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Abstract

The purpose of this study is to evaluate the effectiveness of heartbeat error and compensa-
tion methods on heart rate variability (HRV) with mobile and wearable sensor devices. The
HRV analysis extracts multiple indices related to the heart and autonomic nervous system
from beat-to-beat intervals. These HRV analysis indices are affected by the heartbeat inter-
val mismatch, which is caused by sampling error from measurement hardware and inherent
errors from the state of human body. Although the sampling rate reduction is a common
method to reduce power consumption on wearable devices, it degrades the accuracy of the
heartbeat interval. Furthermore, wearable devices often use photoplethysmography (PPG)
instead of electrocardiogram (ECG) to measure heart rate. However, there are inherent
errors between PPG and ECG, because the PPG is affected by blood pressure fluctua-
tions, vascular stiffness, and body movements. This paper evaluates the impact of these
errors on HRV analysis using dataset including both ECG and PPG from 28 subjects. The
evaluation results showed that the error compensation method improved the accuracy of
HRV analysis in time domain, frequency domain and non-linear analysis. Furthermore, the
error compensation by the algorithm was found to be effective for both PPG and ECG.

1 INTRODUCTION

In recent years, the development of biological signal measure-
ment technology has enabled the use of wearable sensors for
the constant monitoring of biological signals in daily life. In this
study, we focus on the measurement of the heart rate and heart
rate variability (HRV) analysis using wearable sensors. Ischemic
heart disease and stroke are the leading causes of death world-
wide, and deaths due to diabetes and dementia are increasing.
Early detection and prevention of these diseases are essential
to improve the quality of life, which may be achieved through
the constant monitoring of biological signals using wearable
sensors.

HRV analysis [1] is a method used to predict cardiac diseases
[2] and estimate autonomic nervous system activity by moni-
toring heartbeat intervals [3]. The heartbeat constantly fluctu-
ates due to the activity of the autonomic nervous system, by
analysing the characteristics of the heartbeat, the stress state can
be estimated [4]. In the literature [5], a correlation between stress
and cardiovascular disease has been reported. It has also been
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suggested that there exists a relationship between the autonomic
nervous system and cognitive function [6, 7].

In general, an electrocardiogram (ECG) is used for HRV
analysis. However, owing to the inconvenience of measur-
ing ECG in daily life, photoplethysmography (PPG) are more
widely used than ECG in heart rate measurement using wear-
able sensors [8]. An ECG measures the potential difference
on the body surface attributable to the electrical activity of
the heart. The PPG sensors irradiate green or red light on the
body surface and measure the reflected wave with a photodi-
ode. The pulse interval highly correlated with heartbeat interval
is obtained by detecting the peak from the PPG signals. PPG
sensors use LEDs, which have the problem of high-power con-
sumption. Therefore, the sampling rate of PPG is often reduced
in wearable sensors to reduce power consumption [9–11]. How-
ever, when the sampling rate is low, the effect of sampling error
cannot be ignored.

Moreover, the pulse interval extracted from PPG includes
errors due to blood pressure, body position, blood flow veloc-
ity, and stiffness of the vessel wall. Previous studies [12–14]
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FIGURE 1 Concept image of this study

have demonstrated that the effect of interval errors on HRV
analysis when using pulse intervals obtained from PPG is lim-
ited, and the error using PPG is negligible when the patient is
at rest. Reference [15] evaluate HRV indices using PPG with
29 hospitalized patients and the paper pointed out that some
of the indices affected by the high-frequency content of the
HRV. These studies have been evaluated using data with a sam-
pling rate of 125 Hz or higher. In the literature [16], it has
been stated that the sampling rate of ECG for HRV analysis
should be 128 Hz or higher. However, the impact of errors at
low sampling rates on the analysis has not been quantitatively
evaluated.

Figure 1 illustrates the concept of this paper. Our objec-
tive is to quantify the effect of heartbeat interval error on
HRV analysis. In this paper, we used a data set in which
ECG and PPG were measured simultaneously, and evaluated
the effect of the sampling rate of PPG. We also evaluated
the effect on HRV analysis when a compensation algorithm
[17, 18] is used to compensate the errors caused by the peak
detection.

The rest of this paper is organized as follows: In Section 2, we
discuss HRV analysis and its evaluation indices. In Section 3, the
effect of heartbeat interval error on HRV analysis and related
research on sampling error compensation are presented. Sec-
tion 4 describes the analysis method, and Section 5 presents the
evaluation results. Section 6 discusses the results, and Section 7
concludes the paper.

