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Abstract

Research Article

Introduction

Survival analysis is a means for predicting patient outcomes 
by providing invaluable information for selecting treatment. 
Predicting prostate cancer survival outcomes is a significant 
challenge. Following radical prostatectomy, men must be 
closely monitored for the evidence of recurrence. This is 
typically done via prostate‑specific antigen (PSA) blood 
tests. A  detectable or rising PSA after surgery is the 
evidence of biochemical recurrence. The measure of time 
from surgery to biochemical recurrence is biochemical 
recurrence‑free survival (bRFS). Multiple studies examined 
predictors of bRFS using quantitative histopathological 
features with some survival models.[1‑4] However, numerous 
prediction tools[5‑11] utilized whole‑slide images (WSIs) to 
assess prostate cancer recurrence and predicted the likely 
outcomes resulting from treatments. Few of these studies 
simultaneously considered clinical factors  (primary and 

secondary Gleason patterns, PSA value, age, tumor stage) 
and tissue WSIs to correlate with recurrence under different 
survival models.

The Gleason scoring system for prostate cancer remains one 
of the best predictors for prostate cancer progression and 
recurrence,[12‑15] despite significant interobserver reproducibility 
among pathologists.[16‑18] A more recently adapted grading system 
stratifies patients into five prognostic grade groups[19] based on 
their Gleason patterns: grade Group 1 (Gleason ≤ 3 + 3 = 6), 

Background: Grading of prostatic adenocarcinoma is based on the Gleason scoring system and the more recently established prognostic 
grade groups. Typically, prostate cancer grading is performed by pathologists based on the morphology of the tumor on hematoxylin and 
eosin (H and E) slides. In this study, we investigated the histopathological image features with various survival models and attempted to study 
their correlations. Methods: Three texture methods (speeded‑up robust features, histogram of oriented gradient, and local binary pattern) and 
two convolutional neural network (CNN)‑based methods were applied to quantify histopathological image features. Five survival models 
were assessed on those image features in the context with other prostate clinical prognostic factors, including primary and secondary Gleason 
patterns, prostate‑specific antigen levels, age, and clinical tumor stages. Results: Based on statistical comparisons among different image 
features with survival models, image features from CNN‑based method with a recurrent neural network called CNN‑long‑short‑term memory 
provided the highest hazard ratio of prostate cancer recurrence under Cox regression with an elastic net penalty.  Conclusions: This approach 
outperformed the other image quantification methods listed above. Using this approach, patient outcomes were highly correlated with the 
histopathological image features of the tissue samples. In future studies, we plan to investigate the potential use of this approach for predicting 
recurrence in a wider range of cancer types.

Keywords: Histopathological image, image features, neural networks, prostate cancer, survival models

Address for correspondence: Dr. Xin Qi, 
Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of 

New Jersey, New Brunswick, NJ, USA. 
E‑mail: qixi@rutgers.edu

Access this article online

Quick Response Code:
Website:  
www.jpathinformatics.org

DOI:  
10.4103/jpi.jpi_85_18

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Ren J, Singer EA, Sadimin E, Foran DJ, Qi X. 
Statistical analysis of survival models using feature quantification on prostate 
cancer histopathological images. J Pathol Inform 2019;10:30.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2019/10/1/30/268079

Statistical Analysis of Survival Models Using Feature 
Quantification on Prostate Cancer Histopathological Images

Jian Ren1, Eric A. Singer2,3, Evita Sadimin2, David J. Foran3, Xin Qi3

1Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA, 2Department of Pathology and Laboratory Medicine, Section of 
Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA, 3Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of 

New Jersey, New Brunswick, NJ, USA

Received: 06 November 2018			   Accepted: 14 June 2019			   Published: 27 September 2019



