chiral anomaly. With such a conclusion, we are entitled to fit
our LMR data with a semiclassical magnetoconductance formula
that includes the contribution from Weyl nodes due to their Berry
curvature. Specifically, we use the following equation.

sxx Bð Þ ¼ 8CWB2�CWAL

ffiffiffi
B
p B2

B2þB2
c
þ gB2 B2

c

B2þB2
c

� �
þ s0

ð1Þ

All coefficients are positive. The first term schiral¼CWB2 is due to
the Weyl fermions and will lead to a B2-dependent negative LMR.
This term was systematically studied by transport theories in
refs 24,26. The chiral coefficient is CW¼ e4ta

4p4‘ 4g EFð Þ
(refs 24,26),

where g(EF) is the density of states at the Fermi level, ta is the
axial charge relaxation time and the additional factor of 8 is
because we have 8 pairs of W2 Weyl nodes. All remaining terms
contribute to positive LMR in the semiclassical regime. The CWAL

term arises from the 3D weak anti-localization (WAL) effect of
the Weyl cones, which accounts for the initial steep uprise of the
LMR at small magnetic fields. The 3D WAL is known to have
a�B2 dependence near zero field and �

ffiffiffi
B
p

dependence at
higher fields46. So we include a critical field Bc that characterizes a
crossover. For the four samples a1, c2, a3, c4, the increase of the
LMR at small magnetic fields are 230, 5, 156 and 47% compared
to the zero-field resistance. Particularly, the increase for samples
a1 and a3 is larger than 100%, which is usually not expected from
the WAL scenario. On the other hand, we do notice that the
increase is quite sample dependent, and that a similarly large
increase (B100%) of the magnetoresistance has also been

reported in a concurrent transport work on TaAs40. In this
work, we fit this initial uprise of the LMR by the WAL effect, but
the anomalously large increase in samples a1, a3 and also in ref.
40 remains an theoretically open question that needs further
investigation, which does not affect our main conclusion, that is,
signatures of the chiral anomaly. Finally, the s0 term is the
positive LMR that arises from the Drude conductivity of
conventional charge carriers present in TaAs. In parallel fields,
the Lorentz force is zero so the Drude conductivity is a constant.
More systematic details regarding the fitting are presented in
Supplementary Fig. 6 and Supplementary Note 6.

The fitting results are shown by the green curves in Figs 2a–e
and 3a,b. It can be seen that the fitting works well for the small
B field region which includes the negative LMR. This is
reasonable because the fitting formula is derived in the
semiclassical limit. The angle dependence of the chiral coefficient
CW is shown in Fig. 4b for sample a3, which demonstrates that CW

is only significant in the presence of parallel electric and magnetic
fields. The sharp angular dependence is an open theoretical
problem. More importantly, we study the chemical-potential
dependence of the LMR data. Our fitting captures quantitatively
the relative size of the low-field positive LMR and the higher-field
negative LMR as a function of chemical potential. We plot this
ratio as a dimensionless quantity in Fig. 4a. We find that despite
the simple form of the fitting formula, the different measurement
geometries for the different samples, the presence of large quantum
oscillations in sample c4 and large differences in the absolute
resistivities of different samples, the chiral anomaly ratio scales as
1=E2

F. It is remarkable that this fitting result matches the simplest
theoretical model for a Weyl point, where the Berry curvature
O / 1=E2

F. We emphasize that this provides powerful evidence that
the negative LMR is due to the Weyl fermions. Note that the
specific expression of the chiral coefficient, CW¼ e4ta

4p4‘ 4g EFð Þ
/ 1

E2
F
, is a

result of the linear dispersion and the specific Berry curvature
distribution of the Weyl cones (see Fig. 1b). Especially, at the
energy of the W2 Weyl nodes, the trivial hole bands do not have
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any singularity. Thus if the negative LMR arose from the hole
bands, then the chiral coefficient CW would not have increased
markedly as the chemical potential approaches the energy of the

