
Variability of Grip Kinetics during Adult Signature
Writing
Bassma Ghali1,2, Nayanashri Thalanki Anantha1,2, Jennifer Chan3, Tom Chau1,2*

1 Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada, 2 Institute of Biomaterials and Biomedical Engineering, University

of Toronto, Toronto, Ontario, Canada, 3 Engineering Science, University of Toronto, Toronto, Ontario, Canada

Abstract

Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting
pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and
inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20) adult participants wrote on
a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were
collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip
shape image) was derived per signature by time-averaging the measured force at each of 32 locations around the pen
barrel. The normalized cross correlations (NCC) of grip shape images were calculated within- and between-participants.
Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip
shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or
grip height) or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much
smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector,
a K-nearest neighbor classifier achieved an error rate of 1:2+0:4% in discriminating among participants. These results
indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other
participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or
customizable grips in clinical and industrial applications, respectively.
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Introduction

Handwriting grip is the arrangement of the fingers and thumb

around the barrel of a writing instrument for the production of

written output. Recent advances in instrumented writing utensils

[1–3] have enabled the measurement of handwriting grip kinetics,

i.e., the forces exerted by the fingers and thumb on the barrel of

the writing implement during handwriting. Handwriting grip

kinetics are emerging as an important quantitative measure in the

clinical domain, but may also have relevance in biometrics,

forensics and ergonomics.

Clinical Assessments
Recent clinical handwriting studies have expanded from pen tip

kinematics to pen-hand contact kinetics [4–8]. In a sample of

patients with writer’s cramp (WC), Schneider et al. [9] discovered

significant elevation of grip forces above the levels of healthy

participants only for those with dystonic WC, and thus suggested

that grip kinetics may uniquely provide clinical subtype differen-

tiation. Likewise, Hermsdörfer et al. [8] reported that exaggerated

forces in patients with WC occurred more frequently than

abnormal kinematics, concluding that grip force is an important

descriptor of individual impairment characteristics that are

independent of writing kinematics. This finding corroborates

earlier conclusions by Fernandes and Chau [10] that the dynamics

of grip force and pacing are independently regulated.

Rehabilitation
In addition to the clinical characterization of handwriting

function, grip force has a role in both treatment and outcome

measurement. Baur et al. [3] developed a novel intervention for

patients with writer’s cramp, using auditory grip force feedback,

namely, a continuous low frequency tone whose pitch increased

with escalating grip force. Significant reduction in writing

pressures and pain were noted over 7 sessions of treatment.

Deploying grip force as an outcome measure, Baur et al. [11]

found that both a modified pen grip and handwriting training

(motor exercises) decreased grip force in patients with writer’s

cramp and in a sample of asymptomatic controls.

Biometrics
Online and offline writer identification and signature verifica-

tion studies have investigated the intra- and inter-participant

variability of handwriting [12–14]. However, these studies have

focused exclusively on normal forces, and kinematic (e.g., position,

velocity, acceleration, inclination angle), spatiotemporal (e.g.,
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stroke durations, stroke length, in-air time) and image-based

features. The biometric value of grip patterns and its associated

kinetics has yet to be explored in handwriting studies. In gun

control applications, for example, grip force patterns have already

proven valuable for biometric verification [15–17].

Forensics
Given the relationship between axial (pen tip force on the

writing surface along the length of the pen) and grip forces,

knowledge of the former from an analysis of paper indentations

[18] may shed light on the pen grip of the writer and possibly the

presence of musculoskeletal pathologies of the writer.

Ergonomics
Grip forces may inform the design of new pens, such as in [19],

which proposed a pen with a flared silicon grip area as a means of

reducing muscle load (EMG activation) and upper limb pain

during extended periods of continuous writing.

Given the emerging importance of grip kinetics, in this study we

systematically evaluated the intra- and inter-participant variability

of grip shape and forces in an adult population during signature

writing.

Methods

Ethics Statement
The protocol of the study was approved by the research ethics

boards of Holland Bloorview Kids Rehabilitation Hospital and the

University of Toronto. Each participant provided an informed

written consent.