J Pathol Inform 2019, 1:30	 http://www.jpathinformatics.org/content/10/1/30

Journal of Pathology Informatics2

Grade Group 2 (Gleason 3 + 4 = 7), Grade Group 3 (Gleason 
4 + 3 = 7), Grade Group 4 (Gleason 4 + 4 = 8, 3 + 5 = 8, and 
5 + 3 = 8), and Grade Group 5 (Gleason 4 + 5 = 9, 5 + 4 = 9, 
and 5 + 5 = 10). Figure 1 shows an example of Giga‑pixel 
WSI with different Gleason patterns. The green‑framed patch 
contains Gleason pattern 3; the blue‑framed patch contains 
Gleason pattern 4; and the red‑framed patch contains Gleason 
pattern 5. In this study, we conducted experiments on public 
prostate cancer dataset using different feature quantification 
methods and recurrence analysis using different survival 
models. Histopathological image features were quantified 
through texture methods and neural network‑based approaches. 
We focused on the prostate cancer grade groups of 1–4. The 
bRFS was applied as the time to recurrence for prostate cancer 
progression analysis.

Materials and Methods

Materials
In this study, we used the prostate dataset from the Genomic 
Data Commons (GDC).[20] The dataset included whole‑slide 
histopathological images from patients and their corresponding 
clinical reports, including the primary and secondary Gleason 
pattern, patients’ PSA value, age, and tumor stage. All 
the image data, annotations of Gleason score, and clinical 
information were publicly available.

We selected the patients with low‑risk  (Gleason score 
3 + 3), intermediate‑risk (Gleason score 3 + 4 or 4 + 3), and 
high‑risk prostate cancer (Gleason score 4 + 4) because those 
patient populations show a reasonable range of prognoses 
for our analysis. We excluded patients with Gleason 
Grade Group 5 patients in this study due to poor prognosis of 
their disease.[21] Considering the high computational cost on 
the Giga‑pixel tissue WSIs, existing WSIs classification and 
recurrence analysis approaches were focused on effectively 
utilizing the cropped patches from region of interests.[22‑27] For 
image preparation, we adopted the two‑step cropping–selecting 

process. First, original patches were automatically generated 
within each WSI under ×40 with a patch size of 4096 × 4096. 
Second, the patches with the tissue accounting for at least 
20% of the whole area were selected for our experiments. The 
number of WSIs and cropped patches under different Gleason 
scores is shown in Table 1.

Methods
Initially, we utilized various quantification methods to extract 
image features from WSIs. Next, the recurrence analysis 
was performed on the combination of image features and 
clinical factors utilizing different survival models, as shown 
in Figure  2. Hazard ratios using different survival models 
were calculated to indicate the correlation between image 
features (or in context of clinical factors) and recurrence; the 
higher the hazard ratio, the higher the correlations.

Image feature quantification
We adopted five approaches for the purpose of feature 
quantification including unsupervised and supervised 
methods. The unsupervised texture methods consisted of 
speeded‑up robust features (SURFs),[28] histogram of oriented 
gradients (HOGs),[29] and local binary pattern (LBP).[30] The 
two supervised methods are based on convolutional neural 
networks  (CNNs). For supervised methods, we randomly 
selected 20% of the cases as testing set, 10% as validation set, 
and the remaining as training set.

Texture features
We chose three texture methods for prostate cancer 
histopathological image analysis. They were rotation, 
translation, and scale‑  and intensity‑invariant which were 
suitable for descriptions of the texture features within WSIs.

The SURF[28] is partly inspired by the scale‑invariant feature 
transform (SIFT) descriptors. The standard version of SURF is 
several times faster than SIFT and more robust against different 
image transformations than SIFT. The image is transformed 
into coordinates, using the multiresolution pyramid technique, 
to copy the original image with a pyramidal Gaussian or 
Laplacian pyramid shape to obtain an image with the same size 
but with reduced bandwidth. The HOG[29] counts occurrences 
of gradient orientation in a local region of an image. It is similar 
to that of edge‑orientation histograms, SIFT descriptors, and 
shape contexts but differs in that it is computed on a dense grid 
of uniformly spaced cells and uses overlapping local contrast 
normalization for improved accuracy. The LBP[30] is used to 

