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Noise-induced bistability in the fate 
of cancer phenotypic quasispecies: 
a bit-strings approach
Josep Sardanyés1,2 & Tomás Alarcón1,2,3,4

Tumor cell populations are highly heterogeneous. Such heterogeneity, both at genotypic and 
phenotypic levels, is a key feature during tumorigenesis. How to investigate the impact of this 
heterogeneity in the dynamics of tumors cells becomes an important issue. Here we explore a stochastic 
model describing the competition dynamics between a pool of heterogeneous cancer cells with distinct 
phenotypes and healthy cells. This model is used to explore the role of demographic fluctuations 
on the transitions involving tumor clearance. Our results show that for large population sizes, when 
demographic fluctuations are negligible, there exists a sharp transition responsible for tumor cells 
extinction at increasing tumor cells’ mutation rates. This result is consistent with a mean field model 
developed for the same system. The mean field model reveals only monostability scenarios, in which 
either the dominance of the tumor cells or the dominance of the healthy cells is found. Interestingly, the 
stochastic model shows that for small population sizes the monostability behavior disappears, involving 
the presence of noise-induced bistability. The impact of the initial populations of cells in the fate of the 
cell populations is investigated, as well as the transient times towards the healthy and the cancer states.

Cancer progression is known to involve the emergence of highly heterogeneous populations of tumor cells. This 
is a defining feature of most advanced tumors1,2. Despite this seeming heterogeneity, tumor cells share some com-
mon traits that have been labeled as the hallmarks of cancer3,4. These hallmarks include self-sufficiency in growth 
signals, insensitivity to anti-growth signals, evasion of apoptosis, and limitless replicative potential. Typically, this 
acquired characteristics lead to an abnormal increase in cells’ proliferation rates. Also, tumor cells can usually sus-
tain angiogenesis and, in mid or late stages, invade other tissues and metastasize. Other universal traits have been 
proposed as hallmarks of cancer4: the deregulation of cell energetics, avoiding immune system, tumor-promoting 
inflammation, and genome instability and mutation.

Acquisition of these multiple hallmarks depends largely on a succession of alterations in the genomes of 
neoplastic cells4. Roughly speaking, certain mutant genotypes confer selective advantage on subclones of cells, 
enabling their outgrowth and an eventual dominance in a given local environment4. Interestingly, the so-called 
heritable phenotypes do not restrict the increase in heterogeneity and diversity to genotypic changes. For exam-
ple, activation of tumor suppressor genes can be acquired through epigenetic changes such as DNA methylation 
and histone modifications5–7. However, genome instability is known to play a key role in the evolutionary dynam-
ics of cancer. Genome instability refers to an increased tendency to accumulate alterations and mutations in the 
genome during the life cycle of tumor cells. It is known that healthy cells have a mutation rate of about 1.4 × 10−10 
changes per nucleotide and replication cycle8. It has been proposed that the spontaneous mutation rate of normal 
cells is not sufficient to account for the large number of mutations found in human cancers. Indeed, studies of 
mutation frequencies in microbial populations, in both experimentally-induced stress and clinical cases, reveal 
that mutations that inactivate mismatch repair genes result in 102−103 times the background mutation rate, with 
comparable increases in cancer cells9–16. Moreover, the accumulation of mutations can be accelerated by compro-
mising the surveillance systems that normally monitor genomic integrity and force genetically damaged cells into 
either senescence or apoptosis routes17–19, where the role of TP53 is central20.
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The presence of high genome instability creates a peculiar situation: since cancer cells typically become less 
differentiated, more capable to adapt but also more prone to failure, how much instability can be afforded by 
cancer cells? It has been suggested that unstable cancer progression may be feasible up to some critical instability 
levels21–27. Once this critical point is reached, instability levels shall become lethal. Such evolution towards the 
edge of instability has been reported for RNA viruses, where mutagenic thresholds have been found28–30. RNA 
viruses have been suggested to exhibit critical mutation rates29,31, beyond which they could experience extinction. 
RNA viruses replicate at extremely large mutation rates32, and they are characterized by a highly heterogeneous 
population of close-related genomes known as quasispecies32–34. Due to the largely increased mutation rate of 
tumor cells, mainly driven by genome instability, the quasispecies concept has been also applied to cancer evo-
lution21–23,25,35,36. Following these similarities, and due to increased genome instability, it has been suggested that 
cancer cells could also present critical instability thresholds21,22,26,27,36. If true, cancer treatments could incorporate 
increased mutagenesis that would push the system slightly beyond its critical mutation limits12. Hence, a possible 
therapeutic strategy in tumors would benefit from targeting DNA repair pathways37–40. Similarly, germline muta-
tions in the proofreading domains of DNA polymerases Pol δ and ε have been identified in many types of cancers, 
giving place to the so-called ‘ultramutator’ phenotype41. It has been suggested that increased mutation in these 
tumors (e.g., breast cancer, colorectal cancer, or anaplastic astrocytoma, to cite some) with impaired exonuclease 
proof-reading activities could drive cancer towards such hypothetical critical transitions41. Recent research on 
critical transitions has focused on how to predict critical thresholds as a way to provide early detection of dis-
eases such as cancer42. For instance, shift predictions between different phenotypic states due to stochastic gene 
expression43.