Participants
We recruited a convenient sample of 20 adult participants (8

males; 17 right-handed; age 2766 years) with no history of

musculoskeletal injuries or neurological impairments. Each

participant completed a simple demographic questionnaire upon

acceptance to participate in the study. The questionnaire asked

about gender, handedness, age, occupation, education level,

fathers education level, mothers education level and racial/ethnic

group.

Instrumentation
Figure 1 depicts the study equipment, which consisted of an

instrumented writing utensil and a digitizing LCD display. The

utensil was constructed by inserting the electronics of a Wacom 6D

Art Pen inside a cylindrical barrel machined out of Delrin. To

capture grip forces, an array of 64 Tekscan 9811 force sensors

were first adhered to the pen barrel using an adhesive (3 M Super

77 Multipurpose Spray Adhesive) and then taped down to mitigate

sensor peeling. Note that in sensor calibration and data collection,

only the 32 sensors closest to the apex of the pen were considered

as the more distal sensors were generally not activated during

writing. Four such pens were manufactured for this study. See [1]

for further details about utensil construction. The writing utensil

was connected to a data collection computer via a custom-made

data acquisition box containing operational amplifier circuits that

biased voltages to maximize the input signal resolution, multi-

plexers and a 16 analog input data acquisition card. Grip forces

were sampled at 250 Hz. The force sensor array was replaced

multiple times during data collection due to sensor wear and tear.

The total pen weight was 24 g. The pen had a diameter of 1.3 cm

and a height of 14 cm. The writing surface was an electronically

inking Wacom Cintiq 12WX digitizing LCD display, which

collected axial force, pen tip position and pen angles (rotation,

altitude and azimuth) at a frequency of 105 Hz. The digitizing

display was connected to the data collection computer via VGA

and USB cables.

Calibration Set-up and Procedure
Prior to data collection, the force sensors on the barrel of the

writing utensils were systematically calibrated. Figure 2 portrays

the calibration setup, which included a digital scale that measured

the applied load, a fixed lower nest on which the pen rested, a top

nest that loaded the pen from above, and, a lead screw assembly

that raised and lowered the top nest via a rotary knob and moving

bracket. To accelerate calibration, the top nest was designed to

simultaneously load a column of eight sensors at one time.

Specifically, the top nest was contoured to match the curvature of

the pen’s barrel and padded with a thin layer of vinyl (CON-

TACT non-adhesive liner) to encourage uniform distribution of

force along the targeted section of the pen barrel. To avoid

slippage of the pen, the fixed bottom nest was similarly padded.

The pen was placed on the bottom nest with the targeted

column of sensors facing up. The column of sensors was gradually

loaded and unloaded by rotating the knob. The load on an

individual sensor ranged from 0 to 1100 grams. Force and digital

scale readings were synchronized and recorded directly to

a computer via the custom-made data acquisition box and a serial

cable, respectively. From these data, loading and unloading curves

were derived offline. These calibration curves facilitated the

translation of subsequent sensor readings (in Volts) into physical

units of force (Newtons).

Each time a pen was calibrated, the above loading and

unloading procedure was repeated 6 times, 3 with the pen tip

pointing in one direction and 3 with the pen in the opposite

direction. Averaging calibration curves from these iterations

helped to minimize the effect of any differences due to mis-

alignment between the top nest and sensor bank, and any

orientation-dependent load imbalance.

Throughout the data collection described below, the force

sensors for each pen were calibrated every 2 to 3 days to account

for possible changes in sensor behavior over time, especially

a decrease in sensor sensitivity with usage.

Figure 1. Data Collection instrumentation setup. Participants
wrote with the instrumented writing utensil on a digitizing LCD display.
The data acquisition box and the computer transmitted and saved the
data respectively.
doi:10.1371/journal.pone.0063216.g001
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Data Collection Protocol
All data collection took place in a laboratory within a university

teaching hospital. Each session adhered to the following steps:

1. Participants sat comfortably on a height-adjustable task chair,

facing a typical workbench. Participants wore a grounding

strap on the non-dominant hand and held the instrumented

utensil with the dominant hand.

2. The force sensors were checked by a researcher through visual

inspection of a real-time colour display of individual sensor

force values.

3. A custom software ‘wizard’ was launched and systematically

guided participants through each step of data collection.

4. The participant answered a status question on the tablet,

namely, ‘‘Do you think there is any emotional, mental or

biomechanical factors that can affect your handwriting now?

