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It is well known that the central nervous system (CNS) has a limited regenerative capacity
and that many therapeutic molecules cannot cross the blood brain barrier (BBB). The
use of biomaterials has emerged as an alternative to overcome these limitations. For
many years, biomedical applications of chitosan have been studied due to its remarkable
biological properties, biocompatibility, and high versatility. Moreover, the interest in this
biomaterial for CNS biomedical implementation has increased because of its ability to
cross the BBB, mucoadhesiveness, and hydrogel formation capacity. Several chitosan-
based biomaterials have been applied with promising results as drug, cell and gene
delivery vehicles. Moreover, their capacity to form porous scaffolds and to bear cells
and biomolecules has offered a way to achieve neural regeneration. Therefore, this
review aims to bring together recent works that highlight the potential of chitosan
and its derivatives as adequate biomaterials for applications directed toward the CNS.
First, an overview of chitosan and its derivatives is provided with an emphasis on the
properties that favor different applications. Second, a compilation of works that employ
chitosan-based biomaterials for drug delivery, gene therapy, tissue engineering, and
regenerative medicine in the CNS is presented. Finally, the most interesting trends and
future perspectives of chitosan and its derivatives applications in the CNS are shown.

Keywords: chitosan, chitosan derivatives, central nervous system, drug delivery, tissue engineering, regenerative
medicine

INTRODUCTION

The central nervous system (CNS) consists of the brain, spinal cord, and retina, which are composed
of more than 100 billion individual nerve cells surrounded by bone structures (Payne et al.,
2019). The CNS has long been recognized as immune-privileged, attributed to the blood brain
barrier (BBB) and the lack of lymphatic vessels within the parenchyma (Engelhardt et al., 2016).
Nevertheless, the CNS is unable to generate robust adaptive immune responses (Ransohoff and
Brown, 2012). In the absence of immediate or long-term medical care, this situation could lead
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to permanent damage or death following a severe nervous system
injury (Weil et al., 2008). The treatment of CNS diseases gets
further complicated by the BBB, which acts as a shield for
foreign substances including therapeutic molecules (Huang et al.,
2017). Potential treatments against neurodegenerative disorders
are considered difficult to implement because of the limited
access to the CNS and the aggressiveness of surgical interventions
(Tysseling and Kessler, 2017).

It is now known that central axons are capable of regenerating
after injury, but their success is highly dependent on their
local environment (He and Jin, 2016; Tedeschi and Bradke,
2017). The composition of the microenvironment is defined by
the presence of reactive neural cells. Astrocytes and microglia
secrete biomolecules as cytokines, chemokines and growth
factors in response to insults. These cells display a big
heterogeneity (in morphology, function, and gene expression)
and have been associated with both beneficial and detrimental
regenerative outcomes on CNS injury (Anderson et al., 2014;
Karve et al., 2015). It is also known that the adult CNS
possesses neural stem cells with the ability to differentiate into
neurons and glia. However, these stem cells need a neurogenic
microenvironment to achieve migration and differentiation
(Gáge and Temple, 2013). Recent advances in biomaterials
have encouraged the search to overcome these challenges,
either on their own or as vehicles for stem cell, genetic
material, or bioactive molecule delivery (Führmann and Shoichet,
2018). These biomaterials can have a natural or synthetic
origin. Natural biomaterials often present good biocompatibility,
biodegradability, and cell adhesion but can exhibit some
disadvantages as poor mechanical properties or trigger an
immune response. Their synthetic counterparts are often easier
to chemically modify and have low immune responses but
may contain toxic substances (Lim and Spector, 2017; Wang
Y. et al., 2018). Thus, natural and synthetic biomaterials
are frequently used together to exploit the advantages of
both, resulting in products with the desired characteristics for
each application.

Currently, chitosan is one of the leading natural biomaterials
for CNS applications, both in its natural form or as a modified
derivative. In biomolecules delivery, it stands out for its
penetration enhancement ability and mucoadhesive capacity,
which make it a great material for nose-to-brain approaches
(Rassu et al., 2016; Yu et al., 2019). In tissue engineering
and regenerative medicine, chitosan and its derivatives have
shown to promote axonal regeneration, anti-inflammation, and
to successfully deliver neurotrophic factors and cells with a
consequently functional recovery (Wang Y. et al., 2018). In
this way, chitosan-based biomaterials have become increasingly
popular to use, alone or in combination with other molecules.
This review offers an overview of the physicochemical and
biological properties of chitosan and its derivatives. These are
useful for different applications, focusing on the delivery of
therapeutic molecules and regenerative approaches in the CNS.
A literature review was performed through online platforms as
PubMed, ScienceDirect, and the National Library of Medicine
(clinicaltrials.gov), considering only the works published in
the last 5 years. This review aims to show the reader the

current trends and limitations of this biopolymer in biomedical
applications directed toward the CNS.

CHITOSAN

Chitosan is a polysaccharide mainly composed of D-glucosamine
and, in a lower proportion, N-acetyl-D-glucosamine units
randomly β-(1-4)-linked. It can be obtained by deacetylation
processes of chitin, which has been recognized as the second most
abundant polysaccharide in nature, after cellulose. Even though
the main source of chitin is crustacean shell, recent technologies
have made possible the obtention of chitin and chitosan from
other sources like insects and microorganisms (Peniche et al.,
2008; Zargar et al., 2015). Particularly, fungal sources have gained
increased attention due to some potential advantages like a
homogeneous polymer length, a high degree of deacetylation, and
high solubility (Ghormade et al., 2017). In general, there are two
types of processes to obtain chitosan: chemical and biological.
The chemical method is the most commonly performed at an
industrial scale, using strong acid and alkaline treatments (El-
Knidri et al., 2018). Biological methods involve microorganisms
and enzymes (Arbia et al., 2013), but despite the efforts to achieve
scalable enzymatic deacetylation, the high crystallinity of chitin
remains the main obstacle (Jaworska and Roberts, 2016).