Theoretical models on cancer quasispecies have revealed continuous, smooth transitions towards the collapse 
or the impairment of tumor cells, mainly governed by transcritical bifurcations as some of the model parameters 
(typically mutation rates) are tuned21,22,36. By smooth transition we mean that the population equilibria decrease 
monotonously until its extinction as a given parameter is continuously changed. These models usually deal with 
mutation rates as single parameters that can be increased to explore their impact on tumor cells’ fate. However, a 
more realistic approach should include a repertoire of changes affecting not only genome stability but also repli-
cation traits (e.g., mutations or anomalies in tumor suppressor genes and proto-oncogenes). Similarly, the limits 
imposed to instability levels are largely determined by the presence of essential (house-keeping, hereafter hk) 
genes, whose integrity needs to be preserved25. Following this rationale, a digital genomes model incorporating 
multiple genes responsible for replication and stability, as well as the use of hk genes, suggested that a complex 
evolution unfolds as the cancer population approaches higher, near-critical instability levels24,25. Despite these 
recent computational studies on the topological characteristics of evolutionary cancer networks, the dynamics 
and bifurcations governing the population dynamics of healthy cells competing with a heterogeneous pool of can-
cer phenotypes35 remain poorly understood, especially the impact of demographic noise due to small population 
sizes, expected to occur at the beginning of the tumor progression progress, where a tiny number of anomalous 
cells can initiate this process in small tissues.

The impact of stochastic fluctuations in cancer growth and evolution has been studied with diligence in the 
last decades. Stochasticity in cancer growth can arise from many different sources. As mentioned, demographic 
(intrinsic) noise due to finite-size populations can play a key role at the initial stages of tumorigenesis. Other 
extrinsic sources of noise affecting the complexity of tumorigenesis can be given by random variations in nutri-
ents supply or in the availability of oxygen, among others. Stochastic evolutionary dynamics has been explored 
for leukemic cells under different targeted therapies using MonteCarlo simulations44. Also, the Langevin equation 
has been employed to characterize stochastic cancer evolution for chronic myeloid leukemia45. This equation has 
been used to study the impact of noise in a model for cancer growth considering the cytotoxic response of the 
immune response46. Here, the presence of resonant activation and noise-enhanced stabilization, NES, was iden-
tified (see also ref. 47 and the Conclusions Section for a wider discussion on NES).

Here we explore the impact of demographic fluctuations in a dynamical system formed by a population of 
healthy cells competing with a heterogeneous population of distinct tumor cell phenotypes. These phenotypes 
include cell populations with increased proliferation rates due to e.g., mutations or anomalies in tumor suppressor 
genes (e.g., TP53 or APC) and in proto-oncogenes (such as RAS or SRC). Although they act in different ways, 
here we make no explicit distinction since anomalies in both gene types involve an increased proliferation of 
tumor cells3,4,48. Moreover, tumor cells can also undergo increased genome instability due to mutations or anoma-
lies in genes preserving genomic integrity (such as BRCA-1, BLM, ATM, or TP53). This dynamical system is built 
using a bit-strings approach, where cells phenotypic traits are coded in 3-bits sequences. The first bit correspond 
to the compartment of replication-related genes (tumor suppressor genes and proto-oncogenes); the second bit 
to the compartment of genome instability-related genes; and a third compartment (third bit) corresponding to 
the hk genes compartment. The hk genes are essential for the survival of cells and their failure leads to cell death. 
The hk genes are constantly expressed in cells and would include, for example, ubiquitin, GAPDH, or ribosomal 
proteins, among others49.

Our main goal is to investigate the scenarios of dominance of either tumor or healthy cells evaluating the 
impact of demographic noise by using a phenotypic quasispecies model. The phenotypic quasispecies framework 
has been recently used to investigate the effects of mutational fitness effects in RNA viral populations by means 
of ordinary differential equations (ODEs)50. A mean field model on cancer phenotypic quasispecies considering 
the above mentioned phenotypes competing with healthy cells has been recently studied51. This model revealed 
the presence of a catastrophic extinction of tumor cells at increasing the mutation rate of tumor cells. In contrast 
to a smooth transition, a catastrophic one involves a discontinuous change of the population equilibria (e.g. a 
change from survival to extinction) as the control parameter is continuously varied. This transition was given 
by the so-called trans-heteroclinic bifurcation (see refs51,52. for a description of this bifurcation). As a difference 
from the ODEs model, which considers a continuum in population numbers and determinism, we here use an 
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agent-based MonteCarlo model, which considers finite populations and stochasticity. Previous theoretical works 
on stochastic Boolean genetic elements in cancer gene regulation reveal the importance of noise in the emergence 
of noise-induced multistability53. Here we are especially interested in the nature of the transition separating tumor 
cells persistence from their extinction under stochasticity, as well as in the role of the initial populations in the fate 
of the cells and in the transient times towards both tumor and healthy states.