(E.g. angry, stressed, nervous, sick, muscle stiffness or fatigue).

The answer should be yes or no.’’

5. The participant was asked to hold the distal end of the pen

without contacting any of the sensors on the pen for a 10

second period to collect baseline values of the 32 force sensors

on the pen. These baseline values are used to calculate the pre-

grip values of each force sensor as explained in taring and

calibration procedures below.

6. The participant held the pen naturally and provided 20

samples of a well-practiced bogus signature that each

participant practiced for two weeks prior to data collection.

The participant signed on the tablet within a delineated area,

which was refreshed by an explicit button press after each

signature.

7. Two digital photos, one a dorsal view and the other a palmar

view of the hand grip, were taken at the halfway point of the

session.

8. The participant provided 20 samples of his/her own authentic

signature.

9. Two digital photos (dorsal and palmar views) of the hand grip

were taken at the end of each session.

The above procedure was repeated three times a day (morning,

afternoon, and evening), on 10 different days according to

participant availability. On average, data collection was completed

in 20:4+3:6 days. The iterative collection was designed to capture

grip shape and kinetic variations over time. For each participant,

600 authentic signatures and 600 well-practiced bogus signatures

were obtained over a total of 30 sessions (3 sessions per day610

days). In this paper, we only consider the 12000 (600 signa-

tures620 participants) authentic signatures. A researcher noted

any writing mistakes during data collection or any suspicious

sensors during calibration, to inform subsequent data screening.

Data Preprocessing
Clean-up. Upon visual review of the collected data and cross-

referencing with researcher notes, we discarded 225 authentic

signatures out of the 12,000 for one or more of the following

reasons: visible mistakes while writing the signature (e.g., scratched

out text), an extended pause in the midst of a signature, or an

obvious force sensor malfunction (e.g., loss of signal). Also,

signature samples accidentally contaminated with extra lines or

dots on the tablet before or after the signature were salvaged by

trimming the contaminant data from the beginning or end of the

signature sample as appropriate.

The force data were subjected to a sixth order Butterworth low-

pass filter with a cutoff frequency of 10 Hz, which was deemed to

be the lowest frequency below which more than 95% of the signal

power resided. Signatures that exhibited visible low frequency

oscillations unrelated to handwriting (likely noise from nearby

electronic devices) were excluded from the subsequent analysis.

The total number of samples that were excluded at this stage was

735 authentic signatures. In total, 8% of the 12,000 authentic

signatures were excluded subsequent to data cleanup, leaving

11,040 signatures for analysis, with an average of 552 samples per

participant.

Taring and calibration. Since the force sensors were curved

around the barrel of the pen, they had non-zero readouts prior to

the participant gripping the pen. These pre-grip values were

estimated using the 10 second baseline collected prior to any

handwriting, on a per sensor, per session basis. For each sensor,

the mean pre-grip value was subtracted from all subsequent grip

force data in a given session. In this way, the readout of each

sensor prior to the participant gripping the pen was zero. Each

sensor reading was then translated into units of physical force (N)

via a least-squares second order polynomial fit to the correspond-

ing shifted calibration data, as shown below:

F~(P1zP2 � SzP3 � S2) � g ð1Þ

where F is the calibrated sensor reading in Newtons, P1, P2 and

P3 are the polynomial coefficients, S is the raw reading for

a particular sensor, and g is the gravitational constant (9.81 m=s2).

Figure 2. The calibration setup. Each sensor in the force sensor
array was calibrated using this setup through loading and unloading of
the sensors.
doi:10.1371/journal.pone.0063216.g002
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Figure 3 shows one signature sample and the associated raw and

processed (trimmed, filtered, shifted and calibrated) grip forces.

Note that the signature shown in Figure 3 is a sample of the well-

practiced rather than authentic signature. This sample was used to

illustrate the relation of the writing sample to the raw and

processed grip force data.

To provide the reader with a sense of the spatial and temporal

characteristics of the authentic signatures considered in this paper,

a list of key spatiotemporal features is presented in the results

section below. The time and pen tip position (x and y coordinates)

data collected by the LCD digitizing display were used to calculate

duration, total path length, height, width and average speed of

each signature. Note that these data were collected only when the

writing instrument touched the digitizing display, which thus

provided the onset and offset of writing. The height of each

signature was calculated as the difference between the minimum

and maximum position in the vertical direction. The width was

calculated similarly but in the horizontal direction. The manufac-

turer-specified resolution of the digitizing display was used to

convert the derived distances from pixels to millimeters. No other

preprocessing was applied to these data.