The source and obtention process of chitosan are important
factors to consider according to the desired application. These
factors define the final product characteristics. For biomedical
applications, its purity, molecular weight (Mw), crystallinity, and
deacetylation degree (DD) are of great importance (Nwe et al.,
2009). These factors deeply correlate with chitosan’s mechanical
and biological properties. Aranaz et al. (2009) reported the
relationship between the physicochemical properties of chitosan
and its behavior in biomedical applications. This will be further
detailed for each biomedical application described in this work.

The increasing interest in chitosan as a biomaterial is due to its
natural origin and several biological properties: biocompatibility,
non-toxicity, non-allergenicity, and biodegradability, as well as
its antifungal, antibacterial, antioxidant, anti-tumor and anti-
inflammatory activities. Besides, it has been recognized as
an immunoadjuvant, anti-thrombogenic and anti-cholesteremic
agent (Younes and Rinaudo, 2015; Kim, 2018). It also possesses
high versatility, so it can be used in many physical forms as
fibers (and nano-fibers), gels, sponges, beads, films, particles (and
nanoparticles), membranes and scaffolds (El-hefian et al., 2011;
Rebelo et al., 2017). All these properties make chitosan adequate
for many biomedical applications as drug delivery, gene delivery,
tissue engineering, and regenerative therapies, among others.
However, when it is used on its own, it has poor mechanical
properties in wet conditions and low solubility at pH > 7.0. This
situation has led to the search of different strategies to overcome
chitosan deficiencies by its combination with other materials or
through changes in its superficial structure.

It is important to highlight that chitosan is a polycationic poly-
mer, this attribute is conferred by the protonation of D-glucos-
amine which forms a positively charged moiety (NH3

+) at neutral/
physiological pH (Muanprasat and Chatsudthipong, 2017).
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Despite the versatility that this characteristic gives to chitosan,
cationic polymers have been reported as neurotoxic and CNS
damage inducers (Li and Ju, 2017). The neurotoxicity has been
associated with chitosan’s particle size through inflammasome
activation (Bueter et al., 2011). However, the evaluation of
chitosan’s neurotoxicity is still limited and not detailed. On the
other hand, chitosan and its derivatives have also been reported
as neuroprotective over different neuronal disorders including
Alzheimer’s and Parkinson’s disease, sclerosis, stroke, and injury,
among others (Pangestuti and Kim, 2010; Hao C. et al., 2017;
Ouyang et al., 2017).

CHITOSAN DERIVATIVES

The molecular structure of chitosan’s units contains an
amino/acetamido group at C-2, a secondary hydroxyl group
at C-3 and a primary hydroxyl group at C-6 (Figure 1A). So,
the improving modifications that have been developed for this
polymer make use of these groups by grafting other molecules.
Some of these modifications consist of carboxyalkylation,
thiolation, sulfation, phosphorylation, esterification, graft
copolymerization, and cross-linking strategies (Mourya and
Inamdar, 2008; Muñoz and Zuluaga, 2017). These modifications
confer new and unique properties to the obtained products.
For example, chitosan has been grafted with heparin to increase
its anticoagulant and angiogenic properties, and to increase its
affinity for growth factors (Skop et al., 2019). It has also been
grafted with laminin-derived peptides to facilitate the attachment
of neurons and neurite outgrowth (Kuo and Chiu, 2011). Many
molecules can be grafted to improve the application of chitosan
to the CNS but have not been evaluated yet. Dicarboxylic acids
contain two binding sites that can lead to the crosslinking of
chitosan polymeric chains and offer an antioxidant environment.
In the same way, hydroxycinnamic acids possesses an important

antioxidant activity. For example, the release of ferulic acid
into the lesion site of traumatic brain injury (TBI) has shown
to effectively protect further secondary injury through the
inhibition of neurological oxidative stress (Dong et al., 2015).
Nevertheless, these acids have mainly been grafted to chitosan to
modify its physicochemical characteristics as solubility, thermal
stability, or rheological properties, and have not been widely
studied into the CNS (Liu et al., 2017).

Among the most commonly used modifications of
chitosan for biomedical applications directed to CNS
are carboxymethylation, N-trimethylation, and thiolation
(Figures 1B–D, respectively). These modifications confer new
properties to chitosan, as solubility and mucoadhesiveness,
converting these biomaterials into proper substrates for
biomolecule delivery. Chitosan graft copolymerization is also
widely used for CNS application, because it allows to obtain
polymers with controlled structures and activities. These are
defined by the graft characteristics, including the structure
of the molecule, its length, and number (or binding degree).
Copolymerization is widely used for the elaboration of tailor-
made scaffolds (Mourya and Inamdar, 2008). In addition to the
graft attributes, the binding site also plays an important role in
the final properties of chitosan-based biomaterials. Ding et al.
(2014) produced 6-O-sulfated chitosan and observed a strong
effect of the sulfate site in promoting the neural differentiation of
mouse embryonic stem cells.

Carboxymethyl Chitosan (CMC)
The introduction of carboxyalkyl groups into the structure
of chitosan, as carboxymethyl, has been developed mainly as
a strategy for increasing chitosan’s solubility. The reaction
occurs either at the C6 hydroxyl group or at the NH2 moiety,
giving N-CMC, O-CMC or N,O-CMC as products. These
derivatives are amphoteric polymers that produce water-soluble
compounds with pH-dependent solubility, water retention

FIGURE 1 | Molecular structure of chitosan (A) and some of its derivatives: N-carboxymethyl chitosan (B), N-trimethyl chitosan (C), and thiolated chitosan (D).
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properties, biodegradability, biocompatibility, and antioxidant
activity (Muñoz and Zuluaga, 2017; Shariatinia, 2018; Xu
et al., 2018). Therefore, these amphoteric polymers can be
loaded with hydrophobic drugs and display strong bioactivity
(Upadhyaya et al., 2014). Moreover, the presence of the functional
–OH, –NH2, and –COOH groups in its structure gives the
possibility of being easily modified. For example, CMC has been
crosslinked with alginate and agarose to be used as a scaffold
for stem cell in situ differentiation into functional neurons
and supporting neuroglia (Gu et al., 2016). CMC has also
been employed to enhance the efficacy of active constituents
with poor solubility and bioavailability, and increase brain drug
concentration (Ding et al., 2016; Liu et al., 2018). However,
Wahba and collaborators developed a galantamine delivery
system, against Alzheimer’s disease, attaching galantamine to
ceria-containing hydroxyapatite as well as ceria-containing
CMC-coated hydroxyapatite nanocomposites. They found that
the CMC coating delayed the in vitro release for galantamine and
nanoceria (Wahba et al., 2016).

