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Abstract

Introduction

Little is understood about the socioeconomic predictors of tooth loss, a condition that can

negatively impact individual’s quality of life. The goal of this study is to develop a machine-

learning algorithm to predict complete and incremental tooth loss among adults and to com-

pare the predictive performance of these models.

Methods

We used data from the National Health and Nutrition Examination Survey from 2011 to

2014. We developed multiple machine-learning algorithms and assessed their predictive

performances by examining the area under the receiver operating characteristic curve

(AUC), accuracy, sensitivity, specificity, and positive and negative predictive values.

Results

The extreme gradient boosting trees presented the highest performance in the prediction of

edentulism (AUC = 88.7%; 95%CI: 87.1, 90.2), the absence of a functional dentition (AUC =

88.3% 95%CI: 87.3,89.3) and for predicting missing any tooth (AUC = 83.2%; 95%CI, 82.0,

84.4). Although, as expected, age and routine dental care emerged as strong predictors of

tooth loss, the machine learning approach identified additional predictors, including socio-

economic conditions. Indeed, the performance of models incorporating socioeconomic

characteristics was better at predicting tooth loss than those relying on clinical dental indica-

tors alone.

Conclusions

Future application of machine-learning algorithm, with longitudinal cohorts, for identification

of individuals at risk for tooth loss could assist clinicians to prioritize interventions directed

toward the prevention of tooth loss.
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Introduction

Tooth loss is considered the “end state” of dental disease [1] and can adversely affect individu-

als’ general health, quality of life, and well-being [2, 3]. Although its prevalence has declined

over the past decade, the aging population means that the risk of tooth loss is expected to rise

[4]. Moreover, low-income and marginalized populations still experience a disproportionate

share of the burden [5, 6].

Tooth loss can generally be prevented if dental disease is diagnosed and treated at an early

stage. Evidence from longitudinal studies suggests that routine dental attenders lose fewer

teeth [7]. However, ongoing barriers to access to dental care, including its high cost, limit utili-

zation of dental services, particularly among low-income and minority populations [8]. Adult

dental coverage is not an essential health benefit in most public health insurance programs in

the United States. Thus, even when able to access dental services, a large proportion of low-

income adults have poor oral health due to a lack of routine care, and extraction becomes the

most affordable and expedient dental treatment. Identification of individuals at high risk of

tooth loss could therefore (a) aid clinicians in implementing early prevention, and (b) inform

policies to ensure access to dental care and improve the oral health of vulnerable populations.

While prior research indicates that dental caries remains (by far) the greatest contributor to

tooth loss [9], followed by periodontal disease [10], the role of socioeconomic conditions and

other health characteristics is less clear. This is primarily because most prior analyses were

based on descriptive studies with a limited number of variables [11, 12]. Machine-learning

algorithms comprise an approach that utilizes information on a large number of characteristics

to identify variables that predict an outcome. This procedure relies on pattern recognition by

training the algorithm using “training data” to identify complex patterns to predict outcomes

in a separate data “test data” and are therefore better able to model non-linear and high-

dimensional characteristics, which is the case of most health data [13, 14]. Machine-learning

methods have been recently applied in medicine to provide information to support clinical

decisions, such as in predicting survival in cancer patients or survival in intensive care units

[14, 15]. However, little is known about developing machine-learning algorithms for the pre-

diction of oral health outcomes [13]. Our objective is to build on that evidence and develop

and test multiple machine-learning algorithms to predict complete and incremental tooth loss

among adults using socioeconomic and medical condition predictors and to compare the pre-

dictive performance of those developed models.

Methods

Study population and data sources

We analyzed data from the National Health and Nutrition Examination Survey (NHANES),

conducted by the National Center for Health Statistics [16]. NHANES use stratified multistage

probability samples of the civilian non-institutionalized population of the US. NHANES sur-

veys contain information on sociodemographic data, medical conditions, in addition to

detailed dental examination. We restricted our sample to adults ages 18 and older. We used

data from NHANES cycle 2011 to 2012 (n = 5,864) to develop the predictive models for each

outcome “training set”, and we then used cycle 2013 to 2014 (n = 6,113) to test our models’

performance in new unseen data (Fig 1).

Study variables

Our outcome variables were: (1) edentulism, which is the complete loss of all natural teeth; (2)

the presence or absence of a functional dentition, which is defined as having at least 20 teeth
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[17]; and (3) having one or more missing teeth. All outcomes were dichotomized (yes, no). In

our primary analyses, we included a total of 28 socioeconomic characteristics, oral health

behavior, and chronic medical conditions as predictors for the machine-learning algorithms.