Data Analysis
Grip shape identification. By reviewing the collected

photos, the grip shape of each participant was classified according

to standard grip shape taxonomies [20–23]. To establish inter-

rater reliability, a random sample of 20% of the photographs were

examined by an independent occupational therapist not associated

with the study. Complete (100%) agreement was achieved.

Deriving grip shape. The time-average of forces applied to

each sensor over the course of a signature was computed. These

average forces were arranged into a matrix corresponding to the

spatial arrangement of sensors around the barrel. The resultant

matrix was termed the grip shape, given that a heat map of this

matrix (i.e., grip shape image) reveals the spatial distribution of

forces around the barrel. Each signature thus had an associated

grip shape matrix (See Figure 4 for an example). Note that for

a given grip shape matrix, the forces were normalized to fall within

½0,1�. The distance, D, between two grip shape matrices, M1 and

M2, was computed as the Frobenius norm of their difference [24],

i.e.,

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X32
i~1

(M1i{M2i)
2

vuut ð2Þ

where M1i and M2i are the ith entries of the respective grip shape

matrices. For each signature’s grip shape matrix, we further

computed the mean of the distances to the grip shape matrices of

all other signatures by the same participant, and termed this the

discrepancy measure for that signature. Grip shape matrices with

discrepancy measure falling within the lowest 50% were then

averaged across signatures to arrive at the mean grip shape for

each participant. In short, the mean grip shape for each

participant was an average of the signature-specific force

distributions across signatures with the most typical grip shape

for that participant.

Grip shape variation. The intra- and inter-participant

variability of the grip shape was studied in three different ways.

1. Fisher’s ratio of 2-dimensional normalized cross-correlation

(NCC) between two grip shape images: Intra-participant

differences were estimated by the NCC between a participant’s

mean grip shape and the grip shape images of all other

signatures of the same participant. Inter-participant differences

were captured by the NCC between the participant’s mean

grip shape and the grip shape images of signatures of all other

participants. Fisher’s ratio [25] was used to quantify the

Figure 3. A signature example and the associated grip force signals. The top graph shows the position signals of a signature sample
annotated at 1 second increments, and the middle and bottom graphs show the associated raw and processed grip force signals respectively. For
clarity, only the non-zero force traces are shown in the latter. In bottom two graphs, each line represents the readout of a different grip sensor. Note
that this sample is not an authentic signature; it is a sample of a well-practiced signature.
doi:10.1371/journal.pone.0063216.g003
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separation between distributions of intra- and inter-participant

NCC values, namely,

Fisher’s ratio~
(m1{m2)

2

v1zv2
ð3Þ

where m1 and m2 are the means, and v1 and v2 are the

variances of the two distributions.

2. Error rates of discriminating NCC values among writers:

Three types of classifiers, namely, linear discriminant analysis

(LDA), K-nearest neighbor (KNN) and back-propagation

neural networks (NN), were invoked. For KNN, we considered

K-values of 1,3 and 5 while the NN had an architecture of 1-

10-1 (input-hidden-output units). In each case, one classifier

was trained per participant to determine if a signature belonged

to that participant or not. For a given writing sample, the input

to the ith classifier (i~1, . . . ,20) was a one-dimensional NCC

value between the unknown signature and mean grip shape of

the ith participant. The one dimensional binary output denoted

the predicted membership of the unknown signature (1 = be-

longs to ith participant). For each participant-specific classifier,

the training set included intra-participant NCC values with

a desired output of 1 and an equal number of inter-participant

NCC values with a desired output of zero. Inter-participant

NCC values were pseudo-randomly selected to ensure

representation from all participants. The misclassification rate

was calculated for all these classifiers using 10-fold cross

validation.

3. Error rate of discriminating grip shape matrices among writers:

We discriminated among writers using the entire 32-element

grip shape matrix as the input to multiclass LDA and KNN

classifiers with a single output denoting the participant number.

