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Immune-enrichment of non-small cell lung
cancer baseline biopsies for multiplex
profiling define prognostic immune
checkpoint combinations for patient
stratification
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Abstract

Background: Permanence of front-line management of lung cancer by immunotherapies requires predictive
companion diagnostics identifying immune-checkpoints at baseline, challenged by the size and heterogeneity of
biopsy specimens.

Methods: An innovative, tumor heterogeneity reducing, immune-enriched tissue microarray was constructed from
baseline biopsies, and multiplex immunofluorescence was used to profile 25 immune-checkpoints and immune-
antigens.

Results: Multiple immune-checkpoints were ranked, correlated with antigen presenting and cytotoxic effector
lymphocyte activity, and were reduced with advancing disease. Immune-checkpoint combinations on TILs were
associated with a marked survival advantage. Conserved combinations validated on more than 11,000 lung, breast,
gastric and ovarian cancer patients demonstrate the feasibility of pan-cancer companion diagnostics.

Conclusions: In this hypothesis-generating study, deepening our understanding of immune-checkpoint biology,
comprehensive protein-protein interaction and pathway mapping revealed that redundant immune-checkpoint
interactors associate with positive outcomes, providing new avenues for the deciphering of molecular mechanisms
behind effects of immunotherapeutic agents targeting immune-checkpoints analyzed.
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Background
Lung cancer accounts for the majority of cancer-related
deaths, with almost two million diagnosed globally each
year [1], and non-small cell lung carcinoma (NSCLC)
representing 83% of cases [2]. Though surgical resection
is the preferred treatment modality, most patients are di-
agnosed at advanced, unresectable stages. The TNM sta-
ging system has historically been the most widely used

predictor of NSCLC survival. Adenocarcinoma (ADC)
and squamous-cell carcinoma (SCC) subtypes have differ-
ing prognostic and predictive profiles [3]. As such, pathol-
ogists are mandated to distinguish subtypes, regardless of
size and quality of biospecimens, ahead of targeted and
personalized therapies [4]. Advances in subtyping have
brought into question the requirement for TNM [5], and
recent studies demonstrate that use of immunohistochem-
istry (IHC) cocktails and bioinformatics [6, 7], provides
comparable accuracy between poorly differentiated lung
biopsies and large tumors [8, 9].
The ability of T cells to control cancers is now widely

accepted. The use of the adaptive immune system as
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prognostic and predictive is becoming standardized from
indisputable evidence of immunosurveillance [10], and
the Immunoscore (IM) outperforming TNM staging
[11]. Though tumor infiltrating lymphocytes (TIL) are
associated with positive outcomes, their anti-tumor
activity is curbed by immune checkpoints (ICP). ICP--
blockade therapies showing broad efficacy in NSCLC pa-
tients relative to standard care are now front-line
treatments [12]. Differential responses to treatments has
prompted rapid FDA approval of PD-L1 companion diag-
nostic (CDx) assays, and measures are being taken to ad-
dress its heterogeneity and assay discordance [13]. From
vast clinical successes from PD-1/PD-L1 targeting, numer-
ous additional ICPs are being investigated as combinator-
ial targets or CDx to control cancer [14], autoimmunity
[15], and numerous infectious diseases [16]. Initially cate-
gorized as exhaustion markers of functionally impaired T
cells, ICPs are expressed by tumor-reactive TILs sharing
tumor-antigen specificities and T cell receptor (TCR)
repertoires with circulating ICP expressing T cells [17],
suggesting these may identify responders to
immunotherapies.
Diagnosis and staging of NSCLC is commonly estab-

lished from core needle biopsy and fine-needle aspir-
ation, however the size and heterogeneity of these
specimens does not permit use of standard IM or PD-L1
assays, creating a critical need for the development of
biopsy-adaptable CDx. We constructed a tissue micro-
array (TMA) from immune-dense regions of core needle
biopsies from a baseline NSCLC cohort, and used it to
profile infiltrating immune cell (IIC) subsets, ICPs, pro-
liferation, and effector T cell markers. We find combina-
tions that efficiently stratify patients, and validate
prognostic ICP-signatures on additional cohorts. We
profile ICP coexpression dynamics and ICP linkage to
clinical parameters and IIC subsets, map ICP-interactors
and associated pathways, and define the most prognostic
combinations able to guide blockade therapies using
baseline biospecimens of all sizes.