Those variables included age, gender, race, nativity, employment, education, marital status,

family size, home ownership, number of rooms, food expenditures (at home and away from

home), ratio of family income to poverty level, health insurance, body mass index (BMI), rou-

tine dental care, and self-reported diagnoses of asthma, diabetes, arthritis, stroke, heart attack,

coronary heart disease, heart failure, angina, high cholesterol, hypertension, gout, and cancer.

In secondary analysis, we ran a model which included only routine clinical variables that

clinicians might rely upon to predict future tooth loss in patients, viz., the number of decayed

teeth and periodontal disease, in addition to age, gender, and race. Detailed description of pre-

dictor variables is shown in S1 Table.

Statistical analysis

We tested five popular machine-learning algorithms to predict each outcome. These algo-

rithms were logistic regression, random forest (ensemble of multiple decision trees with boot-

strap aggregating), light gradient boosting machine and extreme gradient boosting trees (both

based on sequential models of decision trees), and artificial neural networks (algorithms

inspired by neural structures and trained with back propagation).

We performed one-hot encoding for every categorical variable and standardized continu-

ous variables to avoid oversized effects due to differences in scale. We applied 10-fold cross-

validation to tune hyperparameters with Bayesian optimization (hyperopt) for the training set

to avoid overfitting, separately for each outcome. For edentulism, due to a small number of

Fig 1. Study flow diagram.

https://doi.org/10.1371/journal.pone.0252873.g001
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positive values (reflecting low prevalence), the training set was resampled with one-side selec-

tion. In imbalanced datasets, machine learning algorithms have a tendency of biasing decisions

towards the majority class. A common solution to this problem is to undersample the majority

class. We applied one-sided selection to the training set, which is an undersampling method

that removes examples from the majority class that are noisy and distant from the decision

border.

After selecting the combination of hyperparameters with the highest area under the receiver

operating characteristic curve (AUC) for each model, the parameters of the final algorithms

were defined with the entire 2011–12 NHANES cycle (training set) and their predictive perfor-

mance tested on the 2013–14 cycle of NHANES (test set). All of the results presented here are

from the test set.

To assess the predictive performance of the algorithms, we calculated the AUC, accuracy

(ACC), sensitivity, specificity, positive predictive value (PPV), negative predictive value

(NPV), and the harmonic mean for sensitivity and specificity for each predictive model. We

used 50% threshold for reporting sensitivity, specificity, F1, PPV, NPV. However, in a sensitiv-

ity analyses we also tested two other thresholds 25% and 75% (S2 Table).

Furthermore, we computed Shapley values for each predictive model to determine the

importance of each variable in predicting our study outcomes. Shapley values are an additive

feature importance measure that represent the responsibility of each feature in pushing the

model output away from its base value [18].

We used Python (scikit-learn library) [19] and STATA 15.1 software for our analyses [20].

NHANES surveys are approved by National Center for Health Statistics (NCHS) Research Eth-

ics Review Board (ERB) [21]. This study used deidentified data and was determined to be

“not-human subjects research” by the institutional review board of the of the Harvard Faculty

of Medicine.

Results

The study included a total of 11,977 adults. There were 736 (5.3%) individuals who were eden-

tulous, 2,663 (18.5%) adults without a functional dentition, and 6,919 (58.3%) adults missing

at least one tooth. Nearly half of the sample were women (51.8%) and the majority had more

than high school education (63.0%) and were non-Hispanic white (65.7%). The distribution of

demographic and health characteristics was relatively similar across the three outcomes

(Table 1).

The performance of the machine-learning algorithms on the test data for each study out-

come, for the primary analyses (without dental clinical variables), is summarized in Table 2.

For edentulism; all machine-learning models demonstrated high performance with high AUC

(>86.5%). The ACC ranged between 82.2% and 84.3%, indicating good accuracy. The sensitiv-

ity ranged between 71.9% and 78.5%, while specificity was high (>82.5%) for all models. In

predicting the lack of a functional dentition, all models had high performance, with high AUC

and ACC (>87.0% and >81.0% respectively). The specificity was greater than 84.0% and the

sensitivity ranged between 48.4% and 74.1%. For predicting one or more missing teeth, the

AUC were greater than 81.0% and ACC more than 73.0%. The sensitivity for all models was

high (>85.0%), and the specificity ranged between 29.6% and 59.7%. The performance of

the machine-learning algorithms on the train data for each study outcome is presented in

(S3 Table).