A backpropagation multiclass NN classifier with an architec-

ture of 32-25-5 was also tested. In this case, the 5 digit output

was a binary representation of the participant number.

Misclassification rate was estimated using 10-fold cross

validation for all these classifiers..

Pen rotation within- and between-sessions may have led to

spatial misalignment of grip shape images. To mitigate these

rotational effects, the grip shape images of each participant were

aligned horizontally to the mean grip shape image of the same

participant using the horizontal offsets that maximized the NCC

between the mean and individual grip shape images. Here,

horizontal refers to the circumferential axis. We then repeated

the grip shape variation analyses described above post-

alignment.

Figure 4. Mean grip shape images of the 20 participants. Each grip shape image represents the grip force distribution on the 4 by 8 force
sensor array with the black points being the ones with the highest force.
doi:10.1371/journal.pone.0063216.g004
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Results

Spatiotemporal Features
Table 1 summarizes the duration, total path length, height,

width and average speed of the authentic signatures across

participants. Clearly, signatures ranged in duration, size and

speed. The duration of the signatures ranged from 1–6 seconds,

depending on the writing speed of the particular participant and

the length of the individual’s signature. An earlier study that

collected signatures from 70 participants reported that the

duration ranged from 2–10 seconds [26]. According to the size

taxonomy in [1], the size of the signatures collected herein ranged

from small to large. The values of average speed echo those

reported in [28], which were based on 55 writers writing their

authentic signature 30 times.

Grip Shapes
Table 2 lists the grip shape for each participant as determined

via photo-review. Based on the observed grip shape variation, the

participants were categorized into four groups, namely, (1) six who

maintained a consistent grip shape throughout, (2) seven who

rotated the pen and/or altered grip height either within or

between sessions, (3) four who routinely changed grip shapes

within and/or between sessions, and, (4) three who altered their

grip shape after the initial sessions.

Topographical Analysis of Grip Shape Variability
Figure 4 shows the mean grip shape for each of the 20

participants. The topographic images represent the force distribu-

tions over the 864 force sensor array, with the bottom row of

sensors being closest to the tip of the pen. The mean grip shape

images appear to be unique among participants even when

participants were categorized by photo-review as having the same,

consistently employed grip shape (e.g., Participants 9, 10 and 19 all

have dynamic tripod grasps).

Notice that there are generally a 2 to 4 focal areas of peak force

and a blurring of lower forces elsewhere. Also note that most the

force is concentrated near the apex of the pen and that the forces

are distributed horizontally, presumably to provide stability to the

utensil.

Box plots of the intra- and inter-participant NCC for all 20

participants are shown in Figure 5. The plot on the left portrays

the level of grip shape consistency within each participant based

on the distribution of grip forces. Note that median NCC values

are close to 1 and adorned with small boxes, suggesting high

consistency of static grip shape images for a given participant, over

all 30 sessions. It is worthy to note that some participants (4, 9, 10,

13, 17, 19, and 20) were more consistent than others (3, 6, 11, 15,

and 18). In most cases, this finding resonates with the observations

made in Table 2 which is a descriptive characterization of the grip

shape based on retrospective photo review only (i.e., that some

participants were consistent whereas others altered their grip

shapes from session to session). However, the observation of

consistent grip shape through static photographs does not preclude

the possibility of high force variation, which is the case for

participant 18 who only changed grip shape in the first three

sessions, but exhibited high kinetic variability. Also, note that the

intra-participant NCC values shown in Figure 5 are post-

Table 1. Temporal, spatial and speed information of the authentic signatures.

Duration (sec) Total path length (mm) Height (mm) Width (mm) Average speed (mm/sec)