2 HEART RATE VARIABILITY
ANALYSIS

HRV analysis is a method used for detecting cardiac dis-
eases and evaluating the autonomic nervous system activity by
extracting indices from the heart rate variability. Frequency-
domain, time-domain and non-linear indices are used in HRV
analysis. The details of those indices are described below.

2.1 Frequency-domain indices

Frequency analysis was performed on the heartbeat intervals
of the time series, and the spectral intensity was used as an
index. First, heartbeat interval was resampled at 1 Hz by using
spline interpolation. Then, the power spectral density (PSD) was
calculated by Welch’s method. The frequency-domain index is
LF/HF, where LF represents the power in the low-frequency
range (0.04–0.15 Hz) of R to R interval (RRI) from ECG or
pulse to pulse interval (PPI) from PPG and is said to reflect
the sympathetic and parasympathetic activity. HF represents the
power in the high-frequency range (0.15–0.4 Hz) of RRI or PPI
and is said to reflect the parasympathetic activity. LF/HF is the
ratio between LF and HF, indicating a balance between the sym-
pathetic and parasympathetic activities.

2.2 Time-domain and non-linear indices

SDNN is index calculated in the time domain using time-series
heartbeat intervals. SDNN denotes the standard deviation of
the heartbeat interval, and is an index that reflects the effects of
both short-term and long-term variations in the heartbeat [19].

Poincaré plot is a non-linear method, and SD1, SD2, and
SD1/SD2 are non-linear indices. SD1 and SD2 denote the
crosswise and lengthwise standard deviations of the Poincaré
plot of the heartbeat interval, respectively, and SD1/SD2 rep-
resents their ratio. SD1 and SD2 reflect the short-term and
long-term heart rate variabilities, respectively [19]. Therefore,
SD1/SD2 is an indicator of the balance between the short-term
and long-term variabilities.

3 RELATED WORK

As mentioned above, RRI is generally used for HRV analysis.
Recently, PPI is also widely used to obtain heart rate in wearable
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FIGURE 2 (a) Example of frequency domain HRV analysis at low
sampling rate (31.25 Hz) and high sampling rate (500 Hz) ECG, (b) examples
of Poincaré plot at low sampling rate (31.25 Hz) and high sampling rate
(500 Hz) ECG

sensors instead of RRI, because it is easier to measure in daily
life. However, Reference [15] states that the PPI increases rela-
tive error of some of the indices such as LF/HF and SD1/SD2.
Reference [20] also shows that the use of PPI increases the error
of HF and SD1.

PPI inherently contains errors compared to RRI. Several
previous studies have demonstrated that ECG and PPG pro-
vide similar information about the autonomic nervous system.
According to references [21, 22], PPG data measured using
wearable devices are susceptible to motion artifacts, and reduc-
ing the effects of motion artifacts will allow for reliable HRV
analysis. Reference [23] applies adaptive noise cancellation based
on recursive least square using the Lambert-Beer law and the
hue-saturation-intensity model to reduce motion artifacts in
PPG waveforms obtained by non-contact sensors. Reference
[24] also states that the pulse width and amplitude of PPG can
provide accurate information about the autonomic nervous sys-
tem. Furthermore, reference [25] states that HRV analysis using
PPG can be used as a surrogate for that using ECG even under
high pressure.

One of the limitations of heart rate measurement using wear-
able sensors is that the sampling rate has to be reduced to
achieve low-power consumption. This is especially important
for LED-based PPG. Figures 2a and 2b show calculated LF/HF
and Poincaré plot from low sampling rate (31.25 Hz) and high
sampling rate (500 Hz) ECG from healthy subject at rest,
respectively. These results indicate that the HRV analysis results
are affected by the sampling error.

FIGURE 3 Overview of heartbeat error compensation using
autocorrelation

4 METHOD

In this section, we describe the dataset used for the evaluation
and data pre-processing methods.

4.1 Dataset

The Vortal dataset was collected from 39 healthy subjects [26].
The mean age of the subjects was 29 years (26–32 years). In this
paper, we used data of 28 subjects from the Vortal dataset to
evaluate each index. The data of the remaining 11 subjects were
excluded because the noise level is too high to extract the RRI
and PPI for more than 256 consecutive seconds.