Results
Summary of the mean field dynamics.  The dynamical system explored in this article has been recently 
investigated by means of a mean field model given by ordinary differential equations (ODEs)51. This mathematical 
model was developed from the well-known Eigen’s quasispecies equation, within the framework of the so-called 
phenotypic quasispecies50,51. Here, as a difference from the standard quasispecies model33, the sequences are used 
to code for the phenotypic traits of the replicators (see Supplementary Table S1) instead of being used to describe 
the dynamics of information of RNA or DNA genomes explicitly. The ODEs model on cancer phenotypic quasi-
species identified two qualitatively different dynamical outcomes (see Figs S1b and S2): (i) outcompetition of the 
healthy cells by the tumor cell populations; and (ii) outcompetition of the tumor cell phenotypes by the healthy 
cells. The transition from state (i) to state (ii) is governed by a global bifurcation, the trans-heteroclinic bifurcation 
(see refs51,52. for details on this bifurcation).

To summarize, the trans-heteroclinic bifurcation is a global bifurcation that involves an exchange of sta-
bility between two fixed points without their collision52, as opposed to the transcritical bifurcation. Below the 
trans-heteroclinic critical value, there exists a stable fixed point that is connected with an unstable one by a 
heteroclinic connection (see Definition I.1 in the SM). At the bifurcation point, the heteroclinic connection is 
replaced by a line of fixed points. Above the bifurcation threshold, there is an exchange of stability between the 
two fixed points present before the bifurcation, and the heteroclinic connection is recovered51. The mean field 
model revealed that key parameters responsible for the bifurcation were: r (cells’ replication rates), δr (increase in 
proliferation rates in tumor cells), and μ (rate of accumulation of mutationas or genome anomalies). Specifically, 
the bifurcation value was given by:

μ δ δ= + .r/( ) (1)c r r

With μ < μc, a fixed point corresponding to the extinction of healthy cells and the dominance of some of the 
tumor cell phenotypes (named P3

⁎ in51) was globally asymptotically stable, while the fixed point corresponding to 
the dominance of the healthy cell populations and the extinction of all of the tumor cell phenotypes (healthy state, 
with equilibrium labeled P2

⁎ in51) was unstable. With μ > μc the two fixed points interchanged the stability, P3
⁎ 

becoming unstable and ⁎P2  being globally asymptotically stable (see Fig. S2). That is, under the bifurcation sce-
nario described in51, monostability was found i.e., there was no possibility for both fixed points P2

⁎ and ⁎P3  to be 
stable under the same parameter values. We refer the reader to Section SI.A. in the Supplementary Material for 
further details on the results obtained from the mean field model51.

Catastrophic extinction of tumor phenotypes.  Before focusing on the impact of demographic noise in 
the dynamics of the system studied in this article, we will explore its dynamics for large population sizes (large N), 
thus mimicking the mean field model. The bifurcation identified in ref.51, named trans-heteroclinic, which caused 
a catastrophic extinction of tumor cell populations (see Fig. S1b) is also obtained from the stochastic bit-strings 
model for large N (see the Methods Section for the description of the simulation model). Figure 1 displays the 
mean population of each phenotype at increasing μb. Specifically, the main panel displays the mean population 
values for all cell states of the quasispecies setting N = 5 × 104 cells. Notice that the mean population values and 
their response to the increase in μb perfectly match with the results obtained from the mean field model (compare 
the bifurcation diagram of Fig. 1 with the one displayed in Fig. S1b). The trans-heteroclinic bifurcation can be 
perfectly identified in the inset of the bifurcation diagram in Fig. 1, obtained with N = 105 cells. In Fig. S1b and 
S2 we have set r = 0.1 and 0 05r b

δ δ= = .μ , thus using the same values for these parameters used to obtain the 
bifurcation diagram of Fig. 1b. The critical value of μb obtained from the simulation model is 0 18b

cμ ≈ . .
The bifurcation value provided by equation (1) corresponds to an overall mutation rate for the tumor cells. In 

our simulation model we are considering the per-bit mutation rate, μb, thus in order to compare both bifurcation 
values we must compute a mean mutation probability for the entire string from the mutation probability for each 
position, given by μb. Let us define the average mutation probability in our model as μ ε= −ˆ 1 , with [0, 1]μ̂ ∈ , 
and ε ∈ [0, 1] being the probability that the entire sequence will be replicated accurately. Such a probability in our 
system can be approximated (considering 

δμ 1) by ε = (1 − μb)ν, with ν = 3, ν being the length of the sequence 
(number of bits). For the parameter values r = 0.1 and δr = 0.05, the critical mutation rate for the mean field 
model given by equation (1) is μc = 1/3. The critical per-bit mutation value, b

cμ , obtained from the critical average 
mutation rate μ μ μ= = = − −ˆ 1 (1 )c c b

c1
3

3 is given by μ ≈ .0 13b
c , which approaches the value 0 18b

cμ ≈ .  
obtained from the simulations.

The analyses performed with the mean field model (see51 and Section S1 in the Supplementary Material, SM) 
revealed that the fixed points ⁎P2  and ⁎P3  presented a heteroclinic connection (see Fig. S2). The definition of a het-
eroclinic connection can be found in Definition I.1 in the SM.

Interestingly, the simulations performed with the bit-strings model for large N clearly reveal the presence of 
this heteroclinic connection (indicated with a black arrow in panels (c,d) of Fig. 1). For example, the projections 
of the trajectories in the simplexes (H,S4) in panels (b–d) of Fig. 1 show that the trajectories travel towards this 
connection and then achieve one of the two possible equilibria, either the tumor state T (Fig. 1(c)) or the healthy 
state H (Fig. 1(d)). For the sake of clarity compare these projections with the ones displayed in Fig. S2 below and 



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:1027  | DOI:10.1038/s41598-018-19552-2

above the trans-heteroclinic bifurcation. Finally, in Fig. 1 we also display some time series for each of the three 
values of μb analyzed in panels (b–d).