We compared the AUC curves from all machine-leaning algorithms by outcome (Fig 2).

Generally, all models were very similar demonstrating high AUC (>81.5%). Considering all

performance parameters (Table 2), the extreme gradient boosting trees had the highest
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Table 1. Demographic characteristics of the study sample: National Health and Nutrition Examination Survey (2011–2014).

Full sample Edentulous sample Having fewer than 21 teeth Missing any tooth

N = 11,977 N = 736 N = 2,663 N = 6,919

n (%)� Survey-Weighted Proportions

Variable

Sex

Male 5,813 (48.2) 48.0 48.1 48.3

Female 6,164 (51.8) 52.0 51.9 51.7

Age, y ± SD 46.4 ± 17.5 65.7 ± 13.7 61.7 ± 15.0 52.9 ± 16.8

Education a

Less than high school degree 2,578 (16.0) 40.1 31.0 20.7

High school graduate 2,472 (21.0) 29.1 31.2 24.6

Some college/college graduate 6,267 (63.0) 30.9 37.7 54.7

Race/ethnicity

Non-Hispanic White 4,679 (65.7) 74.1 64.6 64.8

Non-Hispanic Black 2,809 (11.6) 12.5 17.0 13.3

Hispanic 2,594 (14.7) 6.3 11.5 14.4

Other 1,895 (7.9) 7.1 6.9 7.4

Nativity

US-born 8,463 (82.4) 89.2 84.8 82.2

Foreign born 3,505 (17.6) 10.8 15.2 17.8

Family income, % of FPL

<100 2,770 (17.4) 29.8 24.7 18.8

100–200 2,851 (21.5) 35.1 32.3 24.7

>200 5,339 (61.2) 35.1 43.0 56.5

Health insurance

Insured 9,279 (81.1) 89.7 83.0 80.2

Uninsured 2,680 (18.9) 10.3 17.0 19.8

Routine dental care

Yes 4,379 (44.7) 35.4 19.9 37.3

No 7,388 (55.3) 96.5 80.1 62.7

BMI

�24.99 3,695 (31.1) 29.6 25.9 27.5

25.0–29.99 3,595 (32.9) 33.4 31.7 33.7

�30 4,082 (36.0) 37.0 42.3 38.8

Medical conditions

Asthma 1,815 (15.5) 17.3 15.6 14.7

Arthritis 2,873 (24.9) 52.2 45.8 31.9

Diabetes 1,432 (9.4) 23.5 20.6 13.4

Hypertension 4,180 (32.5) 60.5 56.0 41.6

High cholesterol levels 3,846 (33.7) 52.8 49.5 39.5

Stroke 431 (2.9) 13.9 9.0 4.2

Heart attack 433 (3.3) 14.2 9.7 5.2

Note.
a Education is based on individuals ages 20 years and older. Wisdom teeth were excluded, and all analyses were based on a maximum of 28 teeth.

� Survey-Weighted Proportion. SD is standard deviation.

https://doi.org/10.1371/journal.pone.0252873.t001
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performance in predicting all outcomes. The AUC for extreme gradient boosting trees in pre-

dicting edentulism was 88.7% (95%CI: 87.1, 90.2); for not having a functional dentition it was

88.3% (95%CI: 87.3, 89.3), and for predicting one or more teeth missing it was 83.2%; 95%CI:

82.0, 84.4). The final hyperparameters for all predictive models are presented in S4 Table.

The most important predictive variables, from the best performing classifiers for each out-

come, were nearly similar for all outcomes (Fig 3). Age, education, routine dental care,

employment, ratio of family income to poverty level, race, and home ownership were strong

predictors of tooth loss. While less significant, medical conditions such as arthritis, diabetes,

high cholesterol, hypertension, and cardiovascular diseases were also among the list of predic-

tors. The variable rankings are robust throughout the different machine learning models and

different outcomes, with age, education and race emerging as the top predictors for most mod-

els (S1–S3 Figs).

Results from our secondary analyses—using only routine clinical variables to predict tooth

loss—are presented in Table 3. The performance of these machine-learning algorithms showed

that for edentulism, the logistic regression had the highest predictive performance (AUC =

84.6%; 95% CI: 83.0, 86.1). The extreme gradient boosting trees demonstrated the highest per-

formance in predicting the absence of a functional dentition (AUC = 80.4%; 95% CI: 78.9,

81.7) and for predicting one or more teeth missing (AUC = 79.8%; 95% CI: 78.2, 81.2). In each

case, the algorithms using only clinical variables (number of decayed teeth, periodontal dis-

ease) performed worse than the algorithms excluding the same variables, but incorporating

socioeconomic factors.