Figure 1: Example Giga‑pixel whole‑slide image with different Gleason 
patterns. The green framed patch contains Gleason pattern 3; the 
blue‑framed patch contains Gleason pattern 4; and the red‑framed patch 
contains Gleason pattern 5

Table 1: The number of whole‑slide images and their 
corresponding automatically selected patches under 
different Gleason scores composing from a sum of 
Gleason patterns 3+3, 3+4, 4+3, and 4+4 prostate 
prognostic grading groups

Gleason score 3+3 3+4 4+3 4+4
# WSIs 43 144 99 49
# patches 1229 4753 2997 1597
WSIs: Whole‑slide images
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model the image local features in texture spectrum units in a 
multiresolution gray‑scale mode. It is based on recognizing 
local binary unit patterns for any quantization of the angular 
space and spatial resolution.

The image features for each patch were generated using a 
bag‑of‑words approach[31] from the texture features of different 
texture methods. By treating image features as words, a bag 
of words is a sparse vector of occurrence counts (histogram) 
of a vocabulary of local image features. In the bag‑of‑word 
approach, it converts vector‑represented texture features to 
codewords, which also produce a codebook. The image features 
are mapped to certain codewords through the clustering process, 
and the image is then represented by the histogram of the 
codewords. Empirically, we use 100 as the number of cluster 
centers to report the best performance for texture features. 
To select the texture features for WSIs, we apply principal 
component analysis  (PCA)[32] of the image features for all 
patches within a WSI due to correlations among the patches.

Convolutional neural network‑based features
In recent years, with the advances of deep learning, studies 
using CNNs have demonstrated significant improvement 
on histopathological image classification [27,33‑36] and 
segmentation.[33,34,37,38] For the WSIs, applications based on 
CNNs have been widely developed.[39‑41] In our study, we 
adopted two approaches to obtain CNN‑based features. The 
first one was using the neural network to obtain image features 
for each patch, and then the features for WSIs were obtained by 
utilizing PCA on all patches. The CNN employed in the study 
is shown in Table 2. The input to the network was the cropped 
patches from prostate pathological WSIs. The activations 
from the second to the last layer were considered as the image 
features of the input samples. To train the network with patches, 
we assigned Gleason pattern as the ground truth annotation 
for the patch. The GDC WSIs have been previously graded 
with the primary and secondary patterns, as well as the final 
Gleason score given.

To model variations among Gleason patterns within a WSI, 
we used the multitask architecture to enable the network to 
learn as much information about the Gleason patterns from the 
patches of a WSI as possible. During the training process, we 
assigned the primary pattern and the sum of primary pattern 
and secondary pattern (Gleason score) as labels for each patch 
and use the following multitask loss function:

p p s s
multi-task i i i i

0 0
 log( ) lˆ (ˆog )

= =

= − −∑ ∑
N N

i i
L t t t t � (1)

where for the ith image within the batch of N images, p
it  and s

it
encoded the Gleason grading for the primary pattern and the 
sum score and p

ît and ˆ encoded the predicted grading of the 
model. The one‑hot encoding is a process by which categorical 
variables are converted into a form that could be provided to 
CNN to do a better job in classification. The results suggested 

Figure 2: Outline of image feature quantification from whole‑slide images and assessed by various survival models

Table 2: The convolutional neural network applied in our 
approach

Layer Filter size, stride Output W × H × N
Input ‑ 256×256×3
Conv 11×11, 4 55×55×96
Max‑pooling 3×3, 2 27×27×96
Conv 5×5, 1 27×27×256
Max‑pooling 3×3, 2 13×13×256
Conv 3×3, 1 13×13×384
Conv 3×3, 1 13×13×384
Conv 3×3, 1 13×13×256
Max‑pooling 3×3, 2 6×6 × 256
FC6 ‑ 4096
FC7 ‑ 4096
FC8, FC9 ‑ 2, 4
All the Conv are followed by ReLU. For the FC, the FC6 and FC7 are 
followed by the ReLU and dropout layer with the dropout ratio as 0.5; 
FC8 and FC9 are both at the top of FC7. Conv: Convolution layers, 
ReLU: Rectified linear units, FC: Fully connected layers, W×H×N: 
Height×Width×Channel)
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that using the primary Gleason pattern and the Gleason score 
together achieved the best estimate of risk of recurrence by 
capturing local and global image feature distribution more 
efficiently than using either one alone.