N-Trimethyl Chitosan (TMC)
Methylation consists in the introduction of various alkyl groups
at the amino groups of chitosan. The most common product
of these reactions is TMC, which is considered one of the
strongest mucoadhesive polymers due to its cationic nature (M
Ways et al., 2018). That is why it has been used for brain-
targeting drug delivery, showing great potential in nose-to-brain
applications (Kumar et al., 2013; Meng et al., 2018; Pardeshi
and Belgamwar, 2018). Another promising application of TMC
is its use to treat brain tumors. For example, Turabee and
his team found that the addition of TMC to a pluronic F127
hydrogel increased the biological activity of docetaxel against
U87-MG cells. The pluronic F127-TMC/docetaxel hydrogel
was evaluated in vivo employing BALB/c nude mice and
showed sustained release of docetaxel with tumor suppression
(Turabee et al., 2019). Similarly, Sedeky et al. (2018) observed a
significant improvement in cytotoxicity of Piperine-loaded TMC
nanoparticles on human brain cancer cell line Hs683.

Thiolated Chitosan
Thiolation is the reaction of primary amino groups of chitosan
with coupling reagents that contain thiol groups (thioglycolic
acid, 2-iminothiolane, cysteine, and thiobutylamidine). This
product has high permeation, mucoadhesion, higher solubility at
physiological pH and displays in situ gelling properties (Sreenivas
and Pai, 2008). These properties present thiolated chitosan as
a good substrate for drug delivery to the brain, mainly used as
nanoparticles (Patel et al., 2012, 2013; Singh et al., 2016; Sunena
et al., 2019). In this way, Patel et al. (2013) studied brain uptake of
cyclobenzaprine HCl-loaded thiolated chitosan nanoparticles on
Swiss albino mice after intranasal administration and observed
that thiolation of chitosan reduced trans-mucosal toxicity and
enhanced the bioavailability. The in situ gelling ability makes
thiolated chitosan suitable not only for nose-to-brain applications
but also for the elaboration of scaffolds. However, it has not
been widely used for neural tissue engineering. For this purpose,
methacrylamide chitosan has been thiolated, giving as products

porous and biodegradable scaffolds that are suitable for cell
growth and neural stem cell differentiation in 3D (Yu et al., 2007;
Leipzig et al., 2011).

Grafting Copolymerization of Chitosan
Frequently, chitosan is grafted with other polymers to reach
copolymerization. The graft polymer is selected by its chemical,
mechanical or biological properties and the copolymerization
results in a chitosan-based product with added characteristics.
For example, polyethylene glycol (PEG)-grafted chitosan
derivatives have increased solubility over a wide range of pH
and have shown enhanced mucoadhesion (Bhavsar et al., 2017).
In this way, 2-O-PEGylated chitosan has been used for the
elaboration of siRNA-carrying nanoparticles that target the
brain to treat neurodegenerative diseases (Malhotra et al.,
2013a). Other polymers that have been grafted to chitosan
for CNS application are gelatin (Gao S. et al., 2014), poly
lactic-co-glycolic acid (PLGA) (Tong et al., 2017), poly (3,4
ethylenedioxythiophene) (PEDOT) (Wang S. et al., 2018),
alginate, and agarose (Gu et al., 2016), among others.

CHITOSAN-BASED DELIVERY SYSTEMS
TO CNS

For many years, the increasing incidence of neurodegenerative
disorders and the lack of functional treatments have encouraged
the search for new therapeutic approaches to counteract CNS
diseases. The administration routes directed to the CNS mainly
consist of systemic administration, nose-to-brain, and direct
injection into the brain parenchyma or cerebrospinal fluid.
However, it remains challenging to find effective treatments.
One of the main reasons for this is the BBB, which separates
the brain from the blood supply and distinguishes between
the molecules that can and cannot cross through itself. The
BBB allows the entry of nutrients and hormones but restricts
other external materials. Therefore, most of the therapeutic
molecules are unable to cross and access to the CNS from the
bloodstream, following systemic administration (Chatterjee et al.,
2019). This situation has led to the development of different
strategies for aiding therapeutic molecules to permeate the BBB
and to get access to the brain. Dong elaborated a review article
providing an overview of the current strategies to enhance drug
delivery to the brain (Dong, 2018). According to it, permeability
enhancers, active transporters, viral vectors, nanoparticles, and
exosomes have been proposed for aiding therapeutic molecules
to cross the BBB after systemic administration (Choi et al., 2008;
Dong, 2018; He et al., 2018). For direct administration into the
brain parenchyma or cerebrospinal fluid, implantable devices
have emerged as effective delivery systems that avoid systemic
concerns (Stewart et al., 2018). However, most of these strategies
have the disadvantage of bearing low drug concentrations or
being invasive. Therefore, the use of carriers/vehicles and non-
conventional administration routes have emerged as a new
approach for facilitating the delivery of therapeutic molecules to
the brain (Upadhyay, 2014; Bonferoni et al., 2019). In this way,
nose-to-brain administration has also made use of viral vectors,
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exosomes, and nanoparticles to achieve less invasive and more
effective treatments (Jain, 2012; Belur et al., 2017; Dong, 2018;
Li et al., 2019). This information is summarized in Figure 2.
Nevertheless, the use of biocompatible carriers is encouraged to
prevent unwanted effects and achieve high and sustained local
drug delivery (Chen et al., 2019).