Methods
Study design
ICP were profiled using 17 lung cancer cohorts from dif-
fering origins, and using different methods: 1) at the
protein expression level on a TMA created from a base-
line NSCLC cohort (n = 81) (Additional file 1: Table S1;
La Rabta Hospital of Tunis, Tunis, Tunisia); 2) at the
whole-tumor RNA level using RNA-Seq datasets from
two NSCLC cohorts from the TCGA, the LUAD (n =
504) and LUSC (n = 494) (http://www.cbioportal.org);
and 3) at the whole-tumor RNA level using microarray
datasets from 14 NSCLC cohorts from the GEO, the
EGA and TCGA (n = 2435) Kaplan-Meier Plotter
(http://kmplot.com). Additional breast (n = 5143), gastric

(n = 2183), and ovarian (n = 1816) cohort datasets were
from Kaplan-Meier Plotter. Written and informed
consent procedures were approved by the ethics review
committees and were obtained from patients prior to
the collection of specimens. Clinical patient data was
randomly numbered for complete anonymity. Censoring
of cohort patient data was from time of diagnosis to last
follow-up or death.

TMA construction
An illustration of the TMA construction is provided in
Fig. 1a. Four μm cuts made using a microtome (Leica
Biosystems) from all biopsies were α-CD45 stained for
IHC using the Benchmark XT automated stainer with
CC1 antigen retrieval buffer (Ventana Medical Systems)
for 1 h. Slides were incubated with α-CD45 (1:50) at 37 °
C for 1 h, followed by the ultraView DAB detection kit
and counterstaining with haematoxylin and bluing
reagent (Ventana Medical Systems). Slides were scanned
with an Olympus BX61VS microscope equipped with a
VS110 slide scanner and 20x / 0.75 NA objective with a
resolution of 0.3225 mm (Olympus). Images were
exported and visualized using OlyVia image viewer
software ver. 2.8 (Olympus) to identify CD45+ IIC-rich
regions. Three to five IIC-rich regions of the biopsies
were selected for 0.6 mm core transfer into the receiving
TMA paraffin block using a TMArrayer (Pathology De-
vices). Paraffin blocks were kept at 4 °C until used for
TMA construction. TMA cores were press-sealed into
place after incubation at 50 °C for 10 min. The TMA was
cooled at RT ON, and was chilled on ice ahead of being
cut into 4 μm sections. Sections were floated onto 1 mm
slides (Fisher Scientific), dried ON, and stored at 4 °C
until stained.

Multiplex-immunofluorescence
TMA sections were deparaffinized by incubation at 50 °
C for 1 h prior to 5 min incubations in successive baths
(3x xylene, 95, 90, 70, and 50% ethanol, dH2O). Antigen
retrieval was performed using Target Retrieval Solution,
Citrate pH 6 (DAKO) as recommended by the manufac-
turer. Protein Block (DAKO) was applied against
non-specific staining for 40 min. Slides were rinsed with
PBS before incubation with primary antibody mixtures
diluted in Antibody Diluent (DAKO), 0.05% Tween 20
(Fisher Scientific) ON in a humidified chamber at 4 °C.
Antibodies and their dilutions are in Additional file 1:
Table S3. Following three 15min PBS washes, slides
were incubated with secondary antibody mixes for 1.5 h
at RT (cross-adsorbed donkey α-rabbit, α-rat, or α-goat
IgG (H&L) and/or goat α-mouse IgG1, IgG2a, IgG2b or
IgGM specific secondary antibodies conjugated to
Alexa-Fluors (405, 488, 594, 647 and 750) (Thermo-
Fisher Scientific and Abcam) (1:250) Additional file 1:
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Table S3. Slides were washed with three 15min incuba-
tions in PBS, and incubated in Sudan Black (1% in 70%
ethanol) for 15min. Slides were washed with dH2O for 5
min, and dried for 30min before being set with ProLong
gold antifade reagent (±DAPI) (ThermoFisher Scientific)
under 0.17mm coverslips (Fisher Scientific). Primary anti-
bodies were individually detected by donkey α-host IgG
(H&L) Alexa-Fluor 594 antibodies, and images were ac-
quired using a Zeiss Axio Observer Z1 automated

microscope equipped with a Plan-Apochromat 20x / 0.8
NA objective, a Zeiss HRm Axiocam and LED pulsed light
illumination (Additional file 1: Figure S1d). Fluorescence
minus one controls were used for potential fluorescence
bleed-through between detection channels. In other con-
trol experiments, primary antibodies: 1) were not added,
2) were detected by alternative secondary antibodies, 3)
were tested on a TMA containing 14 cancer cell lines (e.g.,
prostate, breast, ovarian, kidney, cervical cancer cells and