For the second approach, we treated the cropped patches from 
the WSI as an image sequence and used one type of recurrent 
neural network (RNN) called long‑short‑term memory (LSTM) 
to explore the long‑term dynamic information of the patch 
spatial sequence within the WSI. We denoted the method as 
CNN features with LSTM (CNN + LSTM). The LSTM could 
fully leverage the patch spatial sequence within a WSI to get the 
representative features that model the global Gleason score of 
the WSI and the distribution of the Gleason patterns among the 
WSI. Recently, the LSTM model has been successfully used in 
speech recognition,[42,43] language translation models,[44] image 
captioning,[45] and video classification.[46] Compared with the 
traditional RNNs, LSTM is more effectively in long‑range 
and short‑term spatial sequence modeling. In general, given 
an input feature sequence (x1, x2,…, xT), the LSTM outputs the 
output sequence (y1, y2,…, yT). The hidden layer of LSTM is 
computed recursively from t = 1 to t = T with the following 
equations:

i i it x t h t 1 c t 1 i(   − −= + + +i W x W h W c b � (2)

f f ft x t h t 1 c t 1 f (   ) − −= + + +f W x W h W c b � (3)

c ct t t-1 t x t h t-1 ctanh(   )= + + +c f c i W x W h b � (4)

o o ot x t h t 1 c t 1 o (   ) − −= + + +o W x W h W c b � (5)

t t ttanh( ) =h o c  � (6)

where xi is the network activations of the ith patch, ht is the 
hidden vector, it, ct, ft, and ot are, respectively, the activation 
vectors of the input gate, memory cell, forget gate, and output 
gate. W terms denoted the weight matrices connecting different 
units, b terms denoted the bias vectors, and σ is the logistic 
sigmoid function. From the above equations, we can see the 
memory cell ci in LSTM having two inputs: the weighted 
sum of the current inputs and the previous memory cell units 
ct  −  1, which enables the model to learn when to forget the 
old information and when to consider new information. The 
output gate ot controls the propagation of information to the 
following step.

Since we utilized the spatial characteristic encoded features 
from CNN, the training process of LSTM of patches 
within WSIs was formed in a spatial format instead of time 
sequential manner. As shown in Figure 3, we used the image 
coordinates to indicate the location of each patch in the patch 
spatial sequence. In this way, we considered both the unique 
characteristics of each patch and the fine‑grained variations 
between patches. For one prostate WSI, the patches were fed 
into the network to get the activations from the second to the 
last layer. Then, we utilized a one‑layer LSTM to recursively 

map the activations of each patch to a feature vector. In 
addition, the average pooling layer was applied on top of the 
network to get a feature vector as the computational image 
features for the WSI. The number of hidden units for each 
LSTM is 1024. During the training process, we applied the 
multitask loss and assign the primary pattern and the Gleason 
score for the WSIs.

Survival models
To evaluate the performance of various survival models using 
different image features quantified by textural and CNN‑based 
methods on patients with prostate cancer, we used the bRFS 
since their initial treatment as a time‑to‑recurrence variable 
for survival models. Using survival models, we assessed 
the image features related to recurrence hazard risk scores in 
the context of other clinical prognostic factors, including the 
primary and the secondary Gleason patterns, PSA, age, and 
clinical tumor stage.