W2 Weyl nodes (Fig. 4a). Therefore, the obtained 1
E2

F
dependence of

the chiral coefficient (Fig. 4a) provides a unique demonstration
that our negative LMR is due to the Weyl fermions, because the 1
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F
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is exactly at the Fermi level. (g,h) Landau energy spectra of the left- and right-handed Weyl fermions in the presence of parallel electric and magnetic fields.
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dependence reveals the details of the band dispersion and Berry
curvature distribution of the Weyl cones, not just the fact that the
bands have some nonzero Berry curvature. We use the above data
and analyses to further exclude the possibility of negative
LMR due to weak localization arising from the intervalley
scattering. Our data is not due to the weak localization
for the following reasons: First, weak localization does not have a
strong EF dependence, let alone the marked 1

E2
F

dependence
observed in our data. Second, it has been theoretically shown that
the magneto-conductivity without the chiral anomaly is always
monotonic, even though the intervalley scattering can induce a
negative LMR arising from the weak localization46. This is not
consistent with our data, which means that, without the chiral
anomaly, only weak localization/anti-localization cannot explain
our data.

Up to here, we have demonstrated that the negative LMR arises
from the nonzero Berry curvature of the Weyl fermions in our
TaAs samples. We now establish the connection between our data
and the chiral anomaly, the non-conservation of the electron
quasi-particle number of the Weyl cones with a given chirality. In
a real Weyl semimetal sample, this can be understood by two
crucial components, the axial charge-pumping effect and the axial
charge relaxation, as schematically shown in Fig. 4f. The charge-
pumping effect means that a nonzero E �B can pump charges
from one Weyl cone to the other, leading to an imbalance of the
quasi-particle number of the Weyl cones with the opposite
chiralities. This effect is well-established to occur between Weyl
nodes of different chiral charge24,26,36, which are monopoles of
Berry field strength in momentum space. We have directly shown
the nontrivial Berry curvature monopoles associated with the
Weyl fermions via our LMR transport data. The axial charge
pumping creates an out-of-equilibrium quasi-particle distribution
between the Weyl cones with opposite chiralities. To form a
steady state, it is counteracted by the relaxation of the axial charge
disproportionation through scattering between the Weyl nodes.
The relaxation is characterized by a time scale, the axial charge
relaxation time ta. From our negative LMR data, we directly
obtain the axial charge relaxation time ta (Fig. 4e). The nonzero
axial charge relaxation time ta not only directly demonstrates the
axial charge relaxation, but also confirms the existence of the axial
charge pumping because these two are directly coupled, which
means that one cannot exist alone if the other is absent.

We can directly obtain the axial charge relaxation time ta,
which serves as the critical physical quantity that characterizes the
chiral anomaly, from the chiral coefficient CW using t
he relationship CW¼ e4ta

4p4‘ 4g EFð Þ
(refs 24,26). In Fig. 3a, we present

fitting results as a function of temperature for sample s1. We use
the fitting coefficients CW to obtain the axial charge relaxation
time as a function of temperature, presented in Fig. 4e. We find
that the ta rapidly decays to zero with increasing temperature.
This decay of ta corresponds to the decay of the negative LMR
with increasing temperature in the raw data and is expected
because scattering typically increases with temperature. We
obtain an axial charge relaxation time ta¼ 5.96� 10� 11 s for
sample a1 at T¼ 2 K (Fig. 4e). Note that this ta is associated with
the W2 Weyl cones because the Fermi level is very close to the
W2 nodes. On the other hand, it is difficult to obtain the transport
life time of the W2 Weyl cones because the density of states at the
Fermi level is dominated by contributions from the W1 Weyl
cones and the trivial hole bands (Fig. 1d). Therefore, we estimate
the quasi-particle life time associated with the W2 Weyl cones via
tC:/EF¼ 7.04� 10� 13 s for sample a1. We see that the axial
charge relaxation time ta is much longer than the quasi-particle life
time t. The imbalance of population due to the axial charge
pumping can be also estimated by the uncertainty principle
Dm¼:/taC0.011 meV. At EF¼ � 1.5 meV, the density of states

per W2 Weyl cone is g(EF)¼ 1.6� 1016 states/(eV cm� 3). There-
fore, we estimate the chiral charge, the non-conservation of the
quasi-particle number of the Weyl cone with a given chirality, to be
Dm� g(EF)¼ 1.6� 1014. This directly characterizes the chiral
anomaly in our Weyl semimetal TaAs sample.