In the Vortal dataset, the PPG signal of each subject was
measured simultaneously using the ECG signal as a reference.
The signal was sampled at 500 Hz. Each subject performed two
10-minute measurements in the supine position; after the first
measurement, subjects were asked to run on a treadmill, and
the second measurement was performed immediately after the
exercise. In this study, we used the data from the second mea-
surement, which contained a wider range of RRI than the first
measurement.

4.2 Heartbeat interval error compensation
method

To reduce the effect of sampling error, several error compensa-
tion algorithms have been proposed. In our previous work [17],
we proposed a heartbeat interval extraction method based on
linear interpolation and autocorrelation to reduce the sampling
error. Figure 3 shows an overview of the error compensation
method using autocorrelation. Since ECG waveforms are quite
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FIGURE 4 Flowchart of heartbeat interval evaluation (PD: peak
detection, IT: interpolation, AC: autocorrelation)

similar in a short period of time, the autocorrelation using the
similarity of P, Q, R, S, and T waves can extract the heartbeat
interval with higher accuracy than the conventional method that
simply detects the peak of R wave. another study [18], the simi-
larity around the peak was improved by adding filter processing
to the time series signal before autocorrelation and using a two-
line approximation.

These methods were proposed to improve the accuracy in
pulse interval error and frequency domain indices. Note that
only two types of indices were used for evaluation in each study,
and time domain indices and indices obtained by non-linear
analysis were not evaluated.

4.3 Preprocessing for HRV analysis

Figure 4 illustrates a flowchart of the preprocessing method for
the ECG and PPG waveforms. To improve the energy effi-
ciency of edge devices, on-node processing uses lower sampling
rate to reduce the amount of data. On the other hand, the server
side performs heavy completion and correlation calculations to
improve the accuracy. In this study, to evaluate the effect of sam-
pling rate on HRV analysis, the ECG and PPG data measured at
500 Hz were down-sampled to 250, 125, 62.5, 31.25 Hz, respec-
tively. To generate down-sampled data, we first applied a low-
pass filter with a cutoff frequency of half the desired sampling
rate, and then down-sampled the data. This process prevents
aliasing noise and reduces the amount of computation in the
cloud.

Furthermore, to evaluate the impact of error compensation
methods on the HRV analysis results, we used the three meth-
ods depicted in the flowchart in Figure 4, namely a method
combining linear interpolation, peak detection and autocorrela-
tion ((a) IT+PD+AC), a method combining peak detection and
autocorrelation ((b) PD+AC), and a method using only peak
detection ((c) PD).

In the coarse peak detection, the R-wave and PPG wave
peak were detected from the down-sampled waveforms in each
method. The peaks were simply detected from the maximum

value. In the case of linear interpolation, the down-sampled data
is up-sampled again to 500 Hz using interpolation.

In the fine peak detection, the peak positions were corrected
using the error correction method described in Section 3.2. A
template window was created based on the first detected peak
position. The window length is set adaptively, and the template
window was set to 180–260 ms width around the peak of the R
wave in ECG, and set to 90–170 ms width around the peak of
the PPG waveform.

Next, a search window with the same width as the tem-
plate window is set and the correlation coefficient is calculated
around the next peak. The distance between the windows with
the largest correlation coefficient indicates the corrected inter-
val. The heartbeat and pulse intervals extracted by these meth-
ods were used.

5 RESULT

5.1 Pulse interval error

First, we evaluated the root mean square error (RMSE) (1) to
assess the difference between the PPI obtained from PPG and
the RRI obtained from ECG.

RMSE =

√
1

n

n∑
k=1

(PPIk − RRIk )2 (1)

where RRIk is the kth interval obtained from ECG at 500 Hz,
and PPIk is the kth interval obtained from PPG; n is the number
of data points.

Figure 5a shows the average RMSE for all subjects at each
sampling rate. The IT+PD+AC method demonstrates the
least variation with the sampling rate and the best accuracy
of pulse interval calculation results. The comparison of the
results obtained using PD+AC and PD reveals that the error
is small when using PD+AC at any sampling rate. The differ-
ence between the results obtained using PD+AC and PD tends
to increase slightly as the sampling rate decreases.

5.2 Effect of sampling rate on
frequency-domain indices

LF/HF was evaluated using the relative error shown in (2).

Relative error =

|||averagere f −average fs
|||

averagere f

(2)

where averagere f is the average value of LF/HF of the reference
calculated from RRI at 500 Hz, and average fs

is the LF/HF cal-
culated from RRI or PPI at a sampling rate of fs.