The hazard risk scores of image features in the context of 
clinical mean a measure of prostate cancer recurrence risk ratio, 
commonly in time‑to‑event analysis or survival analysis. The 
survival models evaluated in our study include multivariate Cox 
proportional‑hazards model,[47] Cox regression by an elastic 
net penalty  (COX‑EN),[48] parametric proportional‑hazard 
model  (PH‑EX),[49] parametric proportional‑hazard 
model with log‑normal distance  (PH‑LogN),[49] and 
parametric proportional‑hazard model with log‑logistic 
distance (PH‑LogL).[49]

For the high‑dimensional data, univariate Cox regression 
was applied to the computational image features. Only those 
with Wald test, P < 0.05 is selected in conjunction with 
clinical factors as inputs of the survival models. The Cox 
proportional‑hazards model is a popular regression model 
for the analysis of survival data. It is a semi‑parametric 
method for adjusting survival rate estimates to quantify the 
effect of predictor variables. In contrast with parametric 
models, it makes no assumptions about the shape of the 
so‑called baseline hazard function. It represents the effects 
of explanatory variables as a multiplier of a common 
baseline hazard function H0. Given the patients (ti, li, xi), 
where i = 1, 2., N, we have the ti as the patient’s recurrence 
time for individual i; li is the label of the censored data that 
equals 1 if the recurrence occurred at that time and 0 if the 
patient has been censored; and Xi as the vector of covariates 
of the selected image features and clinical factors.

The hazard function is the nonparametric part of the Cox 
proportional‑hazards regression function corresponding to

( ) ( )i i i 0 ij i
1

, , exp 
=

= ∑
p

j
H X l t H t x  � (7)

Here, xij is the image features j for patient i, where j = 1, 2, 
…p and βi is the Cox regression parameter for each patient.

The hazard ratio is derived from ( ) i i

0

( , , )
=i

H X l t
X

H , 



J Pathol Inform 2019, 1:30	 http://www.jpathinformatics.org/content/10/1/30

Journal of Pathology Informatics 5

representing the relative risk of instant failure for patients 
having the predictive value Xi compared to the ones having 
the baseline values. Here, di is weighting parameters for each 
patient.

( ) ( log( [ ]exp[ ]) = − −∑ ∑
pN

i i i i j i i i
i i

HR X d X I t t X  � (8)

For the COX‑EN, the elastic net penalty ̂ is given in the 
equation below. It is a mixture of the L1  (Lasso) and L2 
(ridge regression) penalty. Here, is the ratio between L1 and 
L2 for elastic net.



41
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= ∈
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Based on the assumption that the effect of the covariates is 
to increase or decrease the hazard by a proportionate amount 
at all durations, the parametric proportional‑hazard model 
is a location‑scale model for arbitrary transform of the 
time variable ti, leading to accelerated failure time model 
with different penalty distance functions. The distance 
functions we use for parametric proportional‑hazard 
models are exponential  t ransformation  (PH‑EX), 
log‑normal  (PH‑LogN), and log‑logistic  (PH‑LogL) 
distances.

The survival model fitting to different image features 
were quantified by Akaike information criteria (AIC).[50]

AIC = −2log (likelihood) +2K� (11)

where likelihood is a measure‑of‑model fitness and K 
represents the number of model parameters. The smaller 
value of the AIC, the better the goodness of fit of the survival 
models.

Experimental Results

In this section, we conducted the experiments on the public 
prostate cancer dataset to make statistical analysis on various 
survival models using different histopathological image feature 
quantification methods.