Fig. 1 Creation and analysis of IIC-enriched biopsy-based NSCLC TMA. a Illustration depicting TMA creation workflow. Baseline biopsies from a
NSCLC patient cohort (n = 81) were paraffin embedded, and cut sections were stained using α-CD45 to demarcate IIC-dense regions then
selected for TMA construction using original blocks. Cut sections from resulting TMA were then stained using MP-IF panels targeting immune-
related antigens including ICPs and IIC subsets. Slides were scanned to create super images permitting the development of algorithms
computing antigens of interest and their colocalization for normalization (figure elements modified from Servier medical art). b Image
representing α-CD45 IHC stained biopsies defining IIC-dense areas. c Example of MP-IF panels demonstrating α-ICP (green), α-CD3 (pink), α-CD4
(red), and α-CD8 (yellow) antibodies validated to surround DAPI-staining nuclei (blue). IIC-enriched core selection was performed by two different
operators. TMA cores were randomized and TMAs were created by two operators. HRP, horseradish peroxidase; 2° ab, secondary antibody; AF,
Alexa-Fluor dye; α, anti; μm, micron; mm, millimeter
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Jurkat), and 4) were replaced with isotype control anti-
bodies (MOPC-31C, G155–178, MPC-11) (BD Pharmino-
gen). MP-IF stained slides were scanned using an
Olympus BX61VS microscope housing a BrightLine Sedat
filter set (Semrock) optimized for DAPI, FITC, TRITC,
Cy5 & Cy7, and equipped with a 20x / 0.75 NA objective
with a resolution of 0.3225mm and a VS110 slide scanner
running FW-AS software (Olympus) that stitches individ-
ual images to build high resolution .vsi images.

Image analysis
High resolution images were imported into Visio-
morph software (Visiopharm), where cores were iden-
tified and linked to patient numbers using an
Array-Imager module. Using fluorescence intensity
thresholding, algorithms were designed to define a re-
gion of interest (ROI) and calculate total core area,
which was further trained to eliminate holes within
tissues to correct for actual tissue-occupying areas
(Additional file 1: Figure S1f ). Two independent oper-
ators used fluorescence intensity thresholding and size
exclusions to create algorithms generating labels
counting cells positive for biomarkers. Single marker
labeling and co-labeling of dual, triple, and quadruple
colocalizing markers were performed in the same way.
For co-labeling, labels created for counting cells posi-
tive for multiple biomarkers were determined using
the same thresholds used to identify and count single
marker labeling cells. Created co-labels were also veri-
fied as accurately staining immune cells by two inde-
pendent operators. Labels identifying markers were
adjusted for IIC sizes, and were centered on DAPI
staining when present in panels. Baseline fluorescence
thresholds assigned for minimal signal to noise ratios
determining positivity were used to calculate MFIs.
Counts of algorithm-determined labels on cores were
validated to reflect visual operator counts. Inter-rating
correlations from algorithms created by independent
operators was assessed to be > 75%. Each single or
multi-marker label counts (e.g., totaling up to 15
marker permutations for each individual 5-color panel
in case of DAPI + 4 markers) of individual cores were
automated to be reassigned to patient ID numbers,
and were then log-transformed and normalized to core
size, prior to being merged with the clinical data for
averaging of replicate core values, resulting in data
from 73 patients for further analyses from .csv data
file exports. High (hi) and low (lo) values were defined
as being above or below mean ± SEM. Receiver opera-
tive characteristic (ROC) curves (SPSS software v.23,
IBM), were used to validate that selected cutoff values
corresponded to the best sensitivity and specificity any
given marker. ICPs having inter-patient variability
were found from a second method of analysis applied

whereby values from individual cores were not
averaged.

