Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 673658, 13 pages
http://dx.doi.org/10.1155/2015/673658

Research Article

Adaptive Localization of Focus Point Regions via
Random Patch Probabilistic Density from Whole-Slide,
Ki-67-Stained Brain Tumor Tissue

Yazan M. Alomari,' Siti Norul Huda Sheikh Abdullah,’
Reena Rahayu MdZin,? and Khairuddin Omar'

! Pattern Recognition Research Group, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

’Department of Pathology, UKM Medical Center, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia

Correspondence should be addressed to Yazan M. Alomari; yazanit@gmail.com

Received 19 July 2014; Accepted 9 December 2014

Academic Editor: Chuangyin Dang

Copyright © 2015 Yazan M. Alomari et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists.
Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step
in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained
cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to
a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization
of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point
regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random
patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The
proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good
performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive
rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide

images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.

1. Introduction

Cancer is a leading cause of death worldwide. In Malaysia,
more than 30,000 deaths from cancer have been reported
annually with most of these cases being diagnosed at an
advanced stage [1].

The analysis of microscopy images is extremely important
in both the medical and computer science fields. Analysis
of whole-slide tissue images is an important part of cancer
diagnosis. However, manually selected tissue slide focus point
regions do not capture the complete information available to
pathologists during initial microscopic analysis.

The diagnostic evaluation of a patient with suspected
cancer typically comprises several steps, including a brain

scan, often magnetic resonance imaging (MRI), as a first step.
If imaging increases the suspicion of a brain tumor, a brain
biopsy is usually performed. A biopsy is a procedure that
involves the removal of a small portion from the tumor area
so that the cells or tissues can be examined [2]. This sample is
next treated and sliced in a pathology laboratory, and then the
histological structure of the tissue cells is examined under the
microscope by a pathologist. For diagnostic purposes, usually
each diagnostic process involves staining the specimen with
specific dyes [3].

Regarding performing PRE, pathologists usually stain
the tissue using Ki-67 antigen [4]. After staining the tissue,
the pathologists then examine this biopsy tissue to make a
diagnosis. This process starts with visualization of the stained
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FIGURE 1: (a) Whole-slide tissue image sample for Ki-67-stained
histology image for a brain tumor. The red box represents a sample
for the focus point from the whole-slide tissue. (b) Image captured
after 40x magnification for the focus point region.

tissue using a whole slide under the microscope at low
magnifications (1-1.5x). From the whole slide, the focus
point regions that are highly concentrated in cancerous
cells (stained cells) are identified and localized as shown in
Figure 1. Next, for each selected focus point region, the
pathologist creates a zoom region until 40x magnification to
perform further analysis for these parts. PRE is then carried
out for each part.

Two strategies for selection of the focus point region to
differentiate the tumor area from the whole-slide tissue: in
the first strategy, pathologists select the regions that exhibit
the highest stained cell concentration; that is, tumor hetero-
geneity is examined by localizing the tissue areas with a high
density of positively stained cells that are also known as focus
point or hot spot regions [5, 6]. In the second strategy, pathol-
ogists select the regions systematically sampled to cover the
whole tissue area [7]. However, manual focus point region
selection from the tissue slide does not extract all available
information in the initial microscopic analysis [8]. In addi-
tion, the process of identifying the focus point regions from
the whole-slide tissue is highly subjective, using eye pooling
or eagle-view techniques, with high variation of interpersonal
and intrapersonal observations and lack of reproducibility
[9]. The accuracy of PRE mainly depends on the number of
focus points localized from the whole slide and selection of
the correct focus point regions from the slide. An increase in
the number of focus point regions indicates that the pathol-
ogist covered most of the whole-slide tissue area, leading to
an increase in the accuracy of PRE and an effect on the patient
treatment plan [10].

The problem of localizing the focus point regions from
the whole-slide tissue image can be addressed as a clustering
problem in image processing [9, 11-13]. Our objective in this
paper is to propose an adaptive localization method for Ki-
67 staining of whole-slide tissue for histology images of a
brain tumor. The purpose of this localization method is to
identify all of the focus point regions from the whole-slide
tissue images in bounding boxes and calculate the maximum
number of focus point regions that will help all pathologists
regardless of the strategies they followed. This approach may
help pathologists, particularly junior pathologists, to identify
tumor regions that exhibit high proliferating activity, called
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“focus point regions,” and will support them as a second
opinion in their analysis during the PRE process. Qualitative
analysis of the whole slide to identify the focus point regions
under the microscope is extremely tedious, prone to errors,
time-consuming particularly when numerous slides need to
be diagnosed in practice, and subject to interpersonal and
intrapersonal observation. Recent studies have shown that
the intrapersonal observation variations can be up to 20%
[14]. Thus, automation of this process can increase the pathol-
ogist’s precision, reduce interpersonal observation, save time,
and provide support as a second opinion to help in the diag-
nosis and analysis via introduction of quantitative analysis.
The proposed method was evaluated by three pathologists;
the false positive rate was 0.84% with a localization accuracy
of 99.1%. In the following sections of this paper, we will
summarize work related to whole-slide analysis (Section 2),
present the methodology used (Section 3), discuss the results
and experiments (Section 4), and review the conclusions.