Discussion
We emphasize the critical logical sequences that are key to our
demonstration. Unlike previous studies, we do not assume that
the negative LMR arises from the chiral anomaly40–44. To
demonstrate the chiral anomaly, it is critically important to
consider all possible origins for a negative LMR and to discuss
how one can distinguish each of the other origins from the chiral
anomaly. We first excluded the geometry and spin(magnetic)
effects. Then we show that our observed LMR is not in the
quantum (large B field) limit, in which the Fermi energy crosses
only the lowest Landau level. This is important because the LMR
in the quantum (large B field) limit can be negative or positive
depending on specific scenarios, such as the band dispersion and
nature of the impurities31,33,34. In fact, it is even theoretically
shown that the Weyl cones that respect time-reversal symmetry
can contribute a positive (not a negative) LMR in the quantum
limit if the field dependence of the scattering time and Fermi
velocity of the Landau bands is fully respected34. Therefore,
observing a negative LMR in the large-field quantum limit may
not be a compelling signature of Weyl fermions. In the
semiclassical (small B field) limit, after excluding the geometry
and magnetic effects, one can avoid ambiguities in the physical
interpretation since a negative LMR can only arise from a
nonzero Berry curvature24,26,36,37. In fact, it has been shown that
the LMR from a band with zero Berry curvature will always be
positive37. However, we emphasize that, at a qualitative level, the
negative LMR in the semiclassical limit is only a signature of the
Berry curvature but it is not unique to Weyl fermions. In order to
uniquely attribute the negative LMR to Weyl fermions, we
discovered here that it is crucial to obtain comprehensive
information about the band structure. Specifically, first we have
shown that the Berry curvature in our TaAs is dominated by the
Weyl cones. Second, the chiral coefficient has a 1

E2
F

dependence.
These two pieces of evidence, together with the full systematics of
the data sets uniquely presented here, provides strong signatures
of the chiral anomaly of Weyl fermions.

Methods
Sample growth and electrical transport. High-quality single crystals of TaAs
were grown by the standard chemical vapour transport method as described in
ref. 47. TaAs crystals were structurally characterized by powder X-ray diffraction
to confirm bulk quality, and to determine (001) crystal face. A small portion
of the obtained samples were ground into fine powders for X-ray diffraction
measurements on Rigaku MiniFlex 600 with Cu Ka (40 kV, 15 mA;
l¼ 0.15405 nm) at room temperature, and then refined by a Rietica Rietveld
program. Magneto-transport measurements were performed using a Quantum
Design Physical Property Measurement System. High-field electrical transport
measurements were carried out using a pulsed magnet of 50 ms in Wuhan National
High Magnetic Field Center. All the measurements were carried out from � 9 to
9 T or � 56 to 56 T.

Angle-resolved photoemission spectroscopy. The soft X-ray ARPES
(SX-ARPES) measurements were performed at the ADRESS Beamline at the Swiss
Light Source in the Paul Scherrer Institut in Villigen, Switzerland using photon
energies ranging from 300 to 1,000 eV (ref. 48). The sample was cooled down to 12 K
to quench the electron–phonon interaction effects reducing the k-resolved spectral
fraction. The energy and angle resolution was better than 80 meV and 0.07�,
respectively. Vacuum ultraviolet ARPES measurements were performed at beamlines
4.0.3, 10.0.1 and 12.0.1 of the Advanced Light Source at the Lawrence Berkeley
National Laboratory in Berkeley, California, USA, Beamline 5–4 of the Stanford
Synchrotron Radiation Light source at the Stanford Linear Accelerator Center in
Palo Alto, California, USA and Beamline I05 of the Diamond Light Source in Didcot,
UK, with the photon energy ranging from 15 to 100 eV. The energy and momentum
resolution was better than 30 meV and 1% of the surface Brillouin zone.
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Theoretical calculations. First-principles calculations were performed by the
OPENMX code within the framework of the generalized gradient approximation of
density-functional theory49. Experimental lattice parameters were used47, and the
details for the computations can be found in our previous work in ref. 13. A real-
space tight-binding Hamiltonian was obtained by constructing symmetry-
respecting Wannier functions for the As p and Ta d orbitals without performing
the procedure for maximizing localization, similar for calculations done for
topological insulators50,51.
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