Drug Delivery to CNS
Chitosan possesses a lot of advantages as a brain-targeted drug
carrier. Coupled with its capability to penetrate the BBB, it also
can control release, adhere to mucus, and open tight junctions
of the nasal membrane. These abilities favor its application in
nose-to-brain drug delivery strategies (Mohammed et al., 2017;
Yu et al., 2019).

Another advantage of chitosan is its versatility, it can be
used for drug delivery purposes as microspheres, capsules,
hydrogels, conjugates, nanoparticles, films, beads, or tablets
(Ali and Ahmed, 2018). However, nanoparticles have gained
special attention in this field due to their capability to protect
drugs from degradation during administration (Tzeyung et al.,
2019). Chitosan nanoparticles have shown to enhance the brain
targeting efficiency and, therefore, to improve the therapeutic

potential of drugs (Md et al., 2013; Nagpal et al., 2013). Chitosan
has also been used as a nanoparticle coating, to grant drug-loaded
nanoparticles with a net positive charge and facilitate cellular
internalization (Varan and Bilensoy, 2017).

For drug delivery, it has been reported that the use of low
Mw chitosan increases the encapsulation efficiency (Yang and
Hon, 2009), reduces cytotoxicity and increases the degradation
rate of nanoparticles, properties that have been also associated
with higher DDs (Sarvaiya and Agrawal, 2015). On the other
hand, the penetration in the mucin layer and the mucoadhesion
strength of chitosan increase when the Mw is higher (Rassu
et al., 2016). It is worth mentioning that these properties are
influenced when chitosan is functionalized, and they depend
on the added molecules. For example, Kuo and collaborators,
recently developed chitosan-PLGA nanoparticles grafted with
anti-aldehyde dehydrogenase and sialic acid for brain tumor-
targeted delivery of curcumin (Kuo et al., 2019). They promoted
the BBB permeation through N-acetylglucosamine. However,
the targeting of the delivery system was improved with the
addition of sialic acid and the anti-aldehyde dehydrogenase by
directing it to the membrane of glioblastoma cells and brain
cancer stem cells.

FIGURE 2 | Advantages and disadvantages of the current strategies to enhance therapeutic molecules delivery to the CNS.
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The use of chitosan and its derivatives for drug delivery to the
brain has been employed for developing treatments against many
neurological disorders, mainly for Parkinson’s and Alzheimer’s
diseases. Other studies have been guided to treat conditions
like depression, schizophrenia, migraine, brain tumor, general
anxiety disorder, epilepsy, pain, viral and bacterial infections,
and so on (Table 1). However, at the time of writing this
article, only one of these studies has been taken to clinical
trials (Ruppen, 2015). In that clinical research, a nasal ketamine
spray with chitosan was evaluated in comparison with oral
morphine to treat pain in cancer outpatients but no results have
been reported yet.

Gene Therapy
Gene therapy has been set as a form of drug delivery, where
cellular machinery is modulated to produce a therapeutic effect
(Blau and Springer, 1995). As in drug delivery systems, some of
the most remarkable difficulties to direct this technology toward
the CNS consist of low BBB permeability, brain heterogeneity,
invasive or inefficient routes of administration, and dosing

(Joshi et al., 2017). Different types of vectors have been
used to overcome these limitations, being the viral ones the
most employed (Choudhury et al., 2017). Nevertheless, human
infections and immune response caused by viral vectors have led
to the search for safer vectors. The aforementioned polycationic
property of chitosan confers the polymer the capacity to
establish strong electrostatic interactions with negatively charged
molecules, like DNA and RNA.

To this day many chitosan-based systems for gene delivery
have been employed. Mao et al. (2010) reviewed the formulation
factors that affect siRNA and DNA delivery and transfection
efficiency. They highlighted that the transfection efficiency
depends on many parameters and concluded that intermediate
values of Mw and DD of chitosan form complexes of intermediate
stability and efficient transfection. Chitosan derivatives have also
been employed for this purpose. Specifically, for therapeutic
gene delivery to the brain, PEGylation has shown to enhance
biocompatibility and stability of siRNA loaded complexes
(Gao Y. et al., 2014). Moreover, PEG plays the role of
a linker between chitosan and targeting peptides, which

TABLE 1 | Chitosan drug delivery systems for brain targeting reported in the last 5 years.

Drug Presentation Application Administration route References

Pentamidine Chitosan coated niosomes Parkinson’s disease Intranasal Rinaldi et al., 2019

Methotrexate Chitosan hydrogel nanoparticles Antineoplastic agent Intravenous Pourtalebi-Jahromi et al., 2019

Carbamazepine Chitosan coated lipid nanoparticle
formulation

Epilepsy Oral Ana et al., 2019

Rotigotine Chitosan nanoparticles Parkinson’s disease Intranasal Tzeyung et al., 2019

Doxorubicin/erlotinib Chitosan liposomal nanoparticles Glioblastoma – Lakkadwala and Singh, 2019

Docetaxel TMC hydrogel Glioblastoma Intracranial injection Turabee et al., 2019

Risperidone Chitosan lipid nanoparticle Schizophrenia Intranasal Qureshi et al., 2019

Pramipexole dihydrochloride Chitosan nanoparticles Parkinson’s Disease Intranasal Raj et al., 2018

Galantamine Chitosan nanoparticles Amnesia/Alzheimer Intranasal Sunena et al., 2019

Selegiline Chitosan nanoparticles Parkinson Disease Intranasal Sridhar et al., 2018

Temozolomide Nano lipid chitosan hydrogel Antineoplastic agent Intranasal Khan et al., 2018

Cyclovirobuxine d Chitosan nanoparticles Cerebrovascular disease Intranasal Wei et al., 2018