Table 2. Performance of the machine-learning algorithms on the test data for each study outcome.

AUC ACC Sensitivity Specificity F1 PPV NPV Harmonic

(95% CI) Mean

Edentulism

Classifier

Extreme gradient boosting trees 88.7 (87.1, 90.2) 83.8 74.3 84.5 39.4 26.8 97.7 79.0

Random forests 88.5 (86.9, 90.0) 84.3 73.7 85.1 40.1 27.5 97.7 78.9

Neural networks 87.7 (86.0, 89.3) 82.2 78.5 82.5 38.6 25.6 98.1 80.4

Light gradient boosting machine 88.4 (86.7, 89.9) 82.7 76.4 83.1 38.5 25.7 97.9 79.6

Logistic regression 86.5 (84.7, 88.3) 83.7 71.9 84.6 38.5 26.3 97.5 77.7

Having fewer than 21 teeth

Classifier

Extreme gradient boosting trees 88.3 (87.3, 89.3) 81.5 74.1 84.2 68.1 62.9 90.0 78.8

Random forests 87.6 (86.5, 88.6) 81.7 48.4 93.7 58.4 73.5 83.4 63.8

Neural networks 88.1 (87.0, 89.1) 82.6 56.4 92.0 63.2 71.9 85.4 69.9

Light gradient boosting machine 87.7 (86.7, 88.7) 82.5 58.0 91.3 63.7 70.7 85.7 70.9

Logistic regression 87.2 (86.2, 88.3) 81.9 53.9 92.1 61.3 71.0 84.7 68.0

Missing any tooth

Classifier

Extreme gradient boosting trees 83.2 (82.0, 84.4) 74.0 95.9 29.6 83.2 73.4 77.8 45.2

Random forests 82.7 (81.4, 83.8) 77.0 89.5 55.6 83.6 80.0 68.6 68.5

Neural networks 83.1 (81.9, 84.3) 77.2 85.8 59.7 83.5 81.2 67.5 70.4

Light gradient boosting machine 81.9 (80.6, 83.0) 73.9 93.7 33.8 82.8 74.2 72.6 49.6

Logistic regression 83.1 (81.9, 84.3) 76.9 85.6 59.4 83.3 81.1 67.0 70.1

Note. Test data: National Health and Nutrition Examination Survey (NHANES 2013–2014). AUC = area under the receiver operating characteristic curve;

ACC = accuracy; PPV = positive predictive value; NPV = negative predictive value; F1 = F1 score; Harmonic mean = between sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0252873.t002
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Discussion

To the best of our knowledge, this is the first use of machine-learning algorithms to predict

complete and incremental tooth loss based on socioeconomic and medical health characteris-

tics [22]. In this study, we used national data to develop and test the performance of five

Fig 2. Receiver-operating characteristics curves for the five analyzed predictive models for each outcome.

https://doi.org/10.1371/journal.pone.0252873.g002
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machine-learning algorithms and to identify predictors of complete and incremental tooth

loss. We assessed the predictive performances of our models by examining several parameters,

including area under the receiver operating characteristic curve, accuracy, sensitivity, specific-

ity, positive and negative predictive values. Overall, all machine-learning models demonstrated

high predictive performance with high discrimination, achieving AUC greater than 82.0%. We

found that the extreme gradient boosting trees model had the highest performance in predict-

ing edentulism, the absence of a functional dentition, and missing any tooth.

Fig 3. Variable importance plot in the extreme gradient boosting trees models for each outcome.

https://doi.org/10.1371/journal.pone.0252873.g003
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Tooth loss is an important oral health indicator. Depending on its severity, it can signifi-

cantly impact the ability to chew, speak, socialize, and overall general health [2, 3, 23]. While

previous research has identified the determinants of tooth loss, most of this literature exam-

ined only edentulism and did not examine incremental tooth loss, which is a far more preva-

lent oral state [11]. Moreover, those studies were mostly based on cross-sectional data or

examined a few variables using classical statistical modeling rather than predictive modeling

[11, 12, 24]. We found that machine-learning models performed better than conventional sta-

tistical methods (logistic regression) for predicting edentulism and the absence of a functional

dentition. Similarly, Krois et al recently developed and evaluated the performance of multiple

predictive models for tooth loss in patients with periodontal disease. Their study demonstrated

the utility of applying machine-leaning framework for predicting tooth loss mainly from peri-

odontal tooth-level predictors [13].