Participant Mean SD Mean SD Mean SD Mean SD mean SD

1 1.1 0.2 95 12 18 3 49 8 115 17

2 6.1 0.3 491 56 27 3 100 15 87 11

3 3.5 0.4 239 30 17 4 60 15 84 19

4 3.1 0.2 251 33 17 2 60 9 90 9

5 2.6 0.2 275 38 24 3 51 7 112 10

6 5.8 0.2 468 49 18 2 71 9 79 9

7 1.3 0.2 226 28 29 3 87 6 226 27

8 3.9 0.3 314 25 21 2 82 5 88 8

9 4.3 0.3 172 21 14 3 38 3 45 6

10 3.9 0.3 163 13 14 1 47 4 43 3

11 3.6 0.3 296 30 25 3 54 5 95 9

12 4.3 0.4 246 37 25 5 68 8 63 9

13 1.2 0.1 122 14 20 2 16 2 106 9

14 2.9 0.6 140 28 21 3 29 5 55 8

15 3.7 0.3 173 16 13 2 40 4 49 4

16 2.2 0.3 244 66 32 7 35 6 110 20

17 2.3 0.3 87 9 12 1 26 3 38 5

18 1.3 0.2 139 28 17 3 35 9 111 16

19 4.2 0.3 188 19 15 2 47 6 53 4

20 3.3 0.3 305 40 18 2 73 7 104 12

Average 3.2 0.3 231.7 29.6 19.8 2.9 53.3 6.7 87.7 10.7

SD (standard deviation).
doi:10.1371/journal.pone.0063216.t001
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horizontal alignment; therefore, some participants such as

participant 17, who rotated the pen as noted in Table 2, still

surfaced as having a consistent grip shape (i.e., high intra-

participant NCC values).

The plot on the right side of Figure 5 indicates the amount of

variation between participants. Note that the overall inter-

participant NCC values are lower than the intra-participant

NCC values, indicating that the grip forces vary significantly

between participants but are consistent within a participant. Some

participants (6, 7, and 8) have very low inter-participant NCC

values, suggesting that their kinetic grip shapes are very different

from those of other participants.

Figure 6 summarizes the Fisher’s ratio and the error rates

associated with classifying NCC values for each of the 20

Table 2. Grip shape of each participant and associated observations.

Participant Grip shape Observations

1 Quadrupod Rotated pen in some sessions

2 Dynamic tripod Changed grip height and rotated pen slightly between sessions

3 Dynamic tripod Rotated pen in most sessions

4 Lateral tripod Occasionally started with a dynamic tripod grasp

5 Dynamic tripod Rotated pen in some sessions

6 Quadrupod/other Changed grip shape and grip height in most sessions

7 Static tripod Consistent grip shape

8 Lateral tripod Consistently used quadrupod grasp for the first 3 sessions but varied grip shape in other
sessions

9 Dynamic tripod Consistent grip shape

10 Dynamic tripod Consistent grip shape

11 Quadrupod Changed grip shape to lateral quadrupod grasp and rotated pen in some sessions

12 Quadrupod (left) Rotated pen slightly

13 Static tripod (Left) Consistent grip shape

14 Dynamic tripod Changed grip shape in some sessions

15 Lateral tripod Changed grip height between sessions

16 Quadrupod (left) Changed grip after first session

17 Dynamic tripod Rotated pen slightly

18 Dynamic tripod Used different grip shape (quadrupod) for the first three sessions

19 Dynamic tripod Consistent grip shape

20 Quadrupod Consistent grip shape

doi:10.1371/journal.pone.0063216.t002

Figure 5. Box plots of the intra- (left panel A) and inter-participant (right panel B) NCC values for all 20 participants. Each box
represents the distribution of NCC values for one participant, while ‘+’ symbols denote outliers (values beyond 1.5 interquartile ranges from the
median).
doi:10.1371/journal.pone.0063216.g005
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participants. The results from the different methods agree with

each other; as expected, high Fisher’s ratio corresponds to low

classification error rate. However, using the inter-image NCC

value as an input feature generally leads to mediocre classification

rates.

Table 3 summarizes the effect of grip shape image alignment on

error rates associated with classifying the entire grip shape matrix.

For all three classifiers, the error rates only decreased slightly after

alignment, verifying our observations of circumferential offsets in

grip shape but suggesting that these within-participant differences

are not large enough to compromise image-based classification.

Note however that the error rate for KNN grip shape matrix

classification is much lower than that of the LDA and NN

classifiers and generally much lower than that achievable with any

classifier using NCC as input.

Particularly noteworthy is the fact that the intra-participant

variability of some participants (1, 3, 6, 7, 8, 11, 17 and 18)

decreased after horizontal alignment of grip shape images (slightly

higher NCC values and fewer outliers). These were generally

participants who were identified through photo review as having

rotated the pen from session to session. Also, note that the

handedness of the participant (right or left) did not have any

particular effect on the grip shape variability.