Implementation details
For the CNN‑based approaches to extract image features, we first 
used the patches to train the CNN with multitask loss. Each patch 
was resized as 256 × 256 and assigned two labels according to 
the Gleason grading of the WSI: one being the primary pattern 
and another being the Gleason score. The CNN was trained 
with mini‑batch stochastic gradient descent. The momentum is 
0.9, and weight decay was 5 × 10 −5. The initial learning rate is 
10 −3 and annealed by 0.1 after 104 iterations. To train the LSTM, 
we set the same momentum, the weight decay, and the initial 
learning rate. The learning rate is annealed by 0.1 after 2 × 103 
iterations. The implementation is based on the Caffe toolbox.[51]

Comparison of image features
First, only using image features from tissue specimens, 
including clinical Gleason primary and secondary patterns and 
the quantified image features from various image methods, 
their Cox hazard ratios are shown in Table 3. CNN achieved 
better results than texture methods, including SURF,[28] 
HOG,[29] and LBP.[30] Using CNN with LSTM to model the 
spatial relation of patches achieved the highest Cox hazard 
ratio, which indicated the best recurrence correlation for 
prostate cancer patients’ recurrence data. On the other hand, the 
image features obtained from texture‑based methods and CNN 

Figure 3: The multi‑task neural network architecture for computational image features extraction from whole‑slide images. The cropped patches are 
formed as a sequence by the image coordinates. The long‑short‑term memory is built on top of the convolutional neural network for the long‑term 
spatial modeling of the activation sequence. An average pooling layer maps the activations into one feature vector
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approaches achieved higher Cox hazard ratios as compared to 
utilizing primary and secondary patterns alone.

Second, in addition to the image features, PSA levels, ages, 
and clinical tumor stages were included in the Cox survival 
model, besides the primary and the secondary Gleason 
patterns. The results of combining clinical factors and image 
features are shown in Table 4, demonstrating that the image 
features generated from CNN‑based approaches were more 
representative than the texture features by having higher 
values of hazard ratio. In addition, those features were 
more representative than clinical prognostic factors. We 
also calculated the AIC values, as shown in Table  4. The 
smaller AIC value encodes the better goodness of fit of the 
survival model. CNN + LSTM achieved the best fitness on 
the Cox regression model compared to other image features 
quantification methods.

Finally, without any image features, we showed the Cox hazard 
ratios of the clinical factors, as shown in Table 5. From the 
results of Tables 3‑5, we can see that primary Gleason patterns 
have higher Cox hazard ratios than the ones of other clinical 
factors, which was consistent with its high prediction power 
for prostate cancers.[1,4]

Ablation study on training strategies
Furthermore, considering the multiple Gleason patterns 
within WSIs, we designed two training strategies to train the 
CNN‑based approaches. The first one was to use multitask loss 
to learn both the primary Gleason pattern and the sum of the 
primary and secondary patterns (namely, the Gleason score). 
The second one was to use the primary Gleason pattern or the 
Gleason score alone to learn the patterns within the patches 
or WSIs.

The performance of two CNN‑based approaches on patient 
recurrence analysis was compared using different training 
strategies. The results are shown in Table 6. We can see that 
the multitask architecture achieved better correlation with 
patients’ recurrence than training label using the primary 
Gleason pattern or Gleason score alone as it has much higher 
recurrence hazard ratios and lower AIC values. This is because 
the primary Gleason pattern and the Gleason score together 
could better reflect the local and global image features in the 
WSIs than use each alone.

Comparison of survival models
In this section, we performed statistical analysis on various 
survival models, including COX‑EN,[48] PH‑EX,[50] PH‑LogN,[50] 
and PH‑LogL,[50] using prostate images with Gleason score 6–8 
and clinical factors. The Cox proportional‑hazards model does 
not need an assumption of a particular survival distribution 
of the patients’ survival data. The only assumption in the 
model is about the proportional hazards. Unlike the Cox 
proportional‑hazards model, parametric models with different 
penalty distance functions (such as exponential, log‑normal, 
and log‑logistic) need to specify the hazard functions.[52,53] 
Studies have indicated that under certain circumstances, such 
as strong effect or strong time trend in covariates or follow‑up 
depending on covariates, the parametric models are good 
alternatives to the Cox regression model.[53]

We assessed different survival models and show the hazard 
ratios of image features and patients’ clinical prognostic factors, 
as shown in Table 7. Based on these results, first, we can see 
that the image features quantified from WSIs outperformed 
other clinical factors in all texture and CNN‑based approaches. 
Second, CNN‑based approaches achieved a better correlation 