Diazepam Chitosan mucoadhesive microemulsion Status epilepticus Intranasal Ramreddy and Janapareddi, 2019

Tapentadol hydrochloride Chitosan nanoparticles Pain Intranasal Javia and Thakkar, 2017

Rivastigmine hydrogen tartrate Chitosan mucoadhesive microemulsion Cholinesterase inhibitor Intranasal Shah et al., 2018

Ribavirin Chitosan microparticle agglomerates Viral infection Intranasal Giuliani et al., 2018

Huperzine A Lactoferrin-conjugated TMC
surface-modified PLGA nanoparticles

Alzheimer’s disease Intranasal Meng et al., 2018

Ropinirolle-detran sulfate Chitosan mucoadhesive
neuro-nanoemulsion

Parkinson’s disease Intranasal Pardeshi and Belgamwar, 2018

Zolmitriptan Chitosan mucoadhesive nanoemulsion Migraine Intranasal Abdou et al., 2017

Desvenlafaxine PLGA-chitosan nanoparticles Depression Intranasal Tong et al., 2017

Selegiline hydrochloride Thiolated chitosan nanoparticles Depression Intranasal Singh et al., 2016

Quetiapine fumarate Chitosan microemulsion Schizophrenia Intranasal Shah et al., 2016

Rasagiline Chitosan glutamate nanoparticles Parkinson’s disease Intranasal Mittal et al., 2016

Ropinirole hydrochloride Chitosan mucoadhesive nanoparticles Parkinson’s disease Intranasal Jafarieh et al., 2015

Buspirone hydrochloride Thiolated chitosan nanoparticles General anxiety disorder Intranasal Bari et al., 2015

Doxepin hydrochloride Chitosan-glycerophosphate-PEG
thermoreversible biogels

Depression Intranasal Naik and Nair, 2014

Buspirone Chitosan mucoadhesive microemulsion General anxiety disorder Intranasal Bshara et al., 2014

Donepezil Chitosan nanosuspension Alzheimer disease Intranasal Bhavna et al., 2014

Levodopa Chitosan nanoparticles Parkinson’s Disease Intranasal Sharma et al., 2014

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 May 2020 | Volume 8 | Article 389

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00389 May 4, 2020 Time: 14:2 # 7

Ojeda-Hernández et al. Chitosan-Based Applications to CNS

form complexes with nucleic acid and enhance the cellular
uptake of chitosan nanoparticles (Malhotra et al., 2013b;
Jiang et al., 2014).

Despite the versatility of chitosan, nanoparticles have been the
preferred candidates to counter different neurological disorders.
Among these disorders are glioblastoma (Malmo et al., 2013;
Danhier et al., 2015; Xu et al., 2015; Van Woensel et al., 2016,
2017), medulloblastoma (Kievit et al., 2015), Parkinson’s disease
(Peng et al., 2014), Alzheimer’s disease (Gao Y. et al., 2014;
Rassu et al., 2017), and multiple sclerosis (Youssef et al., 2019).
Even viral infections, like HIV-infected brain, have been a target
for this therapeutic strategy (Gu et al., 2017). Recently, the
search for less invasive strategies has guided the development
of novel formulations for nose-to-brain gene delivery. For
example, Rassu et al. (2017), made chitosan-coated solid lipid
nanoparticles carrying BACE1 siRNA for intranasal application
against Alzheimer’s disease. Similarly, Van Woensel et al. (2017)
formulated siRNA targeting Gal-1 loaded chitosan nanoparticles
for intranasal delivery in mice, obtaining remarkable changes
in the tumor micro-environment of glioblastoma multiforme.
Moreover, Sánchez-Ramos and his collaborators designed a
chitosan-Mangafodipir intranasal nanocarrier system for the
delivery of siRNA or dsDNA. They employed anti-eGFP siRNA
and reported the effectiveness of the nanoparticles for reducing
GFP mRNA expression in Tg GFP+ mice along different brain
zones (Sanchez-Ramos et al., 2018). These advances suggest an
imminent overcoming of the difficulties that limit the CNS-
directed gene therapy.

CHITOSAN-BASED MATERIALS FOR
TISSUE ENGINEERING AND
REGENERATIVE MEDICINE IN CNS

The design of different chitosan-based biomaterials for tissue
engineering and regenerative medicine in CNS aims to facilitate
neural cell adhesion, proliferation, and differentiation. These
biomaterials can be used as scaffolds to mimic the natural
extracellular matrix and microenvironment for better in vitro
approaches or tissue replacement. Thus, these polymeric
materials can be useful to overcome the limitations of
cell therapy. For in vitro applications, the conformation
of the biomaterials must present good biocompatibility and
porous structures that favor 3D cell growth. Regenerative
medicine requires biomaterials that offer mechanical support
for growing neurites. Biological support is also required to
lead the processes to tissue restoration through stem cell
differentiation and integration into the surrounding healthy
tissue (Boni et al., 2018). Moreover, it is important to cause
a minimal inflammatory response when implanted. In this
way, properties as biocompatibility, biodegradability, mechanical
strength, architecture, and cell-adhesion capacity become crucial
for biomaterial success.