Statistical analysis
Power analysis determined that our retrospective biomarker
study based on overall patient survival required a minimal
sample size of n = 62 to reach a power of 0.80 at α = 0.05
(two-tailed) (G*Power ver. 3.1.9.2; Universitat Düsseldorf,
Germany). Prism 6 ver. 6.01 (GraphPad) and SPSS software
packages were used for statistical analysis of biomarkers
with patient data. Log-rank (Mantel-Cox) tests with
log-rank HR were used for K-M. A student’s t test was used
to compare two groups, and two-way ANOVA (with
Tukey’s or Bonferroni’s multiple-comparisons tests) was
used for multiple comparisons. Pearson correlation coeffi-
cients were calculated with two-tailed P values with 95%
confidence intervals. P-values of less than 0.05 were consid-
ered to indicate a statistically significant difference. R with a
collection of libraries was used for additional statistical cor-
relation, linear regression, variance and clustering analysis,
patient clinical characteristics and biomarker expression
value relationships analyses. Here, expression values were
log transformed towards a Gaussian distribution. Linear re-
gression matrices were computed using the R glm function.
Link functions were adapted phenotype distribution type
(binomial, Gaussian, Poisson) for model compatibilities for
explorations of relationships between biomarkers and clin-
ical data. K-M calculations, cox model p-values and HR
were validated using a survival model coupling survival sta-
tus and months of survival post biopsy. PCA was used for
coexpression analysis. Cumulative correlations for the ex-
pression of each ICP (and CD3-ICP) were calculated from
their respective correlation matrices.

Prognostic signature validation and gene expression
analysis
Kaplan Meier plotter was used to validate the prog-
nostic value of the ICP signature, and to assess ICP
gene expression modulation between tumors and nor-
mal tissues. Gene ID symbols were mapped to Affy-
metrix probes from GEO, EGA and TCGA datasets,
and their mean expression was used to assess OS. For
K-M, default settings were used with auto select best
cutoff and best specific probes (JetSet probes). The
2017 version of Kaplan Meier plotter contains infor-
mation on 54,675 genes for survival, including 2437
lung, 5143 breast, 1065 gastric, and 1816 ovarian can-
cer patients with mean follow-up times of 49, 69, 33,
and 40 months, respectively. Multigene classifier func-
tion using default settings from KM-plotter was used
to run the analysis on all ICPs simultaneously, where
global ICP coexpression represents combined prog-
nostic effects of all ICPs investigated in this study.
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Protein-protein interaction network and pathway
enrichment analysis
Identified biomarkers were subjected to comprehen-
sive pathway enrichment analysis using pathDIP ver.
2.5 (http://ophid.utoronto.ca/pathDIP) (Additional files
2 and 3). Default settings were used, with extended
pathway associations (combining literature curated
core pathways with associations predicted using phys-
ical protein interactions with minimum confidence
levels of 0.99). Lists were also used to retrieve phys-
ical protein interactions and explore biologically rele-
vant links. IID ver. 2016–03 (http://ophid.utoronto.ca/
iid) was used to map identified biomarkers to pro-
teins and retrieve their interacting partners. Default
settings were used, and interactions among partners
of query proteins, source information (detection
methods, PubMed IDs, reporting databases), and tis-
sue information (presence/absence of interactions in
selected tissues) were included. Corresponding net-
works were visualized using NAViGaTOR ver. 3
(http://ophid.utoronto.ca/navigator) (Additional file 4).
Word-cloud analysis was performed using Wordle
software ver. 2014 (http://www.wordle.net).

Results
Creation and analysis of immune cell-enriched tissue
microarray
We aimed to develop a standardizable, immune-based,
prognostic scoring method for biopsies. To reduce tu-
moral heterogeneity, a CD45-enriched TMA was con-
structed from baseline biopsies from a NSCLC cohort
(Additional file 1: Tables S1 and S2). Figure 1a illustrates
the construction of the TMA. Ahead of construction,
nine random biopsy sections where stained for immuno-
fluorescence (IF) using DAPI, α-CD45 and α-cytokeratin;
verifying these for epithelial cancer and IIC-densities
(Additional file 1: Figure S1a). Cut sections from all biop-
sies were then stained for IHC using α-CD45, defining IIC
dense regions selected for TMA construction (Fig. 1b).
IIC density of biopsies did not correlate with clinical pa-
rameters (P > 0.416) (Additional file 1: Figure S1b) or
overall survival (OS) (P = 0.7880) (Additional file 1: Figure
S1c). All antibodies were validated independently (Add-
itional file 1: Figure S1d and e), and TMAs were stained
with five-color multiplex-IF (MP-IF) panels using a
two-step, semi-automated method (Fig. 1a and c). Algo-
rithms calculated core areas to normalize labels identifying
size- and fluorescence intensity-gated, colocalizing IICs
and ICPs (Additional file 1: Figure S1f).