2. Related Work

Using clustering and segmentation methods highly depends
on the application, imaging modalities, and other factors.
Each image modality has its own characteristics to be
extracted to perform the segmentation. Therefore, there is no
single segmentation method with acceptable results for all
medical imaging modalities [9]. According to that challenge,
medical imaging segmentation remains a problem for this
field [11]. There are different approaches in medical image seg-
mentation with some approaches based on heuristics, region
growing, edge detection, and thresholding methods [15].
Other approaches use machine learning techniques, includ-
ing supervised, unsupervised, and semisupervised tech-
niques [11, 16], whereas other approaches need prior infor-
mation in the form of atlases [17].

Many researchers have investigated whole-slide tissue
analysis using unsupervised techniques. Nadernejad and
Sharifzadeh [18] presented a new pixon-based method for
image segmentation. They form a pixonal image using a bilat-
eral filter, which is used as a kernel function. Some advantages
of using this filter include decreased image noise, help in
smoothing the image, prevention of over segmentation prob-
lems, and removal of unwanted noises from the environment.
In the next step, the fuzzy c-means model is used to seg-
ment the obtained pixonal image. Their experimental results
showed less computational and better accuracy than other
segmentation techniques.

Xinwu [19] presented some modifications in the original
k-means clustering algorithm. He claimed the original k-
means has some limitations such as low efficiency in the way
that k-means performed the centroid calculations, affecting
the k-means efficiency. Therefore, a new method was pro-
posed to overcome this limitation. Additional preprocessing
steps were added to the input images to speed up and enhance
the clustering process. Next, he improved the clustering seed
method through movement of the seed clustering toward
intensive data areas. In addition, the original k-means was
stuck in the local maximum solution in some cases. Solving
this problem was achieved through using the proposed
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method as alocal searching process to inlay in the local search
structure of the iteration. The proposed method outperforms
the original k-means method through the local search and
extends the searching range. A comparison with original
k-means using 3D medical volume images was conducted;
his proposed method achieved 94.7% accuracy, while the
original k-means accuracy was 77.5%. Another important
limitation in the k-means not discussed in this paper is
predetermining the number of clusters.

Some researchers use unsupervised learning methods to
segment and localize the tissue from the whole-slide images.
Hiary etal. [11] presented a method to segment the tissue from
the whole-slide image and localize it in a bounding box using
a k-means algorithm. They aimed to extract only the regions
of interest, which were represented in the tissue and were
bounded in the box, before entering the slide into the slide
scanner. This step saves both the scanning time and memory
space required. The unsupervised clustering k-means method
achieved 96% accuracy. Using unsupervised clustering meth-
ods still needs to predetermine the number clustering but
does not need a ground truth in their case, unlike their
previous work [16] when they used a supervised machine
learning method to perform the same task of segmentation
and localization. They made a hybrid method to combine
heuristic methods with parametric machine learning. Color,
intensity, texture, and spatial distribution features were used
in the segmentation and localization of the tissue. In addition
to using principal component analysis in feature reduction,
subsequent training in two layers in back propagation neural
networks was required. The accuracy achieved was 96% with
ground truth and data training required.

Hybridization in clustering methods was performed as in
[9], and Lopez et al. presented a hybrid method to localize
hot spots in the whole-slide tissue for ki-67-stained histology
images. Hot spot regions in the whole slide help identify the
tumor regions that exhibit high proliferating activity. They
proposed a clustering method that could localize an unknown
number of clusters. This method was carried out using
proposed hybridization between hierarchical clustering (HC)
and nonhierarchical clustering techniques. They proposed a
hybrid method combining the DBSCAN algorithm and stan-
dard single linkage (HC) method. The DBSCAN algorithm
was used to initiate the single linkage method by specific
instances instead of starting from the individual data. They
applied their method on Ki-67-stained whole-slide pathol-
ogy images and compared the proposed method results
with the manual hot spots labeled by the pathologist. The
results showed some improvement in consistency between
the pathologists regarding the hot spot tasks and support the
pathologists regarding quantitative descriptors. The resulting
clusters from the hybrid clustering method used in this paper
can be highly variable in terms of shape, size, and density.
Unfortunately, variability in cluster size may confuse pathol-
ogists, when creating higher magnifications of this region for
further analysis. Therefore, if all hot spots clusters bounded
by a box have the same size for all boxes and were found in
all regions suggested to be visited by the pathologist, it will be
easier for the pathologists to visit all of the boxes for further

analysis if needed. In addition, this method is highly sensitive
to parameters, which is hard to determine for all cases.