In this study, we assessed the utility of machine-learning algorithms for predicting complete

and incremental tooth loss, and we demonstrated a high predictive performance of those mod-

els. We did not include clinical dental variables in the primary analyses since they are generally

highly correlated with tooth loss [9, 13, 25, 26]. Indicators such as decayed teeth and poor peri-

odontal condition have been documented as strong determinants for tooth loss; when we

included them, our prediction models were nearly perfect. Instead, we used a comprehensive

list of socioeconomic characteristics, self-reported dental care, and medical condition vari-

ables. Our approach aimed to develop predictive models using variables that do not require

Table 3. Performance of the machine-learning algorithms on the test data for each study outcome when including clinical dental predictorsa.

AUC ACC Sensitivity Specificity F1 PPV NPV Harmonic

(95% CI) Mean

Edentulism

Classifier

Extreme gradient boosting trees 83.9 (82.1, 85.5) 83.9 52.1 86.9 35.9 27.4 95.0 65.1

Random forests 78.0 (75.3, 80.6) 80.7 61.9 82.5 35.7 25.1 95.8 70.7

Neural networks 83.7 (82.0, 85.3) 77.1 73.4 77.4 35.7 23.6 96.8 75.3

Light gradient boosting machine 83.0 (81.2, 84.8) 81.5 61.3 83.4 36.5 25.9 95.8 70.6

Logistic regression 84.6 (83.0, 86.1) 76.6 77.7 76.5 36.4 23.8 97.3 77.1

Having fewer than 21 teeth

Classifier

Extreme gradient boosting trees 80.4 (78.9, 81.7) 75.7 45.0 89.6 53.6 66.3 78.2 59.9

Random forests 80.0 (78.5, 81.4) 75.1 42.3 90.0 51.4 65.7 77.4 57.5

Neural networks 80.3 (78.9,81.7) 75.5 50.4 87.0 56.3 63.8 79.4 63.8

Light gradient boosting machine 79.1 (77.7, 80.5) 71.3 72.3 70.8 61.1 53.0 84.9 71.5

Logistic regression 79.3 (77.9, 80.7) 74.9 47.3 87.4 54.1 63.0 78.5 61.3

Missing any tooth

Classifier

Extreme gradient boosting trees 79.8 (78.2, 81.2) 76.9 93.1 29.6 85.7 79.4 59.6 44.9

Random forests 79.8 (78.2, 81.2) 75.6 98.8 8.0 85.8 75.8 69.5 14.8

Neural networks 79.4 (77.8, 80.8) 76.7 89.3 40.1 85.1 81.3 56.3 55.3

Light gradient boosting machine 78.3 (76.7, 79.8) 75.7 98.6 8.7 85.8 75.9 68.7 15.9

Logistic regression 79.5 (78.0, 81.0) 76.8 91.3 34.6 85.5 80.3 57.8 50.2

Note. Test data: National Health and Nutrition Examination Survey (NHANES 2013–2014). AUC = area Under the receiver operating characteristic curve;

ACC = accuracy; PPV = positive predictive value; NPV = negative predictive value; F1 = F1 score; Harmonic mean = between sensitivity and specificity.
a Predictor variables included are the number of decayed teeth, periodontal disease, age, gender, and race.

https://doi.org/10.1371/journal.pone.0252873.t003
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dental examination so that non-dental clinicians could readily identify this high-risk popula-

tion. However, in our secondary analyses, we assessed the predictive performance of the

machine-learning algorithms for predicting our outcomes using a limited number of dental

clinical predictors and demographic variables. Our findings suggest that the machine-learning

algorithms models using socioeconomic characteristics, self-reported dental care, and medical

condition variables performed better at predicting tooth loss than relying on clinical dental

indicators alone. Knowing the patient’s education level, employment status, and income is just

as relevant for predicting tooth loss as assessing their clinical dental status. Our findings echo

the advice of Bernardino Ramazzini (1633–1714), widely considered to be the father of occu-

pational medicine, who admonished clinicians to always ask about their patients’ occupation

when taking down their medical histories [27].