Figure 5b depicts the evaluation results of the LF/HF rela-
tive error at each sampling rate, and similar to the RMSE results,
the variation of IT+PD+AC with the sampling rate is not sig-
nificant. In addition, when PPI is used to calculate LF/HF,
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FIGURE 5 HRV analysis results using Vortal dataset; (a) root mean square error of heartbeat interval, (b) relative error of LF/HF, (c) SDNN, (d) SD1, (e) SD2,
and (f) SD1/SD2

the relative error is higher at almost all sampling rates than
when RRI is used. However, the comparison between the results
obtained using PD+AC and PD indicates that the difference in
the relative error between the case using RRI and that using PPI

decreases as the sampling rate decreases.

5.3 Effect of sampling rate on time-domain
and non-linear indices

Figure 5c–f depicts the evaluation results for SDNN, SD1, SD2,
and SD1/SD2, respectively. Note that the time-domain and
non-linear indices were evaluated based on the value of each
index.

The comparison of SD1 and SD2, depicted in Figures 5d
and 5e, shows that the variation in SD1 is larger when the sam-
pling rate is varied than SD2. The absolute value of the differ-
ence between SD1 calculated from RRI at 31.25 Hz and that at

500 Hz is 7.2 ms, and the absolute value of the difference with
regard to SD2 is 0.9 ms. The peak detection method is PD+AC.
The evaluation results for SDNN, SD1, and SD1/SD2 shown
in Figure 5c, 5d, and 5f, respectively, show the same trend. The
error by using PPI is limited, but the error increases at lower
sampling rates only using PD. The total error is improved by
adding the AC method, and the sampling error is also corrected
by adding IT. However, when SD2 is calculated using the PPI
extracted from the 31.25 Hz PPG, the results are closer to the
reference value when PD is used than when PD+AC is used.

6 DISCUSSION

In this study, we quantitatively evaluated the effects of heart-
beat interval error and error compensation on each index of
HRV analysis. The evaluation results show that each index can
be improved using the error compensation algorithm.
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A previous study evaluated the effect of a reduced sampling
rate on the analysis results when using PPI for HRV analysis,
and concluded that in situations wherein a perfect PPG peak can
be detected, a sampling rate of 25 Hz may be as reliable as that
obtained from ECG [27]. This study demonstrated that error
compensation can reduce the relative error of LF/HF to 8.6%
when PPG with a sampling rate of 31.25 Hz is used for HRV
analysis, in comparison with a relative error of 16.6% obtained
without error compensation.

The evaluation results shown in Figure 5 indicate that the
intrinsic error caused by using PPI appears to be larger for
LF/HF than for SDNN. In addition, the relative error of SD1
is larger than SD2. These results support the results obtained in
the literatures [15, 20].

SD1 and SDNN results in Figure 5 show that the PPI has
higher accuracy in these indices when the sampling rate is less
than 62.5 Hz. This slight counterintuitive result is caused by
the fact that ECG waveforms are more susceptible to sampling
errors than PPG, because the ECG waveform has higher fre-
quency components compared to PPG.

In addition, reference [28] discusses the difference in HRV
analysis accuracy based on the indices. The study concludes
that a sampling rate of 100 Hz for time-domain indices and
250 Hz for frequency-domain indices is necessary when per-
forming HRV analysis using ECG. The subjects in this experi-
ment were limited to those with acute poisoning. In Section 5,
error compensation using autocorrelation is shown to be effec-
tive for indices other than SD2. It is reasonable that the dif-
ference in the effectiveness of autocorrelation appears to vary
based on the indices.

The data length of the heartbeat interval used for HRV anal-
ysis affects the accuracy of the analysis results. Previous study
[29] claims that the use of data longer than one minute did not
have a significant effect on HRV analysis, but the relative error
increased when the data length was less than one minute. There-
fore, 256-s sequence of data was used in this study.

7 CONCLUSION

In this study, we evaluated the effectiveness of the heartbeat
interval error compensation algorithm. ECG and PPG datasets
measured in real environments were used in the evaluation.
The results showed that the error compensation algorithm was
effective for five of the six indices used in this study, except for
SD2. HRV analysis could be performed with high accuracy even
at a low sampling rate of 31.25 Hz when using linear interpola-
tion and autocorrelation for peak detection. Furthermore, the
analysis results indicate that PPI and RRI still have several mil-
liseconds inherent errors even after compensation. The impact
of this error on the application of HRV analysis needs to be
investigated in the future work.
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