Discussion

In this paper, we studied the intra- and inter-participant

variation in forces applied to the barrel of the pen during signature

writing in adults, with a particular focus on the topographic

distribution of forces. Kinetic data were collected on multiple days

and at multiple times within-day.

Grip Shapes
Nearly half the participants deployed a dynamic tripod grasp,

while the remainder adopted quadrupod, lateral tripod or static

tripod grasps. The predominance of grip shapes other than the

dynamic tripod has also been found in a pediatric population [29].

In particular, 15% of participants adopted a lateral tripod grasp in

our sample, which is on par with the fraction of lateral tripod

writers that Bergmann [30] reported among 447 adults (without

any known pathologies). The functional implications of grip shape

on handwriting in adults is not well-documented at this time [31].

However, Stevens [32] did suggest that adults with a lateral tripod

grasp may fatigue more quickly than those who employ other grip

shapes in extended-duration writing tasks.

Within-participant Variation of Grip Kinetics
The grip shape topographic maps and NCC results support the

hypothesis that each participant possesses unique grip shape

kinetics that are repeatable within-participant over time. This

finding agrees with Schmidt and Lee [33], who contend that the

relative force produced by muscles is an invariant feature of motor

Figure 6. Separability of intra- and inter-participant NCC values. Separability measured by Fisher’s ratio (top graph) and classification error
rates by LDA, KNN and NN classifiers (bottom three graphs respectively). The dashed line represents the average value of each method.
doi:10.1371/journal.pone.0063216.g006

Table 3. Error rates in the classification of full grip shape
images.

LDA KNN NN

Without grip
shape alignment

24.261.2 1.360.3 13.663.0

With grip shape
alignment

22.261.3 1.260.4 12.961.1

Mean and standard deviation of error rates using LDA (linear discriminant
analysis), KNN (K nearest neighbors) and NN (neural networks).
doi:10.1371/journal.pone.0063216.t003
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programs associated with a unique pattern of activity. Signature

writing can be considered an example of such a learned motor

program [34], rationalizing the observed within-individual kinetic

consistency.

Our finding also aligns with [35] which examined the variation

of handwriting grip patterns with age, from childhood through to

adulthood. They observed a decrease in the variation of pen-

surface positioning and the number of grips that individuals use as

they mature, and speculated that this emerging invariance may be

due to increasing automaticity and efficiency of handwriting as

a manual motor skill. However, it is important to note that in [35]

only a video-based grip classification scheme was used which did

not consider the biomechanics associated with different pencil grip

shapes. Finally, studies of grip forces associated with golf swings

have shown that each player deploys a repeatable grip force profile

that is distinct from that of other players [36–38]. Our finding

corroborates the general conclusion of these studies that a high

level of intra-participant grip kinetic repeatability tends to

accompany a well-learned manual motor activity.

Despite the general finding of personal consistency, there was

a degree of intra-participant variation. Hooke et al. [2] and Shim

et al. [7] contend that pencil grip shape is governed by a kinetically

redundant system; different combinations of finger forces and

torques can generate similar kinematic and spatiotemporal

profiles. Indeed multiple muscle groups, including those that

move the fingers, wrist and forearm, are involved in the generation

of hand kinetics and thus, kinetic variation invariably exists within

individuals [39]. In [40], it was found that activation of both the

extrinsic and intrinsic muscles of the hand is modulated by wrist

angle during a two digit grasp. Thus, even in dynamic grasps

where pen motion comes largely from finger articulation, forces

may vary depending on the current wrist angle. Studies have also

shown that for the control of multi-joint movements such as

handwriting, proprioception plays a critical role [41,42] and thus

afferent inputs from the hand may also lead to variations in kinetic

output.

Two participants (Figure 5) exhibited an inflated level of within-

individual kinetic variability. Participant 6 had the lowest within-

individual NCC. This can be explained by the participant’s

tendency to modify his grip height and to alternate between grip

shapes, specifically, extending or curling the index finger around

the utensil. The participant confessed that these were habitual

strategies to compensate for fatigue. Likewise, Participant 15

exhibited the widest variation of within-individual NCC. As noted

in Table 2, this participant oscillated between various grip heights

while writing. This observation also explains why horizontal

alignment of the grip shape matrix did not reduce the within-

individual NCC variation. The lack of familiarity with the

instrumented pen, nervousness, or fatigue may have contributed

to the use of multiple grip shapes while writing. Summers and

Catarro [43] found that 28% of university students in their study

used more than one grip shape during a 2 hour exam.