Elie et al. [7] presented a simple method for quantifying
the focus point regions that represents stained cells from the
whole-slide tissue. Two thresholding steps were used: first,
the tissue was extracted; second, the stained cell regions from
the tissue were extracted. Thereafter, a morphology close
operator is used to combine all of the neighbored pixels.
Next, reconstruction of size 10 is performed using the open
morphology operator to keep only the large stained areas.
Finally, AND logical operator is applied between a manual
marked mask image and the binary image, stained pixels and
focus point regions. One drawback of this technique is that
some parameters are not easy to determine and are not easy to
set as a fixed value suitable for all cases, such as thresholding,
because they used fixed thresholding in certain steps. Thus,
these values can significantly influence the results.

3. Methodology

Current clustering algorithms such as k-means and fuzzy c-
means can handle this challenge. However, they still have lim-
itations of the computation time needed and preknowledge
of the number of clusters. These limitations are solved in our
technique. Therefore, a new technique for the Ki-67-stained
histology images for the whole-slide tissue aims to cluster and
localize all focus point regions (FPRs). This technique clusters
all regions that are highly concentrated in the cancerous cells
from the tissue. In our case, we need an adaptive clustering
technique that can identify all clusters from the tissue without
preknowledge about the number of clusters. Therefore, we
propose the random patch probabilistic density (RPPD)
method to identify all focus point regions from the tissue.
This method outperforms k-means and fuzzy c-means clus-
tering methods in the processing time required to find all
clusters. In addition, unlike k-means and fuzzy c-means clus-
tering methods, RPPD adaptively finds all required clusters
without predetermining the number of clusters.

In this focus point regions localization problem, three
general steps are performed as shown in Figure 2. The first
step aims to divide the whole-slide tissue image into six par-
titions. This division was carried out based on the size of the
image (4140 x 3096). In addition, some images have uneven
illumination due to their capture by camera; therefore,
shadow problems appeared due to the direction of illumi-
nation. Thus, a single threshold will not be effective. The
partitioning step enhanced the thresholding results, which
affected the step of extracting tissue from the whole-slide
image using the adaptive Otsu thresholding method. Another
advantage of the partitioning step is to localize the focus point
regions locally from all parts in the image. After division, each
partition is subsequently considered a separated input image.
The second step is a global image segmentation technique
using the Otsu thresholding method for each image partition.
This step aims to extract the tissue from the whole-slide
image. The third step is to follow a local structural segmen-
tation approach on the extracted tissue only by using the
RPPD proposed method. This step aims to identify a particu-
lar structure in the tissue. This structure in our case refers to
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FIGURE 2: General methodology for the focus point localization proposed method.

the highly concentrated cell regions; that is, high density cell
regions from the tissue.

3.1. Preprocessing. The proposed RPPD method for focus
point region localization works with binary images: micros-
copy images of Ki-67 whole-slide tissue are colored images.
These images are captured by a digital camera from the micro-
scope. Therefore, in such images, some brightness problems
appeared while capturing the images. Thus, in this phase,
whole-slide RGB images follow some preprocessing steps to
solve the problem of brightness and to covert the image to
gray and then to a binary image. These steps are as follows.

(i) The RGB partition P; image is converted to a gray-
scale image by eliminating the hue and saturation
information while retaining its luminance.

(ii) Histogram equalization: this step uses a contrast-
limited adaptive histogram equalization (CLAHE)
method to transform the values of the gray-scale
image to enhance the contrast of the image. The
(CLAHE) method works locally in the image instead
of the whole image and is carried out by dividing the
image into small regions called tiles. Next, histogram
equalization is applied for each tile to enhance the
contrast, and then the results are included in the
whole image.

(iii) The gray partition P, image is converted into a binary
image using the Otsu thresholding method to extract
the tissue from the whole-slide image. The Otsu
method chooses the threshold to minimize the intra-
class variance of the black and white pixels [20]. These
segmentation phases were applied for all partitions in
each image.

3.2. Other Localization Methods. In the proposed RPPD
method, localization of the tissue was performed based on
the density feature in each box. However, existing studies [4,
11, 19, 21] usually employ k-means and fuzzy c-means to select
the region of interest or localize a specific object in an image.
In these partitioning clustering approaches, each cluster is
represented by its center, which may not be a part of the

dataset. Additionally, the number of clusters is fixed, and each
object assigned to the nearest cluster center is based on a dis-
tance measure. The latter fact usually causes incorrectly cut-
off borders between clusters. Furthermore, all clusters have
approximately the same size. k-means and fuzzy c-means
algorithms are the most known centroid-based methods.
They work by randomly selecting the initial clusters and then
assigning each object to the nearest cluster. These methods
have many drawbacks. The final results are highly dependent
on the initial clusters chosen, the methods are highly sensitive
to outliers, failure of localization often occurs, and the
number of clusters must be specified in advance [22, 23].