Our findings are consistent with those of previous studies to have identified age and socio-

economic conditions as risk factors for tooth loss [11, 12, 28]. Aging populations have accumu-

lated oral and non-communicable health conditions, and so remain susceptible to ongoing

tooth loss. We also found education to be another strong predictor of tooth loss. Education is a

marker of socioeconomic position and a key determinant of life chances, opportunities, beliefs,

and values; it therefore plays an important role in enabling access to (and affordability of) den-

tal services [29, 30]. Routine dental care also emerged as a strong predictor of tooth loss. This

finding provides support for the association between regular preventive dental visits and better

oral health [7]. Our findings also provide insights into the role of pre-existing medical condi-

tions as determinants of tooth loss. We found that medical conditions—such as arthritis, dia-

betes, high cholesterol, hypertension and cardiovascular diseases—are among the predictors of

tooth loss. Clinicians could use this information to screen patients at high risk for tooth loss

and coordinate their referral and dental care.

Even though the association between socioeconomic status (SES) and tooth loss has been

documented previously, we believe our study makes a novel contribution by providing a direct

comparison with the predictive performance of widely accepted clinical indicators. We believe

our approach builds on prior knowledge by quantitatively demonstrating—via machine-learn-

ing algorithm—that a set of socioeconomic variables perform better than clinical dental indica-

tors in predicting tooth loss. Again, we cannot establish causality (which would require

longitudinal data), but it draws attention to the potential utility of incorporating SES among a

set of variables that clinicians ought to consider in their practice. Future studies need to evalu-

ate the application of these algorithms in clinical settings and explore their use in the identifi-

cation of populations at risk for other dental outcomes.

Previous studies in other areas of clinical practice have pointed out the potential utility of

incorporating socioeconomic information in prediction algorithms. For example, the Fra-

mingham Risk calculator–one of the most widely used algorithms to predict future risk of car-

diovascular disease–currently does not incorporate socioeconomic variables. Studies have

suggested that this omission results in the systematic under-treatment of low-SES patients

with hyperlipidemia, because the Framingham Risk score under-estimates the risk of CVD in

low SES patients, and clinicians’ treatment decisions (such as when to start statin therapy) are

often based on stratifying patients using the same algorithms [31, 32]. Although we cannot cite

an example of a comparable example in dentistry, our study has potential implications for any

future attempts to develop prediction algorithms to guide decision making.

A very limited number of studies have utilized machine-learning approaches, mostly devel-

oping a single algorithm model or using clinical dental variables, for predicting oral health out-

comes [13, 33, 34]. Our study builds on prior findings and demonstrates the feasibility of using

this approach in predicting tooth loss. Future studies could utilize machine-learning for pre-

dicting populations at risk for other dental outcomes.
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We used cross-sectional data in this study. Although we used separate cycles from

NHANES data to develop and to test the predictive models, the principal threat to causal infer-

ence in cross-sectional data is reverse causation. Studies have suggested that poor dentition is,

indeed, a predictor of low SES, e.g. because individuals with “poor oral health” are less likely to

be selected at job interviews [35, 36]. However this type of reverse causation is less likely for

education, since missing teeth is less likely to affect educational attainment. The evidence is

stronger for job hiring, promotion, and income. Future studies with longitudinal cohorts with

a larger time separation between training and test datasets are needed to test the external valid-

ity of our models and ensure robustness of the models’ performance with time. In addition, we

excluded variables that had 20% or more missing data from the primary analyses which may

have limited the number of variables we were able to test such as other oral heath behaviors

(brushing and flossing) and lifestyle factors (smoking, drinking, and exercise). Nonetheless,

we were able to develop machine-learning algorithms with high predictive performances for

all outcomes. Additionally, we conducted a sensitivity analyses by using multivariate imputa-

tion by chained equations (MICE) to impute missing data so that all individuals are included

for every model, even if they have missing values and the results were largely similar to our

main analysis (S5 Table). Finally, although the performance of models predicting edentulism

was high (AUC >86%), the prevalence of edentulism was low in our sample (thus, a “rare

event”), and this may have affected the performance of those models.

Conclusion

In this analysis we developed and tested the performance of five machine-learning algorithms

for predicting complete and incremental tooth loss. Our findings support the application of

machine-learning algorithms to predict tooth loss using socioeconomic and medical health

characteristics. However, future studies will need to validate our models using longitudinal

data to aid health policy as well as clinicians in identifying individuals at high risk of tooth loss

so that early interventions can be directed at those most at risk. In addition, the application of

machine-learning methods can be used to identify predictors of other dental conditions.
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