Proliferating effector TIL and TIL-B densities correlate
with improved survival
To determine whether IIC subsets and activation
markers could predict OS, TMAs were stained with

MP-IF panels labeling CD45+ leukocytes; CD3+, CD4+,
and CD8+ T cells; CD20+ B cells; CD56+ natural killer
(NK) cells; CD68+ macrophages; proliferating cells
(Ki-67+); and activation and cytotoxic markers (human
leukocyte antigen-DR, HLA-DR+; granzyme B, GZMB+;
interferon-gamma, IFN-γ+). IIC densities of TMA cores
had Gaussian distribution (Additional file 1: Figure
S2a). Kaplan-Meier survival analyses (K-M) demon-
strated that CD45 density did not correlate with OS
(P = 0.4763) (Fig. 2a and Additional file 1: Figure S2b),
as expected from its demarcating all IIC subsets having
differential effects on prognoses. Ki-67 was associated
with positive OS (P = 0.0068) (Fig. 2a and Additional
file 1: Figure S2b), contrary to Ki-67 in cancer-centric
studies [18], and attributable to an IIC-enriched TMA.
OS was associated with CD45-Ki-67 co-labeling cells
(P = 0.0040) (Fig. 2a and b). The same was observed for
TILs, where association of CD3 with OS was enhanced
by Ki-67 co-labeling (P = 0.0297 to P = 0.0044) (Fig. 2a
and b, and Additional file 1: Figure S2b). CD4+ TILs
were modestly associated with OS (P = 0.0453) (Fig. 2a
and c), likely due to this mixed population having dif-
ferential effects on prognosis [19]. CD8+ TILs strongly
associated with OS (P = 0.0074) (Fig. 2a and c) [20].
Effector CD8+ TILs mediate anti-tumor immunity

in cooperation with tumor infiltrating CD20+ B cells
(TIL-B) [21]. B cells serve as antigen presenting cells
(APC), and secrete cytokines and chemokines causing
IIC tumor homing across high endothelial venules
(HEV) to induce tertiary lymphoid structures driving
anti-tumor responses and long-term immunity [22,
23]. CD20+ TIL-Bs were significantly associated with
OS (P = 0.0099) (Fig. 2a and d). A HEV marker, Per-
ipheral node addressin (PNAd), showed no association
with OS (P = 0.3739) (Fig. 2a and d). CD68+

tumor-associated macrophages (TAMs) were also not
associated with OS (P = 0.9457) (Fig. 2a and d), as
CD68 cannot distinguish M1 and M2 subsets having
countering effects on prognosis [24]. Likewise, CD56+

NK cells had no effects on OS (P = 0.6983) (Fig. 2a).
We compared proportions of IIC subtypes to assess
whether their linkage with OS reflected density. We
averaged 742 ± 163 cells per TMA core [25], with 40
± 25% CD45+ IICs of all DAPI+ cells. Though repre-
senting a lower proportion of CD45+ IICs (normalized
to 100%), CD20+ TIL-Bs (representing 12 ± 5% of all
CD45+ IICs) had greater association with OS (P =
0.0089) than CD3+ TILs (representing 49 ± 11% of all
CD45+ IICs; P = 0.0297) (Fig. 2a and e).
Cytotoxic and immune stimulation markers were in-