When comparing with other clustering methods such as
k-means [22, 24],

@

k n
1= 2l <",
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where IIxf - ch|2 is the chosen distance measure between a

data point x] and the cluster center c; is an indicator of the
distance of n data points from their respective cluster centers.

When comparing with the fuzzy c-means clustering
method [25]
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where m is any real number greater than 1, Uj; is the degree
of membership of x; in the cluster j, x; is the ith of d-
dimensional measured data, C; is the d-dimension center of
the cluster, and || * || is any norm expressing the similarity
between any measured data and the center.

The same preprocessing steps were performed to extract
the tissue. The binary-extracted tissue pixels, which represent
the dark staining regions of the tissue, are clustered using
k-means [24] and fuzzy c-means [25] based on the tissue
pixel coordinates. The clustering methods clustered the tissue
pixels based on distances between pixels, indicating that the
tissue pixels are close together in a cluster. In other words,
clustering the tissue is performed based on the tissue pixel
concentration or density, similar to that based on RPPD.



Computational and Mathematical Methods in Medicine

(d)

FIGURE 3: (a) Original tissue image, (b) gray-scale tissue image, (c) segmented binary tissue after Otsu thresholding, and (d) segmented tissue
after returning to the original colors from the original image for the corresponding pixels.

3.3. The Proposed Random Patch Probabilistic Density (RPPD).
In general, segmentation in images is defined by the regions
to be identified as in (3), FPR; € Q, where Q) is the segmented
tissue and needs to be segmented into regions FPR; and

N
| JFPR, = Q- (~FPR), 0<N<(mxn), (3
k

where N is the number of regions and R; N R, = ¢, Vj # k,
(m x n) is the image size. However, good image segmentation
softens the condition of a hard subset to only one region by
assigning probabilities of pixels to lie in regions [16].

The objective of the RPPD is to detect the highly concen-
trated cell regions (focus point regions; FPRs) by minimizing
false positive (FP) focus point regions.

Terminology Definition I
P;:

: image partition,
Q: array of pixels for the segmented tissue in P,

Q': number of tissue pixels (black pixels) inside the
candidate box,

Q': number of nontissue pixels (white pixels) inside the
candidate box,

: random pixel selected from (,
CFP: candidate focus point region,
: density feature of the tissue inside candidate CFP,

FPR: CFP becomes a true focus point region if it meets the
D, feature,

: the minimum number of pixels remaining in Q to
continue searching for more focus points,

: the threshold value represents the accepted ratio to
consider CFP as FPR.

After segmenting each partition P; using the Otsu thresh-
olding method, the segmented image has only dark region-
stained tissue, which is needed to identify FPR in Ki-67
histology-stained images. This segmented tissue represents
the concentrated regions of the tissue. Figure 3(a) illustrates

the original Ki-67-stained image, and Figure 3(d) illustrates
the segmented tissue after thresholding. Therefore, in the
next step, the proposed method should cluster this tissue
to regions based on its density features and high cell-con-
centrated regions, similar to what pathologists do.

3.3.1. The Basic Idea for the Proposed RPPD. Our proposed
RPPD method involves binary images. The black pixels
represent the tissue; therefore, all of the tissue pixels are
stored in tissue array Q. A pixel, F;, is chosen randomly from
Q. A virtual box is then drawn with a size of 150 x 150
pixels, and F; is set to be the center of this box. This box is
considered a candidate focus point region (CFP). In the next
step, this CFP is checked based on density feature criteria to
decide whether it will be considered a CFP. Figure 4 shows
the randomly selected F; and the virtual box centered by F,.
Using this random patch localization, the main limitation for
the current clustering method, which is the preknowledge
concerning the number of clusters, can be solved. In addition,
all tissue parts are checked locally from the image.

Many experiments were performed to determine the
choice of box size. The trade-off between larger and smaller
box size is the number of boxes at the end. Each true box
represents a focus point region. When the size of the box is
small, the number of focus point regions will be large in the
outcome. If the size of the box is large, the number of focus
point regions will be small in the outcome. In our case, the
size of the images was huge. Thus, we used a medium-sized
box (150 x 150 pixels) to obtain an outcome with a reasonable
number of focus point regions that can be conveniently
applied for the two strategies for focus point region selection
by pathologists.

3.3.2. Determining Candidate Focus Point Regions. Inthe next
step, RPPD identifies the density feature of the tissue inside
the box based on (4) as shown in Figure 4. RPPD accepts or
rejects this region based on the formula shown in (5). If the
value of D; is greater than a threshold value T,, then CFP is
considered a true FPR. Next, RPPD removes all pixels inside
the box from Q and moves on to select a new F;. Otherwise,
if the value of D; is less than a threshold value T,, RPPD
rejects this CFP and restarts by selecting a new F,. With
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FIGURE 4: Randomly selected point from tissue and CFP.

the assumption of a 150 x 150 box size, CFP is summarized
as follows:

Qt
D= ——, (4)
Q'+ Q
Reject D, <T,
> CFP = 4 Accept D;>T, (5)

Remove Q' from Q D; < 10%.