Gnavi et al. (2013) made a review article detailing the
characteristics of chitosan-based scaffolds for nervous system
regeneration. They highlighted that the physicochemical
properties of chitosan (and modified chitosan) can be easily

manipulated to design specific structural features for the
scaffolds. According to the required structure and properties for
tissue restoration, the biomaterial scaffolds for CNS regeneration
can be classified into two types: hydrogels and biodegradable
scaffolds (Wang Y. et al., 2018). Chitosan hydrogels can be
obtained by physical or chemical crosslinking. The physical
associations, like ionic bonding and hydrogen bonds, provide
unstable structures while the chemical associations formed by
covalent bonds give place to uniform properties. For faster
hydrogel biodegradation, it is recommended the use of labile
bonds that can be broken under physiological conditions (Pellá
et al., 2018). On the other hand, in situ gelling can be achieved
by physical interactions, providing the advantages of cell delivery
without previous geometrical shape preparation of hydrogels and
with a less invasive implantation process (Shariatinia and Jalali,
2018). For application in the CNS, hydrogels have been obtained
from chitosan (Chedly et al., 2017), its derivatives as CMC (Xu
et al., 2018) and chitosan lactate (Nawrotek et al., 2017), and
mixtures with other polymers like gelatin (Gao S. et al., 2014).
Biodegradable scaffolds are mainly structured by freeze-drying
but can be also obtained by electrospinning, solvent evaporation,
supercritical carbon dioxide, and 3D printing (Croisier and
Jérôme, 2013; Wang Y. et al., 2018; Sun et al., 2019). For porous
scaffolds, many chitosan-blends have been made by combining
different biodegradable materials, like gelatin (Wang et al.,
2017), collagen (Yan et al., 2019), and PEDOT (Wang S. et al.,
2018), among others. One of the principal advantages of these
scaffolds resides in having stabilized porous structures that can
be designed with different size ranges and mechanical properties
(Xu et al., 2017).

For non-CNS tissue engineering applications, Mw and DD
have been associated with biodegradability and viscosity. Higher
Mw gives delayed biodegradation when implanted, and more
viscous biomaterials. DD values between 65 and 82% give faster
biodegradation (Rodriguez-Vazquez et al., 2015). It is worth
mentioning that there is huge variability in the main chemical
properties of the starting chitosans used in the reviewed studies,
including Mw from 1 (Yao et al., 2018) to 550 kDa (Chedly et al.,
2017) and values of 75–95% of DD (Feng et al., 2014; Tseng
et al., 2015). Moreover, none of the reviewed CNS application
studies in tissue engineering and regenerative medicine evaluates
different Mw or DD in their starting materials. Many of the
studies do not detail these two important chemical characteristics
of their starting chitosan. Otherwise, the main variation in these
works consists of using different polymeric blends and ratios as
starting materials.

Implanting chitosan-based biomaterials in the CNS provides a
way to its poor regenerative capacity through the reconstruction
of lost tissue and reconnection of neuronal processes. Although,
the incorporation of stem cells and biomolecules into these
scaffolds has emerged as an additional strategy to enhance
regenerative therapies (Ricks et al., 2014). In this way,
biomaterials assist cell therapy as delivery vehicles that promote
cell survival and engraftment. Another advantage of the
combination of both research areas is that the implanted cells
can be separated from the host damaged tissue. Thereby,
biomaterials provide an independent microenvironment for cell
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differentiation and proliferation, which does not occur in the
natural response to damage (Wang Y. et al., 2018).

Beyond the aforementioned physicochemical properties
of chitosan that make it a suitable biopolymer to make
biodegradable scaffolds and hydrogels, chitosan has
neuroprotective properties. Anti-neuroinflammatory activity,
suppression of β-amyloid and acetylcholinesterase formation,
and anti-apoptosis effects have been reported (Pangestuti and
Kim, 2010; Hao C. et al., 2017). These neuroprotective effects
promote an adequate microenvironment for cell proliferation in
some CNS damage processes.

Chitosan-Based Scaffolding
Over the past few years, many strategies for increasing cell
adhesion, differentiation and viability on chitosan-based scaffolds
have been implemented (Table 2). Different mixtures of
biopolymers with chitosan have been employed for modulating
the micro-structure of the scaffolds and their properties. For
example, collagen copolymerization has proven to promote
cell affinity through its arginine-glycine-aspartic acid sequence
which is recognized by transmembrane integrins (Kuo and
Yeh, 2011). In the same way, polylactic acid copolymerization
gives rise to materials with better mechanical properties
and it has been cataloged as a perfect synthetic polymer
to elaborate composite materials with chitosan (Ebrahimi-
Barough et al., 2015; Hoveizi et al., 2015). On the other hand,

Abasi et al. (2019) recently developed bionanocomposites of
polyaniline-chloride/chitosan and observed that physical factors
of the scaffolds (as electrical conductivity and morphology) have
a bigger influence in cell-substrate interactions than molecular
affinity. Also, Sung et al. (2015) studied the behavior of Neuro-
2a cells over flat, micro-, and nano-textured chitosan substrates,
and found that cellular adhesion increases over flat chitosan
surfaces. Given that the design of the internal structure and
surface of the scaffolds is determinant for cell adhesion and
proliferation, Sun and collaborators printed a collagen-chitosan
3D scaffold with a specific structure. They observed nerve
fibers regeneration and functional recovery after its implantation
in rats with spinal cord injury (SCI), showing enhanced
therapeutic effects compared with the non-3D-printed material
(Sun et al., 2019).

The addition of neurotrophic factors into chitosan scaffolds
or microspheres, like nerve growth factor (NGF), neurotrophin-
3 (NT-3), or fibroblast growth factor-2 (FGF-2), has shown to
enhance neurogenesis, neural differentiation, and cell survival
(Yi et al., 2011; Skop et al., 2013; Duan et al., 2015;
Hao P. et al., 2017). Rao et al. (2018) elaborated NT-3 –
chitosan tubes that promoted neuroprotection, neurogenesis,
revascularization, and antiinflammation on SCI conditions. After
implantation, they observed robust neural regeneration with
motor and sensory functional recovery in rhesus monkeys
(Rao et al., 2018).

TABLE 2 | Chitosan-based biomaterials for implantation in CNS or neural cell culture reported in the last 5 years.