Impact of noise on the trans-heteroclinic transition.  In the following sections we will explore the 
impact of demographic noise on the dynamics of both healthy cells and tumor cell phenotypes by using small 
population sizes, focusing on the transition given by the trans-heteroclinic bifurcation. Figure 2a shows the same 
bifurcation diagram displayed in Fig. 1, now computed with N = 500 cells. Notice that the mean population 
values are kept similar to the ones displayed in the previous diagrams (see Figs 1 and S1b) but now the standard 
deviation in the mean population values increases, especially when μb approaches its critical value. This means 
that the abrupt and sharp transition identified with the ODEs model in ref.51 as well as in the simulations setting N 
large is replaced by a smooth transition. This phenomenon is clearly induced by demographic fluctuations, since 
the monostability character identified with the ODEs model is lost. Hence, we have identified a new phenomenon 
for trans-heteroclinic bifurcations under noise: monostability is replaced by bistability, which is noise-induced. 
Stochasticity can make trajectories to reach either the tumor or the healthy absorbing states under the same 
combination of probabilities for replication and mutation. An example of the loss of monostability is illustrated 
in Fig. 2(b), where the same projection on the simplex Ω displayed in Fig. S2 and Fig. S1b is shown. Here seven 
stochastic trajectories are plotted in the space (H(τ), S4(τ)). Five of these trajectories reach the tumor state, while 
two of them achieve the healthy state. The panels (c) and (d) in Fig. 2 display time series for each of these two 
qualitatively different scenarios (panel c: tumor state; panel d: healthy state). Notice that trajectories display strong 
fluctuations due to the small population size used in these simulations.

We want to note that the use of the mean populations of cells as an order parameter is not the most appropriate 
way to investigate the transition given by the trans-heteroclinic bifurcation with stochastic fluctuations, especially 
for small population sizes and when the control parameter approaches the phase transition (bifurcation) value. 
Since the system is monostable in its infinite-diffusion, deterministic limit, the equilibrium population values for 
healthy cells correspond to zero population or to a population dominated by tumor cells51. Moreover, the equilib-
rium populations of tumor cells below the trans-heteroclinic bifurcation were shown to depend on the replication 
and mutation parameters51.

Figure 1.  (a) Mean population equilibria obtained from the stochastic bit-strings model using large population 
sizes (N = 5 × 104 cells in the main panel; N = 105 cells in the inset). All data points are the mean population 
values (±SD) computed at τ = 25000 generations averaged over 25 independent replicas (tumor phenotypes 
and healthy cells are plotted using red and black dots, respectively). We also display time series and the 
dynamics projected in the simplex Ω for different values of μb below, close to, and above the critical per-bit 
mutation rate using a population of N = 105 cells. Specifically we use: (b) μb = 0.12; (c) μb = 0.18; (d) μb = 0.22. 
The red and black time series correspond to the tumor and healthy phenotypes, respectively. The gray arrows 
inside the simplexes indicate the direction of the trajectories. In all of the analyses the probabilities are fixed to 
the same values used in Fig. S2: r = 0.1, 0 05r b

δ δ= = .μ . Notice that the heteroclinic connection identified with 
the ODEs model studied in51 is also found in the bit-strings stochastic model (see the projections of the 
stochastic trajectories in (b) and (c), where the connection can be clearly visualized. See also Fig. S2).
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In order to characterize the nature of the phase transition arising in the stochastic model better we will use 
the probability of achieving a given absorbing state, either the healthy Has or the tumor Tas one, given by PH and 
PT, respectively (which can be computed in different ways, see below). The behavior of this order parameter upon 
the increase of μb is displayed in Fig. 2(e) for five small population sizes. Here, PH has been computed by dividing 
the number of simulations achieving Has by the total number of runs (we have used 100 replicates) starting with 
initial condition (H(τ = 0), S4(τ = 0)) = (0.9, 0.1). Notice that as N increases, the sigmoidal-like shape of the data 
approach a step function, which is obtained for very large population values (e.g., N = 5 × 104 or N = 105 cells, 
see Fig. 1). Specifically, we plot the values of PH (circles) and PT (triangles). Hereafter we will restrict our compu-
tations to PH, since PT = 1 − PH.

A more detailed characterization of the smooth nature of the transition responsible for the change from the 
tumor to the healthy state is displayed in Fig. 3a. Specifically, we have also computed PH at increasing the per-bit 
mutation rate for several population sizes. The probability PH has been computed slightly differently on this occa-
sion. Now PH is computed by dividing the number of initial conditions within the projection (H(τ), S0(τ)) achiev-
ing Has by the total number of runs, which are given by a battery of 104 equidistant initial conditions within this 
projection. We emphasize that for this computation of PH a single run has been used for each initial condition. 
This way of computing PH provides a more global information since we are sampling more points in the simplex 
Ω. The structure of the population for this computation has been fixed following the pattern of initial conditions 
within the projection (H(τ), S4(τ)) and filling the remaining population with sequences 010 and 110 at random. 
The results reveal that between the approximate range  μ. .0 16 0 24b  some trajectories will reach the healthy 
state while some others will reach the tumor state, indicating the bistable nature of the dynamics. The shape of PH 
at increasing μb, close to a sigmoidal, remains similar for different values of N (Fig. 3a).