If the density inside the box is less than 10%, RPPD
removes the pixels inside this box. In some cases, during the
slide preparation process, some small pieces of tissue spread
through the slide. These tissue pieces are not significant
regions for the pathologists. Therefore, RPPD ignores such
pieces of tissue as shown in Figure 5.

3.3.3. RPPD Iteration Number. RPPD continues searching for
focus point regions in the image P; until it meets one of two
conditions:

(i) the number of pixels in Q is less than T, ;;
(ii) the number of iterations exceeds 100 times without
identifying any FPR.

The value of T, is technically defined by the maximum
number of tissue pixels inside the box required to keep this
CFP region rejected from RPPD to consider a FPR. It can be
formulated as

Qt
T - [_ . 15%] _ )
Qt+Qf
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FIGURE 5: Insignificant regions of tissue found and ignored by RPPD.

This number of remaining tissue pixels in Q is not suffi-
cient to decide a FPR even if these pixels are found in a candi-
date box. Therefore, if the number of remaining tissue pixels
has reached T ;,, the RPPD proposed method terminates the
iterations.

Conversely, a number of iterations exceeding 100 without
identifying any FPR indicate that most of the FPRs are found,
and the probability of finding a new FPR is very weak in the
partition image P;. This value of 100 is determined based on
experimental tests; moreover, the partition image size is not
large.

3.3.4. Our Proposed Scaling to Accept CFP as a Focus Point
Region (FPR). In this step, if the D; value inside the box is
greater than a threshold value T,, then the RPPD method
deems this CFP a FPR. RPPD has criteria to accept CFP as
a FPR based on the formula shown in (7). This criterion is
dependent on a multiscale of the threshold value T,. The value
of the threshold T, is used in the RPPD proposed method to
represent different scales of priority, with each scale having a
different box color displayed in the resulting image. The fol-
lowing categories are supposed to provide pathologists with
an indication of the FPR found:

Z FPR

Red Box  D; >75% High priority

Blue Box  50% > D; > 75% Middle priority (7)
) Green Box 30% > D; >50% Low priority

Black Box 15% > D; > 30% Lowest priority.

In the results, each category of focus point regions has a
different box color; this step gives the pathologists a detailed
indication about the FPR found and helps them to choose the
FPR process.
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FIGURE 6: The proposed RPPD method workflow.

3.3.5. The Proposed RPPD Steps. The workflow of the pro-
posed RPPD method for each P, is shown in Figure 6.

Step 1. The entire binary image is divided into six small parti-
tion images. Each partition is denoted by P, so that each image
is defined by the set P, P,,..., P, where P is the partition
image and i is the number of partitions.

Step 2. For each P, all extracted tissue pixels are stored in Q).
f is defined as the number of failures that can be tolerated.
The failure counter is initialized so that f is set to 0. Tpp,;, =

QN + Qt) < 15% is defined and set, and then the value of
T, is defined and set.

Step 3. The algorithm loops from P, to P,.

Step 4. When [Q;| > T, or f < 100, where f is the number
of failures that can be tolerated, and T,;, is the maximum
number of tissue pixels inside the box required to keep this
CFP region rejected from RPPD to be considered a FPR, the

algorithm proceeds to Step 5; otherwise it goes to the next P..

Step 5. A random pixel F; is selected from (;, and then a
virtual box is drawn, and F; is placed in the center. This box
region is defined as a candidate focus point (CFP).

Step 6. If number of tissue pixels inside this CFP meets the D;
feature, RPPD considers this region a FPR. All of the tissue
pixels from €); are then removed, and a new F, is selected.
Otherwise, if D; is less than 15%, all of the tissue pixels from
Q; are also removed and f = f +11is performed, and a new F;
is selected. Otherwise, f = f + 1 is performed and the algo-
rithm goes to Step 5.

In conclusion, the proposed RPPD aims to detect and
localize all focus points from whole-slide Ki-67-stained tis-
sue. This problem can be solved using the clustering methods
described in the literature [9].