vestigated. Correlative studies between expression of ef-
fector markers (IFN-γ, GZMB, HLA-DR), and IIC subset
infiltration of patient cores were used to demonstrated
that expression of effector markers could be associated
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with the presence of CD8+, CD4+ and CD20+ IICs (Fig.
2f ). IFN-γ (P = 0.0027) and HLA-DR (P = 0.0001) were
positively associated with OS (Fig. 2a and e). IFN-γ
marks adaptive immune activation, and is central to
anti-tumor immunity [26], and absence of HLA-DR is
associated with metastasis [27]. IFN-γ localized to plasma
membranes and periplasmic bursts of CD8+ TILs, and to
nuclei of both TILs and epithelial cells (Additional file 1:
Figure S1e), possibly explained by its rapid cellular export
and nuclear localization signal [28]. GZMB and HLA-DR

staining was typical, but rarely evident on TILs (Fig. 2g).
HLA-DR is expressed by APCs [29], perhaps explaining it
labeling cells neighboring CD8+ TILs. As prognostic factor
for NSCLC, HLA-DR has been shown to identify M1
CD68+ TAMs [30]. GZMB labeled small cells, and is
expressed by B cells, mast cells, keratinocytes, and baso-
phils [31]. Altogether, these results demonstrate that pro-
liferating Ki-67+ IIC; CD3+, CD8+, and CD4+ TILs; CD20+

TIL-Bs; and HLA-DR and IFN-γ are positive prognostic
markers for NSCLC patients.

Fig. 2 Highly proliferating, effector TIL and TIL-B densities are linked to positive prognostic of NSCLC patients. a Summarizing graph of P-values
generated from K-M survival analyses of markers applied to IIC-enriched biopsy TMA, where significance indicates positive associations of IIC
subsets, and proliferation and effector molecules with OS. b K-M curves (top) from Ki-67 co-labeling with CD45+ IICs or CD3+ TILs on TMA, and
representative close-up IF images from cores (bottom) demonstrating co-labeling on cells. c K-M curves (top) from CD4+ and CD8+ TILs on TMA,
with representative close-up IF images from cores (bottom) demonstrating their co-labeling CD3+ TILs. d K-M curves (top) from CD20+ TIL-Bs,
PNAd+ HEV, and CD68+ TAMs, with representative close-up IF images from cores (bottom). e Graph of average proportions of IIC subsets relative
cell count (DAPI), where percentages represent IIC subset abundance relative to CD45+ IICs. Percentages are relative to CD45 content, and error
bars represent mean ± s.d.. f Graph of correlations between IIC subsets and quantified effector molecules (IFN-γ, GZMB, HLA-DR). Percentages
represent IIC subset attribution to effector molecule expression, as calculated from proportions of individual IIC subsets infiltrating cores
expressing effector molecules. g K-M curves (top) of GZMB, IFN-γ, and HLA-DR effector markers, with representative close-up IF images from cores
(bottom) of these markers and TILs. The number of patients (n) for each group is given on K-M curves, and remainder are in Additional file 1:
Figure S2b. Algorithm design, normalization and analyses were performed by two independent operators. Norm., normalized; hi, high marker
expression, lo, low marker expression; μm, micron; P, Log-rank test; ns, not significant; * P < 0.05; ** P < 0.01; *** P < 0.001; HR, hazard ratio (Log-
rank); CI, confidence interval of ratio; NA, not applicable
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NSCLC survival correlates with increased expression of
ICP on TIL
IFN-γ expression by activated TILs increases PD-L1 ex-
pression [32]. IFN-γ is also correlated with the expression
of other ICPs, including BTLA [33], TIM-3 [34], LAG-3
[35], and PD-1 [36]. Since ICPs are expressed by various
cell types, their usage as mono-CDx will lead to assay in-
consistencies exemplified by PD-L1 [37]. Indeed, on our
TMA, certain ICPs labeled numerous cells types (PD-L1,
TIM-3, TIGIT, LAIR-1, CD73), whereas others almost ex-
clusively labeled TILs (BTLA, LAG-3, PD-1, CD39, 2B4,
CD57, CD26, CLTA-4) (Additional file 1: Figure S3a to e).
Despite this, principal component analysis (PCA) demon-
strated that relative to patients, tight clustering of ICPs
and cognate CD3-ICPs indicated that they were mostly la-
beling TILs, and not other cells of the tumor microenvir-
onment (Additional file 1: Figure S3f).
The only ICP associated with positive OS independ-