As mentioned, PH has been previously computed from a battery of single initial conditions (1 replicate for each 
initial condition). However, since the dynamics is stochastic, different runs for the same initial condition could 
reach different asymptotic states. In order to check this possibility, we have computed the value of PH within the 
projection (H(τ), S4(τ)). Here, as a difference from Fig. 3a, we have computed PH for each one of the 104 initial 
conditions. For each initial condition we have divided the number of trajectories achieving Has by the total num-
ber of runs given by 100 replicates for each initial condition. Due to the large computational cost of running these 
analyses, we have restricted our analyses to N = 500. Specifically, we have performed these analyses for: μb = 0.19 

Figure 2.  (a) Mean population equilibria setting N = 500 cells. Each data point is the mean (±SD) population 
computed at τ = 25000 generations averaged over 25 independent replicas. (b) Stochastic trajectories projected 
in the space (H(τ), S4(τ)) setting μb = 0.18. Notice that here the dynamics takes place on the heteroclinic 
connection. The trajectories indicated with the black and red arrows achieve, respectively, the healthy (Has) and 
the tumor (Tas) absorbing states. (c) Stochastic time series of healthy (black) and tumor (red) cells also using 
μb = 0.18. (d) Time serie also with μb = 0.18 using the same initial populations as in (c). We note that here 
the asymptotic state changes, and the population of healthy cells outcompetes the population of tumor cells. 
(e) Probability, PH,T, of achieving the healthy Has and the tumor Tas absorbing states within the same range of 
mutation displayed in (a). Each data point is the value of PH (circles) and PT (triangles) computed from 100 
replicates. Here five different population sizes have been simulated. In panels (a) and (c–e) we have used an 
initial population of 450 healthy cells and 50 tumor cells with sequence 100.



www.nature.com/scientificreports/

6Scientific REPOrTS |  (2018) 8:1027  | DOI:10.1038/s41598-018-19552-2

(Fig. 3b); μb = 0.2 (Fig. 3c); μb = 0.21 (Fig. 3d); and μb = 0.22 (Fig. 3e). As expected, the probability of achieving 
the healthy state largely increases for initial conditions close to down-right corner of the simplex, where the pop-
ulation is started with a large number of healthy cells. As mutation rate increases, this region enlarges. Notice that 
for μb = 0.19 the region where PH is close to one is very small and restricted to this corner in Ω.

The smooth transition characterized in Fig. 3a has been obtained using a particular set of initial conditions. 
In order to check the robustness of this smoothness upon the initial populations we have repeated the same anal-
yses of Fig. 3 choosing the initial conditions from different regions of the simplex Ω. The same type of transition 
has been found sampling the projections (H(τ), S2(τ)) and (H(τ), S6(τ)), which are displayed in Fig. S3, and also 
follow a sigmoidal shape. Indeed, Fig. S3c reproduces similar sigmoidal curves by setting the initial populations 
completely at random. The simplexes displayed in panels a1,a2 and b1,b2 in Fig. S3 show the values of PH com-
puted within the simplex by using 100 runs for each initial population value. The cases a1 and a2 correspond to 
the simulations performed on the projection (H(τ), S2(τ)). Here, the remaining initial population of cells has 
been set by randomly choosing sequences 100 and 110. Alternatively, in panels b1 and b2 the remaining initial 
populations have been randomly chosen from sequences 100 and 010.

Transitory times near bifurcation threshold.  Typically, transients slow down as bifurcation values are 
approached. This can be understood from the ODEs model since the eigenvalues approach zero near bifurcation 
and thus a slower dynamics takes place: this involves longer transients. For example, the so-called critical slowing 
down, which appears near pitchfork and transcritical bifurcations, or the so-called delayed transitions, found near 
saddle-node bifurcations54. The mathematical model studied in51 allowed the analysis of transient times near 
bifurcation thresholds. Specifically, the time that a given initial condition spent to achieve the fixed point ⁎P3 , 
corresponding to the extinction of healthy cells, increased as μ → μc, diverging at the critical bifurcation value. 
The same phenomenon was found for the dominance of the healthy cell populations as μ → μc from above.

The stochastic simulations have been used to compute these times increasing the per-bit mutation probability 
towards its critical value. Since different absorbing states can be achieved from the same initial condition under 
the same probability (parameter) values, we have computed the mean times to each absorbing state following the 
next strategy. First, we have set the initial condition at (H(τ = 0), S4(τ = 0)) = (0.9, 0.1). Then, for each value of 
μb we have run different replicates of the same initial condition, discarding those trajectories reaching the other 
absorbing state. That is, for μ < μc we have discarded those trajectories reaching Has (see Fig. 4a). Then, we have 