4. Experimental Results and Discussion

4.1. Dataset

4.1.1. Self-Collected Dataset to Localize Focus Point Regions
from the Whole Slide. Our dataset contains thirty images
of whole-slide tissue of Ki-67-stained histology images. The
images represent brain tumor cases that include diffuse large
B-cell lymphoma, atypical meningioma grade II, rhabdoid
meningioma grade III, atypical choroid plexus papilloma
grade II, and anaplastic astrocytoma grade III. We used
these images to localize focus point regions that pathologists
focused on to create zoom regions and conduct further
analysis to perform PRE. The images are from the Hospital
Universiti Kebangsaan Malaysia. The histologic images in the
dataset were captured using an Olympus BX50 microscope
(Olympus Corporation, Japan). All of the images were cap-
tured using a DP72 digital camera (Olympus Corporation)
and cellSens Life Science imaging software, version 1.6
(Olympus Corporation). All of the images are in the tiff for-
mat with a resolution of 4140 x 3096. The images were taken
at 1x magnification.

4.1.2. Dataset for Bounding the Tissue from the Whole Slide to
Be Scanned. In this dataset, 228 images used for the whole-
tissue slide which were used in [11, 16] varied in color, size,
shape, and location in the slide. In this dataset, our proposed
method was used to localize the tissue from the whole-slide
image and fix a box around the tissue. The required memory
and time to scan the whole slide were very large. The purpose
of this step was to determine approximately the area to be
scanned by the digital pathology scanner from the whole
slide. The scanner will only scan the area inside the box.
This area must include the localized tissue from the whole
slide. This method will save scanning time and memory
space required. Figure 7 shows some sample images from this
dataset.



FIGURE 7: Sample of the whole-slide tissue dataset to be scanned.

4.2. Evaluation Methods

4.2.1. Self-Collected Dataset. Focus point region localization
from the whole-slide tissue for Ki-67 histology images is
a very challenging task because inter- and intrapersonal
observation are very high among pathologists. In medical
image analysis, a major concern is interpersonal observation
reliability. Experience, environment, data, and human factors
all contribute to the expert decision variability in the medical
domain. Therefore, it is very difficult to find a gold standard
for this problem. Thus, in this paper, three senior pathologists
checked the proposed method results independently. All of
them agreed in the identification of the false positive focus
point regions; however, in true-positive and false negative
cases, they have interpersonal observations. False positive
regions refer to the regions identified by the proposed method
as incorrect regions, such as regions outside the tissue bor-
ders. True-positive regions refer to the regions identified by
the proposed method as correct regions. Moreover, false neg-
ative focus point regions refer to correct focus point regions
that are not detected by the proposed method. The agree-
ment between pathologists in determining the same true-
positive focus point regions is low. They find the focus point
regions in a very subjective manner based on their experi-
ence. Additionally, in some cases, the interpersonal observa-
tion had reached 20% [14].

Moreover, in some cases, pathologists examine the whole-
slide tissue focusing on highly concentrated cancerous cells;
at the same time, they may also focus on nonconcentrated
regions.

For these reasons, it is very difficult to find a gold standard
for this problem. Therefore, in this paper, the evaluation
method used focused on identifying the false positive rate
based on pathologist evaluation.

We found the false positive rate by identifying number of
incorrect boxes. The area for each incorrect box was deter-
mined, and then the total area for all these boxes was calcu-
lated. Thereafter, total area of the incorrect boxes was divided
by the area of the whole image based on

False Positive Rate

box size * (number of incorrect boxes)

x 100.
(8)

(image size)
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TABLE 1: Summary of results for AVPR.

Set Average false positive rate Localization accuracy
1 1.20% 98.7%

2 1.03% 98.9%

3 0.28% 99.7%

4 0.70% 99.3%

5 0.91% 99%

Total 0.82% 99.1%

The false positive rate was calculated for each image, and
then the dataset was divided into five sets. For each set, we
determined the average false positive rate (AFPR), which
occurs when agreement exists between the pathologists and
proposed method for the incorrect focus point region. Table 1
shows the average false positive rate for each set of images
with the focus point region localization accuracy for each set.
Furthermore, the total average false positive rate and focus
point region localization accuracy was determined for all of
the image sets.

4.2.2. Dataset for Bounding the Tissue from the Whole Slide to
Be Scanned. In this dataset, our proposed method was used
to localize the tissue from the whole slide and fix a box that
contains the localized tissue. For the evaluation, if the box
localizes all of the tissue, it was considered true. If the box
missed a significant area of the tissue, it was considered a
localization error, and the image was counted as an error
(localization error). The localization accuracy was calculated
as in

L
Accuracy = (1 - %) 100%. 9)

The box size used in the proposed method was (40 x
40) pixels, and the T, threshold value used was 10%. After
identifying all of the boxes in the image, the maximum box
that contains all the small boxes in the image was then found.
This step was performed to localize the tissue in one box.

For the 228 whole-slide tissue images, the localization
accuracy was 97.3% using our proposed method. Our pro-
posed method outperformed the method used in [11, 16],
which used unsupervised and supervised learning methods
to localize the tissue from the whole slide and then bounded
the tissue image in a box.