ently of TILs was TIM-3 (P = 0.0448), and this was

augmented by it co-labeling CD3+ TILs (P = 0.0151)
(Fig. 3a). Association with OS for other ICPs was only
met by their co-labeling CD3+ TILs: CD3-TIGIT (P =
0.0188), CD3-LAG-3 (P = 0.0251), CD3-BTLA (P =
0.0167), and CD3-PD-1 (P = 0.0189) (Fig. 3a). While
mean fluorescence intensities (MFI) of ICPs or all other
markers tested showed no association with OS, some
correlated with clinicopathological characteristics (Add-
itional file 1: Table S4).
A refined analysis of PD-1 and PD-L1 on TILs was

performed due to their importance as immunotherapeu-
tic targets and CDx, and in light of recent clinical devel-
opments including FDA approved CDx assay for PD-L1
on IICs (SP142; Roche) and standardized Halioseek
PD-L1/CD8 assay (HalioDx). We observe that
co-labeling of CD8+ TILs with both PD-1 (P = 0.0111)
and PD-L1 (P = 0.0044) increased positive association
with OS (Fig. 3b). TIM-3 was also observed to provide
survival advantages to PD-1 and PD-L1 (Fig. 3b).

Fig. 3 Effects of ICP expression on NSCLC patients. a Summarizing graph of P-values generated from K-M survival analyses of IIC-enriched TMA,
where significance indicates positive associations ICP and CD3-ICP co-labeling cells with OS (top left). K-M curves and representative close-up IF
images from cores (right and bottom) of CD3 dense core areas, demonstrating colocalization between CD3 and TIGIT, TIM-3, LAG-3, BTLA, or PD-
1. b Summarizing graph of P-values generated from K-M survival analyses of IIC-enriched TMA, where significance indicates positive associations
of combinations of CD3, CD8, PD-1, PD-L1 and TIM-3 with OS (top). Representative close-up IF images from cores (bottom) of CD3 dense core
areas, demonstrating colocalization between these antigens. The number of patients (n) for each group is given on K-M curves, and remainders
are (high and low, respectively): CD3 n = 34hi, 32lo; CD8 n = 41hi, 21lo; TIGIT n = 26hi, 38lo, TIM-3 n = 21hi, 26lo, LAG-3 n = 29hi, 33lo, BTLA
n = 30hi, 30lo, PD-1 n = 36hi, 30lo, CD3-PD-1 n = 29hi, 24lo; CD8-PD-1 n = 36hi, 32lo; TIM-3-PD-1 n = 34hi, 30lo; PD-L1 n = 25hi, 33lo; CD3-PD-L1
n = 18hi, 30lo; CD8-PD-L1 n = 19hi, 24lo; TIM-3-PD-L1 n = 25hi, 34lo. Algorithm design, normalization and analyses were performed by two
independent operators. hi, high marker expression, lo, low marker expression; μm, micron; merge, merge of all IF channels; P, Log-rank test; ns,
not significant (implied when no asterisk is present); * P < 0.05; ** P < 0.01; HR, hazard ratio (Log-rank), CI, confidence interval of ratio
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A valuable aspect of this study was testing effects of
ICPs on OS by diverging methods yielding negligible
overall results, but providing caution for use of certain
ICPs as CDx. Using the first method reported, we
averaged ICPs from individual patient cores, while in the
second method, we treated cores as if they were individ-
uals themselves. Only three ICPs showed discrepancies
using the second method, where PD-1 (P = 0.0121),
CD3-PD-L1 (P = 0.0155), CD26 (P = 0.0052), and
CD3-CD26 (P = 0.0017) were positively associated with
OS, but CD3-TIGIT was not (P = 0.4830). This indicates
that expression of these ICPs is ill-conserved throughout
the tumor, and are thus less suitable as CDx candidates.