Figure 3.  (a) Probability of achieving the healthy absorbing state, PH, at increasing per-bit mutation probability 
(μb). The main panel shows five overlapped curves for different population sizes N. The inset displays the same 
results for five larger values of N. Here we have overlapped the data for N = 500 shown in the main panel (black 
points indicated with the small arrow). Each data point for each curve is the value of PH obtained from 103 
different equidistant initial conditions within the simplex Ω projected in (S0, S4) considering a single run for 
each initial condition. (b–e) Values of PH obtained for different initial conditions within the simplex (S0, S4) 
using N = 500 and: (b) μb = 0.19; (c) μb = 0.2; (d) μb = 0.21; (e) μb = 0.22. Here each data point within the 
simplex is the mean value of PH averaged over 100 independent replicas.
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used the first 100 trajectories achieving Tas to compute the mean times to this absorbing state. The same strategy 
have been used to compute the times needed to achieve Has after the transition. Since the critical value is not accu-
rately identified, we have used the range 0.1 ≤ μc ≤ 0.2 in panel (a) of Fig. 4; and 0.16 ≤ μc ≤ 0.26 in panel (b) of 
Fig. 4. Interestingly, the time to Tas increases as μb increases, and this increase is much more pronounced for large 
population sizes. The same phenomenon is found above the bifurcation (Fig. 4b).

We note that below the bifurcation, the transient times increase up to μb ≈ 0.18, then becoming flat. This 
could be an indicator that the bifurcation values are around μb ≈ 0.18, as discussed. This is more clearly seen in 
panel (b) in Fig. 4, where the maximum time needed to achieve the healthy absorbing states is placed around μb 
≈ 0.18. Since the system displays noise-induced bistability, it is possible to achieve either the healthy or the tumor 
absorbing state below and above the transition, respectively.

In order to provide more global information on the behavior of transients, we have computed the mean tran-
sient times dependence on the initial conditions. Here we have also computed these times in the projections (H(τ 
= 0), S4(τ = 0)). For those cases in which H(τ = 0) + S2(τ = 0) < 1, we have randomly initialized the rest of 
the simplex with sequences 110 and 010. Figure S4 displays these dependences of transients towards the healthy 
(upper row) and the tumor (lower row) absorbing states for three different population sizes (N = 500 (a), N = 
1000 (b), and N = 1500 (c)) with μb = 0.21. Here, for each initial condition we have run 100 replicates, which 
have been used to obtain the mean transient times needed to reach each of the two absorbing states. The bigger 
simplexes in Fig. S4 show the mean times and the smaller ones display the associated standard deviations. Notice 
that variability is extremely large. The mean times for other population sizes have been computed, obtaining 
similar simplex patterns to those of Fig. S4 (results not shown). Similarly to what is observed in Fig. S4, the mean 
transients times increase with the size of the populations, for both times to Has and to Tas. For instance, the longest 
time to achieve Has for N = 2000 was τ = 6352; τ = 6975 for N = 2500; and τ = 10245 for N = 5000. Similarly, 
for the longest times towards Tas we have found τ = 5932 for N = 2000; τ = 6334 for N = 2500; and τ = 12740 
for N = 5000.

Discussion
Tumors exhibit remarkable intracellular heterogeneity. Cellular heterogeneity often produces sub-populations of 
cancer cells able to survive to anticancer therapy, often leading to tumor relapses55–58. Such a heterogeneity has 
been suggested to play a key role in the fate of cancer cells, providing a selective advantage in the face of drug 
administration and tumor cells adaptation. Genome instability has been suggested as one of the main engines 
responsible for the high variability and heterogeneity of tumor cells, mainly generated through chromosome and 
microsatellite instabilities, involving extremely large mutation rates and the emergence of the so-called mutator 
phenotypes11,13,15. These properties have been studied using the quasispecies framework21–25, largely applied for 
RNA viruses due to the high mutation rates of these pathogens.

In this manuscript we have performed stochastic simulations of a dynamical system composed of tumor cells 
with different phenotypes that compete with healthy cells. In a recent article51 we provided a detailed description 
of the deterministic dynamics for this system using Eigen’s quasispecies equation. This mean field model revealed 
two possible asymptotic states given by dominance and extinction of tumor cells. The change between these two 
asymptotically globally stable states was determined by the so-called trans-heteroclinic bifurcation (see also ref.52 
for a detailed description of this bifurcation). As mentioned, the mean field model discarded bistable scenarios 
below and above the bifurcation. Particularly, the two fixed points corresponding to these two asymptotic states 
are connected heteroclinically, only one of them being stable, depending on the replication and mutation param-
eters. Here we describe a novel mechanism of noise-induced bistability, for which stochastic fluctuations due 
to finite size populations give place to bistable dynamical scenarios in which either one of these two asymptotic 
states can be reached under the same parameter values and same initial conditions.

Figure 4.  Mean times (in number of generations τ) needed for trajectories starting at S0(τ = 0) = 0.9 and 
S4(τ = 0) = 0.1 to achieve the tumor absorbing state Tas (a) and the healthy absorbing state Has (b) at increasing 
the per-bit mutation probability. In both panels we plot the mean times represented with small circles (±SD, 
showing the upper and lower values) computed from 100 independent replicas achieving each absorbing state 
using five values of N (indicated inside panel (a)). The inset in (b) displays the time to Tas below the transition 
and the time to Has after the transition, putting together the data values of panels (a) and (b) (for the sake of 
clarity, the error values are not represented in the inset).
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It is known that random fluctuations can generate novel behavior in dynamical systems, for instance, 
noise-enhanced stabilization59,60, stochastic resonance61, or the so-called noise-induced transitions62,63. However, 
more recent discoveries have characterized the emergence of noise-induced bistability in systems that are mon-
ostable in their deterministic limit. This noise-induced bistability has been recently described in stochastic sim-
ulations for a simple catalytic loop scheme64. The mean field model for this system revealed a unique attractor 
within phase space. More recently, this phenomenon has also been described in stochastic models in foraging 
ant colonies (see65 and references therein). Noise-induced bistability was also found experimentally in positive 
transcriptional feedback loops not displaying bistability in the continuum, deterministic limit66.