The RPPD proposed method could localize tissue using
different sizes, shapes, and colors. Figure 8 shows some sam-
ple results for the RPPD proposed method using tissue local-
ization from the whole slide; (a) shows some correct tissue
localization, and (b) shows some incorrect tissue localization.

4.3. Discussion. In clinical routines, pathologists use their
experience to localize some focus point regions from whole-
slide tissue. They then further analyze the selected regions
after zooming in to 40x magnification to perform PRE for that
case. Figure 9 shows a sample of focus point regions localized
by the RPPD proposed method from the Ki-67 whole-slide
tissue image. In such cases, some tissue regions have more
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FIGURE 8: (a) Sample correct tissue localization results and (b) sample incorrect tissue localization results for the proposed RPPD method.
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FIGURE 9: Sample of focus point regions localized by the RPPD pro-
posed method with multiscaling results. The red boxes indicate high
priority. The blue boxes indicate middle priority. The green boxes
indicate low priority. The black boxes indicate the lowest priority.

cancerous cell concentration, and these regions are used by
pathologists objectively for further analysis.

According to interpersonal observation in determining
the true-positive and true-negative regions, a priority crite-
rion for the localized focus point regions was suggested. Four

focus point region categories are suggested as mentioned in
Section 3.3.4 as a box coloring. Each category represents a
localized region with specific priority. Using these criteria,
the RPPD proposed method could identify most focus-
point regions in the whole-slide tissue, even the regions
with low significance to some pathologists. Pathologists can
then choose some of these focus point regions to complete
the analysis. Using this method, the proposed RPPD can
reduce interpersonal observation and identify more focus
point regions.

Moreover, in medical image analysis, particularly regard-
ing the focus point region localization cases, the major con-
cern is to reduce the false positive rate while identifying the
most focus-point regions existing in the tissue. Pathologists
do not care to examine all of the focus point regions in the
whole slide; they just use some focus point samples to make a
decision for that case. In addition, not all pathologists use the
same focus point regions to make the decision due to inter-
personal observation. These clinical settings of the patholo-
gist’s routine motivated us to propose an adaptive localization
method that can find most of the focus point regions, even
with less significance, and then pathologists can choose from
them for further analysis. In addition, this method would
reduce the false positive rate, which can waste the patholo-
gist’s time and efforts.
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(b)

FIGURE 10: (a) Original whole-slide tissue image, (b) some false positive regions labeled in the black circles after localization using the proposed

RPPD method due to brightness and segmentation errors.

FIGURE 11: Regions in the red circles have problems in slide prepa-
ration such as staining problems.

In our proposed method, some false positive regions were
caused by tissue segmentation errors from the preprocessing
steps. Images used in this paper were captured using a
digital camera fixed on the microscope; thus, some brightness
problems occurred during the image capture that can affect
tissue extraction as shown in Figure 10. Figure 10(a) shows
the original image, and Figure 10(b) shows the focus point
regions; the box inside the black circles refers to false positive
regions.

In some cases, false positive focus point regions arise from
problems in preparing the slide by pathologists. In the slide
preparation, problems in staining can sometimes cause some
noise in the image, affecting the focus-point region localiza-
tion as shown in Figure 11 as regions inside the red circles.

In some cases, false positive focus point regions arise from
problems in slide preparation by the pathologists. In the slide
preparation, problems such as fold or air bubbles sometimes
cause noise in the image, affecting the focus-point region
localization as shown in Figure 12 as regions inside the red
circles.

FIGURE 12: Regions in the red circles have problems in slide prepa-
ration such as air bubbles and tissue folds.

4.4. Comparison of the Results with Other Methods. Focus
point region localization is a clustering problem that can be
handled by known clustering methods such k-means and
Fuzzy c-means. Thus, we compared our proposed RPPD
method with k-means and fuzzy c-means methods.

We conducted our experiments for the focus-point region
localization using both k-means and fuzzy c-means clustering
methods. Two experiments for each method were performed
using a different number of clusters. The first experiment was
conducted using 120 clusters, while the second experiment
used 150 clusters for both k-means and fuzzy c-means meth-
ods as shown in Tables 2 and 3. The false positive rate when
using 120 clusters was lower than that when using 150 clusters
in both k-means and fuzzy c-means methods. Unfortunately,
even when the false positive rate is low with 120 clusters, the
number of true-positive focus point regions found was not
comprehensive to cover all of the suspected cases due to inter-
personal observations. Therefore, more clusters are needed to
be localized. In addition, and for reasonable comparison with
the RPPD proposed method, the average focus point regions
found in RPPD are 250 per image.
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FIGURE 13: Results of focus point regions using k-means with (a) 120 clusters and (b) 150 clusters.

(®)

FIGURE 14: Results of focus point regions using fuzzy c-means with (a) 120 clusters and (b) 150 clusters.

TABLE 2: Summary of results for the k-means method using 120 and
150 clusters.