Table 4: The Cox hazard ratios and Akaike information criteria of using clinical factors including Gleason primary and 
secondary patterns, patients’ prostate‑specific antigen, age, and clinical tumor stages, and image features from different 
image analysis methods

Methods Primary pattern Secondary pattern PSA Age Tumor stage Image features AIC
SURF 0.99 0.67 0.84 0.98 1.04 1.13 38.93
HOG 1.21 0.65 0.82 1.01 1.13 1.10 51.97
LBP 0.97 0.76 0.84 1.00 1.08 1.08 35.97
CNN 1.10 1.13 0.80 1.00 1.17 2.58 38.02
CNN + LSTM 1.38 0.75 0.76 0.97 1.14 7.10 35.60
The texture feature quantification methods include SURF,[28] HOG,[29]and LBP.[30] Using CNN + LSTM achieves the highest Cox hazard ratio and lowest 
value of AIC, which indicates the best performance on progression prediction for the recurrence data. PSA: Prostate‑specific antigen, AIC: Akaike 
information criteria, SURF: Speeded‑up robust features, HOG: Histogram of oriented gradient, LBP: Local binary pattern, LSTM: Long‑short‑term 
memory

Table 3: The Cox hazard ratios of only using clinical 
Gleason primary and secondary patterns and image 
features from different image analysis methods

Methods Primary pattern Secondary pattern Image features
SURF 0.76 0.58 1.15
HOG 0.84 0.55 1.09
LBP 0.77 0.60 1.10
CNN 0.80 0.73 1.83
CNN + LSTM 0.90 0.71 3.54
The texture feature quantification methods include SURF,[28] HOG,[29] 
and LBP.[30] Using CNN with LSTM to model the spatial relationship 
of patches achieves the highest Cox hazard ratio, which indicates the 
best performance on progression prediction for the recurrence data. 
Meanwhile the image features from texture and CNN approaches achieve 
the Cox hazard ratios compared to the ones from clinical Gleason 
primary and secondary patterns. SURF: Speeded‑up robust features, 
HOG: Histogram of oriented gradient, CNN: Convolutional neural 
network, LSTM: Long‑short‑term memory, LBP: Local binary pattern
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Table 6: The Cox hazard ratios and Akaike information criteria of convolutional neural network‑based approaches on 
patients’ progression analysis using three different training strategies

Methods Training Strategy Primary Pattern Secondary Pattern PSA Age Tumor Stage Image Features AIC
CNN Primary Pattern 1.11 1.12 0.80 1.00 1.16 1.34 46.13
CNN Gleason Score 1.26 1.03 0.75 0.98 1.12 1.53 44.29
CNN Multi‑task 1.10 1.13 0.80 1.00 1.17 2.58 38.02
CNN + LSTM Primary Pattern 1.35 0.84 0.78 0.98 1.14 1.63 44.27
CNN + LSTM Gleason Score 1.09 0.66 0.81 0.99 1.11 2.76 41.47
CNN + LSTM Multi‑task 1.38 0.75 0.76 0.97 1.14 7.10 35.60
Using multitask architecture achieves the highest Cox hazard ratio and lowest AIC values than training using the primary Gleason pattern or Gleason score 
alone, which indicates the best performance on progression prediction for the recurrence data. CNN: Convolutional neural network, LSTM: Long‑short‑term 
memory, PSA: Prostate‑specific antigen, AIC: Akaike information criteria

Table 7: The Cox hazard ratios and Akaike information criteria of different survival models using texture methods and 
convolutional neural network‑based approaches