The phenomenon described in this manuscript giving place to noise-induced bistability is different from the 
ones mentioned above, since for our case the mean field model indicates the presence of two fixed points placed at 
the boundaries of the phase space. However, these fixed points have an opposite stability character (i.e., one being 
stable and the other unstable), thus no possible bistability is found in the deterministic approach51. As we show 
here, noise due to finite size effects makes the presence of bistability possible under this scenario. The phenome-
non described in our manuscript can be also interpreted as a kind of noise-enhanced stability (NES) typical from 
metastable systems (see refs46,67 for examples of NES on other cancer stochastic systems). This is a resonance-like 
behavior that indicates that the average lifetime of a particle in the metastable state can be enhanced with respect 
to the deterministic approach68,69. It is known that for a classical Brownian particle in a metastable (cubic) poten-
tial, the average time as a function of noise intensity has a maximum when the particle is initially placed outside 
a stable state. This noise-induced phenomenon has been identified in superconductor physics70 and in quantum 
systems71. We must note, however, that our system is not (strictly speaking) metastable, since there is a single 
stable state when the system is not at the bifurcation point. The stabilization of the dynamics in our model is due 
to the multiplicative nature of the noise72 tied to finite size populations, which drives trajectories towards the 
absorbing states.

Our simulations considered intrinsic (demographic) noise. However, one might expect the emergence of 
noise-induced bistability as well under extrinsic noise, since external fluctuations could also allow trajectories 
to achieve any of the absorbing states of the system, although the probabilities of achieving absorbing states and 
the transients involved could be different depending on whether the noise is intrinsic or extrinsic, probably also 
depending on the color of the noise for non-Gaussian noise. The growth rate of tumors can also be affected by 
many environmental factors. For instance, random variations in parameters tied to nutrients and oxygen supply, 
degree of vascularization of tissues, chemical agents or radiations under therapeutic treatments, among others 
(see ref. 47 and references therein).

The mean field approach for the system explored in this manuscript revealed a sharp and discontinuous tran-
sition responsible for tumor clearance51. Here we have shown that demographic fluctuations can break this cat-
astrophic behavior, and, even when the bifurcation values are surpassed, the probability of achieving the healthy 
state remains low and increases monotonously. This means that stochastic fluctuations could impair the extinc-
tion of tumor cells even once mutation rates are highly pernicious for tumor cells. Finally, we must note that our 
models assume that healthy cells cannot change to a tumor phenotype. This is a strong assumption that may be 
plausible over short time scales. Our models reveal that the transition from tumor to healthy cells can be achieved 
by increases in mutation rates or in the accumulation or genome anomalies during replication. However, long 
exposures to radiation or to chemotherapies could also involve transitions from healthy to tumor cells73. In terms 
of our modeling approach this would involve considering a mutation rate for healthy cells, and the absorbing 
nature of the healthy state would be broken. Future research should consider this new scenario both in the mean 
field model and in stochastic versions. This approach might offer a good modeling framework to investigate 
how the trans-heteroclinic transition changes by coupling the healthy cells state with the tumor cell phenotypes 
within sequence space by diffusion (mutation), also offering an opportunity to investigate the dynamics of tumor 
relapses during long therapeutics or high chemotherapeutic dosage73,74.

Methods
Stochastic bit-strings model.  To explore the role of stochasticity in the dynamics and the transitions of 
phenotypic cancer quasispecies an agent-based probabilistic model is built, in which cell phenotypic traits are 
coded by means of bit-strings. Bit-strings simulation models are useful tools to investigate in silico evolution, and 
have been employed to charaterize the evolutionary dynamics of RNA viruses75, cancer quasispecies21,25, and 
genetic algorithms76,77, among others. Our computational model is implemented with a MonteCarlo method and 
considers a constant population of N cells, each cell named as Sabc

i( ) , with i = 1, ..., N, and a, b, c ∈ {0, 1} i.e., each of 
them having a phenotype encoded in a bits string of length ν = 3 bits, indicated in the subindex of S. As men-
tioned, each bit corresponds to a given compartment: 1st bit: replication-related genes compartment; 2nd bit: 
genes responsible for genome integrity; and 3rd bit: hk genes compartment. Anomalies in any of these compart-
ments are coded by bit 1. Hence, the healthy state is coded by sequence 000 (see Fig. S1).