Composition Presentation Application Model References

Collagen and chitosan 3D printed scaffolds Implantation as therapeutic in SCI Rat Sun et al., 2019

Chitosan-multiwalled carbon
nanotubes

Nanomaterial scaffold Culture for implantation In vitro Gupta et al., 2019

Polyaniline-chloride, chitosan,
and NGF

Microporous scaffolds Tissue engineering In vitro Abasi et al., 2019

Gelatin and glycine-functionalized
polypyrrole-coated poly(vinyl
alcohol) with chitosan

Scaffold Culture for implantation Mice Naghavi-Alhosseini et al., 2019

PEDOT, chitosan and gelatin Scaffold Substrate for NSC research and neural
tissue engineering

In vitro Wang S. et al., 2018

Chitosan and PDGF Scaffold and microspheres Tissue-engineered spinal cord grafts In vitro Chen et al., 2018

Chitosan Scaffold Implantation in SCI Rat Yao et al., 2018

NT-3 – chitosan Tube Implantation in SCI Monkey Rao et al., 2018

PEDOT and CMC Conductive polymer layer/Hydrogel Neural tissue engineering In vitro Xu et al., 2018

Chitosan and heparin Scaffold Culture of stem cells for implantation In vitro Moore et al., 2018

NT-3 – chitosan Chitosan particles Implantation in TBI Rat Hao P. et al., 2017

Chitosan Fragmented physical hydrogel
suspensión

Implantation in SCI Rat Chedly et al., 2017

Chitosan lactate Hydrogel Implantation in SCI Rat Nawrotek et al., 2017

Polyacrylamide, chitosan
scaffold, and PLGA nanoparticles

Inverted colloidal crystal scaffold Culture for iPS differentiation into neurons
and implantation for nerve regeneration

In vitro Kuo and Chen, 2017

Alginate, CMC, and agarose Porous 3D scaffold Tissue engineering In vitro Gu et al., 2016

Chitosan and polylactic acid Nanofibrous scaffold Culture of stem cells for tissue engineering
and cell-based therapy

In vitro Ebrahimi-Barough et al., 2015

NT-3 – chitosan Tube Implantation in SCI Rat Duan et al., 2015

Chitosan Scaffold Culture of stem cells for differentiation and
implantation in TBI

In vitro Feng et al., 2014
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The implantation of chitosan hydrogels constitutes an
interesting possibility for CNS restoration. Chitosan hydrogels
have proved to provide a suitable micro-environment for
axons regrowth and increase the survival rate of damaged
neurons in different animal models. These hydrogels have
shown remarkable potential in CNS repair, even in the absence
of added trophic factors or without a detailed design of its
structure (Tseng et al., 2015; Nawrotek et al., 2017). Chedly et al.
(2017) elaborated a fragmented physical hydrogel suspension
employing unmodified chitosan for its implantation in rat SCI
(immediately after the injury). They observed axonal regrowth,
modulated inflammatory response, and long-lasting locomotor
function recovery (Chedly et al., 2017). Even though more
studies employing chitosan hydrogels are required to define their
therapeutic potential in different damage models or degenerative
diseases, these results provide a tool for future evaluations in
combined repair strategies.

Chitosan-Based Materials and Cell
Therapy to the CNS
Spinal cord and brain injury, as well as neurodegenerative
diseases, are conducted by different biological processes and
cause diverse symptoms, though all of them result in neuronal
degeneration and cell death. Cell therapies for CNS have attained

clinical research in different pathological conditions like stroke,
TBI, amyotrophic lateral sclerosis, and Parkinson’s disease,
showing their contribution to mitigating damage (Watanabe,
2018). However, within damage processes occur extracellular
matrix, neuronal, and glial cell loss. This tissue loss results in a
hostile environment for transplanted cells and causes deficient
engraftment with poor cell viability (Boisserand et al., 2016).
In recent years, the incorporation of different biomaterials
to cell therapy in CNS has shown to promote cell survival,
integration, and differentiation (Führmann and Shoichet, 2018).
In this way, chitosan-based biomaterials have been employed
in combination with stem/precursor cells to build a way to
neuro-regeneration (Table 3). The function of these biopolymeric
structures is not only to serve as delivery vehicles and cell
physical supports, besides they must regulate the biological
microenvironment to guide axonal growth and favor the
integration of the healthy tissue to the lesion zone (Boni et al.,
2018). Some of the most studied cells for CNS repair are the
mesenchymal stem cells (MSC), bone marrow mesenchymal
stem cells (BM-MSC), neural stem cells (NSC), and neural
precursor cells (NPC).

A study reported by Sugai et al. (2015) showed that modified-
chitosan microfibers promote neural stem/progenitor cell
proliferation in vitro but not cell survival after transplantation,
contrary to collagen-based microfibers. The authors proposed

TABLE 3 | Chitosan-based biomaterials for CNS cell therapy reported in the last 5 years.

Composition Cells Presentation Application Model References

Collagen and chitosan BM-MSC Porous scaffold Implantation in TBI Rat Yan et al., 2019

Polyaniline-chloride, chitosan,
and NGF

PC12/NIH/3T3 Microporous scaffold Neural tissue engineering In vitro Abasi et al., 2019

Chitosan, genipin, heparin,
FGF-2, and fibronectin

NPC/genetically
modified NPC

Microspheres Implantation as therapeutic in
TBI

Rat Skop et al., 2019

Poly(ε-caprolactone), chitosan,
and polypyrrole

PC12 Nanofibrous scaffold Neural tissue substitute In vitro Sadeghi et al., 2019

Chitosan BM-MSC Porous scaffold Implantation in TBI Rat Tan et al., 2018

Methacrylamide chitosan,
dibenzocyclooctyne-acrylic
acid, and laminin azide-tagged
interferon γ

NSC Conduit Implantation in SCI Rat Farrag and Leipzig, 2018

PEDOT, gelatin, and chitosan NSC Scaffold Neural tissue engineering In vitro Wang et al., 2017

Chitosan NSC and MSC Co-spheroids Implantation in TBI Zebrafish Han and Hsu, 2017

Chitosan MSC from dental
pulp

Scaffold Implantation in SCI In vitro Zhang et al., 2016

Chitosan MSC Scaffold Implantation in SCI Rat Kim et al., 2016

Chitosan, genipin, heparin,
fibronectin, and FGF-2

Retinal ganglion cells Microspheres Cellular and growth factor
delivery vehicle in TBI