TABLE 3: Summary of results for the fuzzy c-means method using
120 and 150 clusters.

Average false Average false positive

Set positive rate (120 rate (150 clusters)
clusters)
1 1.02% 1.40%
2 0.63% 0.91%
3 0.34% 0.40%
4 0.76% 0.85%
5 1.52% 1.90%
Total 0.85% 1.09%

Experimentally, we determined that the number of clus-
ters used should be not very large because of the running
time and its effects on the number of false positive clusters:
when the number of clusters is larger, the false positive rate is
increased.

Figures 13 and 14 show sample results using k-means and
fuzzy c-means clustering methods with (a) 120 clusters and
(b) 150 clusters, respectively. All of the red circles indicate

Average false positive Average false positive

Set rate (120 clusters) rate (150 clusters)
1 0.94% 1.46%
2 0.85% 0.91%
3 0.31% 0.37%
4 0.67% 0.88%
5 1.43% 1.90%
Total 0.84% 1.10%

false positive regions, and the blue circles represent the area
that, at most, needs no more than two focus point regions.
However, a high concentration of overlapping focus point
regions is observed using the k-means method. Figure 1l
shows the same case using our proposed RPPD method with
a low false positive rate. Moreover, the regions marked on
the brown oval represent areas of tissue that should not be
detected because they are not significant to the pathologists,
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TABLE 4: Comparison of the average false positive rate for the RPPD,
k-means, and fuzzy c-means algorithms.

Average false

Method e
positive rate

Average run time

k-means (120 clusters) 0.85% 821.23 seconds
k-means (150 clusters) 1.09% 1074.83 seconds
flllll zsizrcssmeans (120 0.84% 1875.79 seconds
fl‘fszr;means (150 110% 2426.36 seconds
ﬁiﬂ gro?osed 0.84% 239.65 seconds

and they are not reasonable areas of tissue to examine. They
might represent problems in some slide preparations.

The RPPD proposed method outperforms k-means and
fuzzy c-means in two major issues. RPPD works adaptively
without the need to predetermine the number of clusters,
which is considered a very difficult task in focus-point region
localization. In addition, RPPD has a faster processing time
than k-means and fuzzy c-means.

From a clinical standpoint, results from k-means and
fuzzy c-means have a higher rate of false positive ratio in
focus-point region localization, unlike our proposed RPPD
method, which has a lower false positive rate.

Table 4 summarizes the comparison among the RPPD
proposed method, the k-means method and the fuzzy c-
means method. This comparison includes the average false
positive rate and average running time for each method.
The different numbers of clusters were tested in k-means
and fuzzy c-means. The first experiment used 120 clusters,
whereas the second experiment used 150 clusters. Table 4
shows each experiment for each method, the average false
positive rate, and the average run time.

As a conclusion, the proposed RPPD method outper-
forms both the k-means and fuzzy c-means clustering meth-
ods in focus-point regions localization from the whole-slide
tissue stained by Ki-67; the RPPD proposed method achieved
less false positive average rate and shorter running time using
different number of clusters. In addition, the proposed RPPD
method is able to localize all focus-point regions adaptively
without predetermining the number of regions to be local-
ized, while in k-means and fuzzy c-means, the number of
regions to be localized must be predetermined, which is con-
sidered a very challenging and subjective task. Furthermore,
the process of automating the focus-point regions should
support the two strategies followed by the pathologists, which
helps in reducing the intra/interpersonal observation. Thus,
adaptive localization of focus-point regions is more effective
in reducing the intra/interpersonal observation than asking
the pathologists to predetermine the number of focus-point
regions.

5. Conclusions

This paper proposed a method that adaptively localizes focus
point regions from whole-slide Ki-67-stained histopathology

Computational and Mathematical Methods in Medicine

images. The random patch probabilistic density method can
localize the tissue based on the density feature of an unknown
number of clusters. This method solves two major problems
that current clustering methods encounter. The first is that
RPPD can cluster data to an unknown number of clusters.
The second problem is that the RPPD running time is too
short compared with the current method on the same dataset
and computer device. The RPPD method was tested on self-
collected dataset for whole-slide tissue images and achieved
a 0.84% false positive rate. Compared to the k-means and
fuzzy c-means clustering methods with the RPPD method,
the results achieved using the k-means and Fuzzy c-means
methods were good, but the number of clusters has to be
predetermined, and they had longer running times than our
proposed RPPD method. The RPPD method can help pathol-
ogists identify focus point regions to proceed in the PRE pro-
cess. RPPD identifies most focus-point regions in the tissue
using simple priority criteria, and these criteria can serve
as two strategies that pathologists can follow to localize focus
point regions. In addition, our method helps to reduce the
interpersonal observation between pathologists. Moreover,
RPPD is used to localize the tissue from whole-slide images;
it has been tested using 228 whole-slide images, and 97.3%
localization accuracy was achieved.
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