The simulation algorithm works as follows (see Fig. S1(c)): at each time generation, τ, we randomly choose N 
cells of the population. Every time we choose a random cell, named Sabc

j( ) , we apply the rule of replication. This 
asynchronous updating ensures that (on average) all cells will be updated once per generation. The rule of repli-
cation is implemented by randomly choosing a different cell of the population, say Sabc

k( ) with k ≠ j. Depending on 
the phenotype of cell Sabc

j( ) , the following reactions are implemented with probabilistic rates. Healthy cells repro-
duce with probability r ∈ [0, 1]. Following51 we assume that the mutation rate of healthy cells is negligible com-
pared to the mutation rate of tumor cells. Hence, healthy cells reproduce following the next reaction (blue arrows 
in Fig. S1(c)):

S S S S ,j
abc

k r j k
000
( ) ( )

000
( )

000
( )+ +⟶
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Cancer cells can proliferate with error-free replication (solid red arrows in Fig. S1(c)) or making anomalous 
copies of themselves (dashed red arrows in Fig. S1(c)). The error-free reaction of the cells with sequence S100 is:

+  →  + .
δ μ+ − ν

S S S Sj
abc

k r j k
100
( ) ( ) ( )(1 )

100
( )

100
( )r b

Since cells with state 100 have anomalies in the replication-related genes, they reproduce with probability (r + 
δr) ∈ [0, 1], δr being the increase in proliferation rates tied to the anomalies found in the replication compartment. 
Here μb ∈ [0, 1] is the per-bit mutation probability of tumor cells and ν is the length of the string (as mentioned, 
here with ν = 3). Probability μb can also be considered as a probabilistic rate at which cells accumulate damage at 
each compartment (by means of e.g., gene loss, chromosomal breaks). The reaction for the erroneous replication 
of cells with this sequence is:

+  →     +
δ μ μ+ − ν ν− −

S S S S ,j
abc

k r j
bc
k

100
( ) ( ) ( )(1 ) ( )

100
( )

1
( )r b b

1 2

here with b = 1 and c = 0, or b = 0 and c = 1 (recall that here no backward mutations are allowed, following51). 
For cells with state 010 the reaction of error-free reproduction reads:

S S S S ,j
abc

k r j k
010
( ) ( ) (1 ( ))

010
( )

010
( )b+  →  +

μ δ− + μ
ν

while the erroneous reproduction is given by:

+  →      +
μ δ μ δ− + +μ

ν
μ

ν− −

S S S S ,j
abc

k r j
p m
k

010
( ) ( ) (1 ( )) ( )

010
( )

1
( )b b

1 2

with p = 1 and m = 0 or p = 0 and m = 1. Here \deltaμ is the increase in mutation probabilities due to the anom-
alies tied to the compartment of genome instability. The other reproducing tumor cells have state 110. These cells 
have anomalies in both replication-related and stability compartments. Their error-free reproduction is:

S S S S ,j
abc

k r j k
110
( ) ( ) ( )(1 ( ))

110
( )

110
( )r b+  →    +

δ μ δ+ − + μ
ν

the reaction of erroneous reproduction being:

+  →        + .
δ μ δ μ δ+ − + +μ

ν
μ

ν− −

S S S Sj
abc

k r j k
110
( ) ( ) ( )(1 ( )) ( )

110
( )

111
( )r b b

1 2

Finally, the cells with anomalies in the hk genes compartment do not reproduce i.e., Sab1, with a, b ∈ {0, 1}. For 
the sake of simplicity, we hereafter will label the cells with a subindex given by the integer number corresponding 
to the binary sequence. That is, we will consider: =S Sj j

0
( )

000
( ) , =S Sj j

1
( )

001
( ) , =S Sj j

2
( )

010
( ) , …, =S Sj j

7
( )

111
( )  (see Table SI). 

Moreover, we will also define the fraction of healthy cells (normalized population) as

H
N

S1

i

N
i

1
0
( )∑= .

=

Generally, we will hereafter talk about the healthy absorbing state, Has, as an equilibrium state where the whole 
population is composed by healthy cells (S0). This state corresponds to the fixed point ⁎P2  identified with the mean 
field model in ref.51. (see Section S1.B. in the Supplementary Material, SM). Assuming a normalized population, 
it is clear that the total number of tumor cells, labeled T, is T = 1 − H, or, alternatively

∑∑= .
= =

T
N

S1

i

N

j
j
i

1 1

7
( )

Here we also define the tumor absorbing state, Tas, which involves a stationary population without healthy 
cells, corresponding to the fixed point ⁎P3  in51 (see Section 1B in the SM for the discussion on the absorbing states 
in the context of the stochastic model).

The normalization of the populations allows us to define a state space for this stochastic dynamical system 
given by an eight-dimensional simplex:

∑∑Ω = ∈ | ≥ = .= ...
= =

S S
N

S: { 0, 1 1}j j
i

N

j
j
i

0, 7
8

1 0

7
( )

The dynamics in terms of population asymptotic states as well as in transients will be mainly analyzed 
using projections of Ω for several initial conditions or for a single initial populaiton. If not otherwise spec-
ified, we will consider as initial conditions a population given by a 90% of healthy cells and a 10% of tumor 
cells with driver mutations (anomalies in compartment R) i.e., S0(τ = 0) = 0.9, S4(τ = 0) = 0.1, and thus 
Sk(τ = 0) = 0, k = 1, 2, 3, 5, 6, 7, as initial conditions. These initial conditions assume that a small number of 
tumor cells initiate the process of tumorigenesis, like in reality. However, as mentioned, other initial popula-
tions will be explored.
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