Between-participant Variation of Grip Kinetics
Four different types of grip shapes were identified through

retrospective picture review. However, an examination of the

topographic distribution of the forces associated with each grip

shape indicated that the mean grip shape images were distinct

between participants even if two participants invoked the same

grip shape. This kinetic uniqueness may be attributed in part to

the personalized coordination of muscles in executing a compli-

cated but well-trained motor skill such as handwriting and

specifically signature writing [44]. With a three digit grasp, [45]

posit that the distribution of neural drive to multiple hand muscles

may reflect anatomical or functional properties of hand muscle

groups, characteristics that are likely to vary among individuals

and thus further contribute to unique grip shape images.

It is worthy to mention that Participants 6, 7 and 8 had the

lowest inter-participant NCC, implying that their grip shape

images were most unique among participants. Indeed, Participant

6 adopted a unique combination of a quadrupod grasp and minor

variations thereof. Participant 7 preferred a tripod grasp but

tended to hold the pen distal to the apex (Figure 4). Participant 8

on the other hand, held the pen nearly perpendicular to the tablet

surface. These personal grip idiosyncrasies contributed to the

distinct grip shape images of these three participants.

Using the full grip shape matrix as the input to a KNN classifier

yielded much more compelling error rates (1:2+0:4 after

horizontal alignment). This finding suggests that the boundaries

among the individual grip shapes in 32-dimensional kinetic space

are nonlinear. The low error rate also indicates that the entire

force distribution provides a much more discriminatory feature set

than that of a summary statistic (e.g., NCC). Indeed, handwriting

requires multi-digit synergies [1,46] that involve both intrinsic and

extrinsic hand muscles [40]. The full grip shape matrix likely

captures some of these interdigit coordination patterns that are

missed by a simple summary statistic.

Our inter-participant variability findings echo earlier indications

of significant between-participant variation in finger pressures

during handwriting on the account of the personalized nature of

this activity [47]. Further, Latash et al. [46] remarked that natural

handwriting depends critically on the stability of individual-specific

multi-digit synergies in which the fingers work as dependent force

generators to stabilize the pen. Hence, kinetic variation across

individuals is not unexpected. Such variation has also been noted

with other motor skills such as golf swings [36–38].

Possible Applications
The topographic representation and analysis presented herein

may lead to new applications of handwriting grip kinetics in

rehabilitation, biometrics and ergonomics. Building on the finding

that certain handwriting disorders such as writers’ cramp are

associated with abnormal finger postures and highly individualized

grip shapes [8], topographical kinetic analyses that evaluate the

subject’s grip shape and the extent of its variability may add to the

clinical characterization of these conditions. Also a recent

literature review on adults’ handwriting [31] pointed out the lack

of handwriting research on healthy adults and the need for

normative data. On these fronts, the present study contributes to

the definition of typical variation in grip kinetics in adults, in the

absence of handwriting pathologies. The uniqueness of grip

kinetics may further inform the development of personalized fine

motor interventions. For example, the prescription of different

writing utensil adaptations (e.g., rubber or foam grips, indented

pencils, triangular pencils, ring clips) may depend on the

individual grip shape of the client. Kinetic topographies may also

bear biometric value given that three dimensional forces of the pen

tip have demonstrated potential for signature verification [48] and

that pen tip and grip forces are strongly correlated [1]. Kinetic

grip topographies, particularly, interdigit force synergies [49] may

also inform hand grip designs that maximize comfort and

performance for different hand sizes.

Conclusion
In this paper, we introduced a topographic representation and

image-based analysis of grip kinetics associated with adult

signature writing. We conclude that despite day-to-day force

variations within-individual, asymptomatic adult writers tend to
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exhibit a unique kinetic grip shape when writing. Further, these

individual-specific kinetic grip shapes are algorithmically discern-

ible from one another when the entire force distribution around

the pen barrel is considered. The topographic analysis of grip

kinetics may inform the development of personalized neuromotor

interventions or customizable grips in clinical and industrial

applications, respectively.
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