Survival models Methods Primary patterns Secondary patterns PSA Age Tumor stage Image features AIC
COX‑EN SURF 0.10 0.27 0.33 0.06 0.03 3.38 42.93
COX‑EN HOG 0.10 0.25 0.32 0.06 0.03 3.85 59.72
COX‑EN LBP 0.10 0.19 0.30 0.06 0.03 2.40 39.83
COX‑EN CNN 0.23 0.21 0.33 0.06 0.04 7.57 29.86
COX‑EN CNN + LSTM 0.13 0.27 0.36 0.06 0.03 15.85 29.83
PH‑EX SURF 0.07 0.09 0.29 0.03 0.03 1.94 41.26
PH‑EX HOG 0.05 0.12 0.29 0.04 0.03 2.41 61.56
PH‑EX LBP 0.07 0.06 0.28 0.03 0.03 1.49 41.22
PH‑EX CNN 0.08 0.07 0.29 0.04 0.04 4.50 35.60
PH‑EX CNN + LSTM 0.08 0.10 0.29 0.04 0.03 10.22 31.22
PH‑LogN SURF 0.18 0.22 0.30 0.02 0.08 2.03 47.27
PH‑LogN HOG 0.18 0.23 0.30 0.02 0.08 2.70 47.58
PH‑LogN LBP 0.21 0.18 0.29 0.02 0.08 1.38 45.99
PH‑LogN CNN 0.16 0.15 0.30 0.02 0.08 4.33 42.51
PH‑LogN CNN + LSTM 0.20 0.18 0.31 0.02 0.08 11.92 33.31
PH‑LogL SURF 0.11 0.15 0.29 0.02 1.89 1.89 43.74
PH‑LogL HOG 0.07 0.20 0.28 0.02 2.91 2.91 44.45
PH‑LogL LBP 0.79 0.29 1.09 0.77 1.46 1.46 44.39
PH‑LogL CNN 0.09 0.08 0.29 0.03 4.39 4.39 35.96
PH‑LogL CNN + LSTM 0.12 0.13 0.29 0.02 9.92 9.92 33.02
The survival models include COX‑EN,[48] PH‑EN,[50] PH‑LogN,[50] and PH‑LogL.[50] CNN: Convolutional neural network, LSTM: Long‑short‑term 
memory, PSA: Prostate‑specific antigen, AIC: Akaike information criteria, SURF: Speeded‑up robust features, HOG: Histogram of oriented gradient, LBP: 
Local binary pattern

Table 5: The Cox hazard ratios of the clinical factors

Primary pattern Secondary pattern PSA Age Tumor stage
2.15 1.09 0.73 0.90 1.30
PSA: Prostate‑specific antigen

with patients’ recurrence due to their higher hazard ratios 
than other texture methods for all survival models. Third, 
by comparing with Table  4, COX‑EN achieved the lowest 
AIC value with image features obtained from CNN + LSTM, 
proving that the model was more suitable for recurrence 
analysis for prostate patients with low, intermediate, and high 
risk than other survival models.

Discussion and Conclusions

In this paper, we presented three unsupervised texture 
methods  (SURF, HOG, and LBP) and two supervised 
CNN‑based methods to quantify the features from 
histopathological images. Five survival models were assessed 
on those image features along with prostate cancer clinical 
prognostic factors, including the primary and the secondary 
Gleason patterns, PSA, age, and clinical tumor stage to perform 
bPFS analyses.

Based on the statistical comparisons among different image 
feature quantification methods with survival models, the 
CNN‑LSTM provided the highest hazard ratio of prostate 
cancer recurrence under COX‑EN. COX‑EN outperforms 
other image quantification methods with other survival models, 
respectively. In our approach, patient outcomes were better 
correlated with their histopathological image features. Due 
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to the limited size of the public prostate dataset, the results 
achieved from our experiments were preliminary. To further 
validate its generalizability of our approach, more prostate 
images from local institutions are needed to perform extensive 
experiments.

In the future, besides using tissue WSIs for patients’ bRFS 
analysis, integrating patients’ genomic information and tissue 
histopathology images will be investigated as a means for 
providing additional predictive power. Doing so would provide 
a more quantitative and accurate clinical decision‑making 
support system for patients with prostate cancer.
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