Rat Skop et al., 2016

Chitosan and gelatin BM-MSC Scaffold Implantation in spina bifida Rat fetuses Li et al., 2016

Chitosan and collagen BM-MSC Scaffold Implantation in ischemic stroke Rat Yan et al., 2015

Chitosan, polylactic acid, NGF,
and bGFG

PC12 Scaffold Neural cell differentiation for
transplantation in a MS model

Mice Hoveizi et al., 2015

Glycol chitosan and DF-PEG NSC Self-healing hydrogel Implantation in neural injury Zebrafish embryo Tseng et al., 2015

Methacrylamide chitosan,
collagen, IFN-y, and acrylated
laminin

NSC Conduit Implantation in SCI Rat Li et al., 2014

Chitosan and gelatin MSC from human
adipose tissue

Scaffold Implantation in TBI Mice Gao S. et al., 2014
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that the stiffness of chitosan precluded the colonization of other
cells, like vascular epithelial cells (Sugai et al., 2015). The stiffness
of the scaffolds should be in the range of 0.1–1 kPa for mimicking
soft tissue like the brain. It is well known that stiffness has a
notorious influence on stem cell response and function (Liang
et al., 2019). Moreover, it has been proved that cell size affects
the cellular response to matrix stiffness in 3D cultures, especially
large cells as many of the human stem cells (Bao et al., 2019). So,
in these cell-scaffold strategies, it is very important to consider
the starting material and cell population. The main advantage of
using chitosan as the starting material for this purpose is its high
versatility. Thus, stiffness and other important characteristics that
affect cell behavior, as viscoelasticity, porosity, and topography
can be easily modulated.

Besides its versatility, chitosan and its derivatives have shown
to be a superior substrate for cell therapy in comparison with
other polymers. Scanga et al. (2010) showed the capability
of adult murine NPC to proliferate and differentiate into
the three neural cell types when they were cultured over
chitosan hydrogel films. On the contrary, NPC differentiation
was not observed over poly(oligoethylene oxide dimethacrylate-
co-2-amino ethyl methacrylate) or its blend with poly(vinyl
alcohol), neither over poly(glycerol dimethacrylate-co-2-amino
ethyl methacrylate) (Scanga et al., 2010). Kim et al. (2016)
observed a better functional improvement in rats with SCI after
MSC transplantation over chitosan scaffolds in contrast to PLGA
scaffolds. Moreover, they studied intralesional injection of the
same cells and compared it with scaffold-based transplantation
in rats. They found a higher MSC engraftment when the scaffolds
were employed (Kim et al., 2016). The culture of rat PC12 line
and human neural stem cells over chitosan has also shown better
results in comparison with cellulose acetate or polyethersulfone
derived electrospun nanofibers (Du et al., 2014).

The incorporation of trophic factors as FGF-2, NGF, PDGF,
and bGFG has also shown to enhance stemness of neural
stem cells and favor its differentiation and proliferation when
implanted with chitosan scaffolds or microspheres (Hoveizi et al.,
2015; Skop et al., 2016; Moore et al., 2018). Recently, Skop and his
collaborators designed a cell-scaffold strategy employing a radial
glial neural precursor cell line that conditionally secreted insulin-
like growth factor I. This cell line was attached to a chitosan-based
microsphere scaffold and injected into the lesion cavity of adult
rats with TBI. They observed differentiation toward the three
neural cell types (neurons, astrocytes, and oligodendrocytes) and
improved capacity for neuronal differentiation. These obtained
effects led to the recovery of the somatosensory function.
However, the presence of insulin-like growth factor I was not
associated with a higher cell retention rate or improved cell
replacement. So, the way it improves functional recovery must
be elucidated in future studies (Skop et al., 2019).

CONCLUSION

One of the main factors that preclude the application of
chitosan is its poor solubility and poor mechanical properties.
However, this review summarizes the different strategies that

have been used to overcome these conditions. The obtention of
carboxymethylated, trimethylated, thiolated and other chitosan-
grafted derivatives has increased the potential of this biopolymer,
allowing for the elaboration of biomaterials that help to
counteract neurological disorders. Nevertheless, there is still a
lack of knowledge about the relation of the molecular changes and
the acquired biological properties of these derivatives, especially
within a heterogeneous landscape as the CNS. In this way,
the authors suggest continuing with the exploration of grafting
molecules that improve the biological properties of modified
chitosan. For example, hydroxycinnamic acids have been studied
by some of the authors and resulted in interesting bioconjugates
for CNS applications.

Chitosan-based biomaterials have shown favorable projection.
For drug and gene delivery purposes, chitosan nanoparticles
have shown to be the most promising strategy due to its
mucoadhesion and increased permeability that suits nose-to-
brain applications. In this way, the degradation of the therapeutic
molecules is reduced, and it also opens the door to less invasive
and more effective administration routes. In order to achieve
neuro-regeneration, the transplant of stem cells into chitosan-
based vehicles gives an optimistic outlook. Strategies like the
addition of neurotrophic factors or even the genetic modification
of stem cells have successfully increased differentiation and
viability. The observed functional recovery in different chitosan-
based regenerative therapies encourages the exploration of new
cell-scaffold-biomolecule configurations. Despite the wide variety
of designed compositions and functions, many factors are
implied in cell behavior and, until now, there is not a recipe to
elaborate adequate chitosan-based biomaterials that fulfill all the
requirements for neuro-repair and to transfer these strategies to
clinical trials. Even so, the in vitro and in vivo studies carried
out around the world are helping to understand the biological
processes involved in neuro-repair and the effect of chitosan
biomaterials on them. The authors suggest that future works with
chitosan targeting the CNS must intermix the already suggested
strategies and propose novel interdisciplinary approaches to
attain translation into the clinical level.
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