Global ICP expression is independent of immune density
and provides a pan-cancer survival advantage
In correlative analyses between global ICP or CD3-ICP
expression and IIC subsets, IIC subset infiltration of
patient cores were used to demonstrated that expression
of ICPs and CD3-ICPs effector markers could be most
associated with the presence of CD8+, CD20+ and CD4+

IIC subsets (Fig. 4a and b). We tested whether the
IIC-density of biopsies influenced CD3 and ICP distribu-
tions. CD3+ TILs were highly correlated with CD45+

IICs (P < 0.0001, r = 0.3428), but global ICP expression
was not (Fig. 4c), with the exception of CD3-PD-1,
CD3-PD-L1, CD3-BTLA and CD3-LAG-3 (Additional
file 1: Table S5). This also supports that ICPs are not
uniquely expressed by TILs (ICP vs CD3-ICP; P < 0.001)
(Fig. 4c and Additional file 1: Figure S3a to e) [38, 39].
ICPs correlating with CD3 were BTLA, LAG-3, TIM-3
and CD26, and CD73 and CD3-CD73 correlated with
the ADC subtype [40] (Additional file 1: Table S5). Des-
pite their clear effects on outcomes (Additional file 1:
Figure S4), there was no correlation between treatments
and ICP expression. We also observed that CD3-ICPs
were inversely correlated with tumor size and extent
(Fig. 4d and Additional file 1: Table S5). K-M performed
using global expression of ICP or CD3-ICP revealed that
both positively correlated with OS (Fig. 4e and f), and
global CD3-ICP expression also correlated with female
gender (P = 0.0321, r = 0.0701).
Correlation studies relating IIC subtypes and other

markers to clinicopathological characteristics were also
performed. CD4, CD8, CD68 and IFN-γ inversely corre-
lated with female gender (P < 0.0315, r = − 0.334),
whereas HLA-DR and PNAd were positively correlated
with it (P < 0.0469, r = 0.046). CD3 was inversely corre-
lated with smoking (P = 0.0385, r = − 0.350), whereas
PNAd was positively correlated with it (P = 0.0498, r =
0.606). CD20 and GZMB were inversely correlated with
metastasis (P < 0.0370, r = − 0.333) (Additional file 1:
Table S5).

To validate our findings on ICPs, we used the TCGA
LUAD and LUSC RNA-Seq datasets. As observed from
TMA analyses, advanced cancer patients and those de-
ceased both had lower ICP expression (Fig. 4g and h).
Despite background noise from these whole-tumor RNA
datasets, eight ADC patient ICPs were associated with
positive OS (Additional file 1: Table S6). Additional
cohorts from the Gene Expression Omnibus (GEO),
TCGA and European Genome-phenome Archive (EGA)
validated this finding for ADC patients (P = 4.4e-05)
(Additional file 1: Figure S5), and grouped analyses con-
firmed that global ICP coexpression benefited NSCLC
patients regardless of subtype (P = 1.1e-14) (Fig. 4i). Glo-
bal ICP coexpression was also positively associated with
OS for breast (P = 3.2e-03) and gastric (P = 1.3e-02), but
not ovarian cancers (P = 1.6e-01), despite an observable
trend (Fig. 4j and l and Additional file 1: Table S7).
These analyses also demonstrated a commonality of ICP
expression in NSCLC and breast tumors relative to
normal tissues (Additional file 1: Table S8). To validate
the utility CDx profiling ICP on TILs, K-M was per-
formed on ICP groups associated with OS or increased
in expression, revealing that their prognostic value was
maintained when coexpressing with CD4 or CD8 (Add-
itional file 1: Table S9). These datasets also used to valid-
ate prognostic associations and increased expression of
IIC subsets and T cell activation markers (Additional file
1: Table S10). Chromosomal locations of ICPs suggested
that transcriptional regulation from common promoters
is unlikely (Additional file 1: Table S11). Altogether,
these results demonstrate that global ICP coexpression
augments survival from different cancers, and their cor-
relation with CD3+ TILs supports the development of
multiplex CDx. Furthermore, since overall ICP expres-
sion was independent of IIC density, even patients with
low infiltration may benefit from precision ICP-blockade
therapies.

ICP combinations on TIL are associated with increased
NSCLC survival
Using TMAs, we assessed minimal ICP combinations on
TILs maximizing prognostic value (Additional file 1:
Table S12). Indeed, the TIM-3/CD26/CD39 combination
had a stronger association with OS than these did inde-
pendently (P = 0.0139), and was superior when
co-labeling with CD3 (P = 0.0051) (Fig. 5a). The positive
effect on OS was maintained with ICPs and CD3-ICPs
co-labeling for TIM-3/BTLA/LAG-3 combinations (P =
0.0018 to P = 0.0033), as it was for the 2B4/PD-1/CD57
combination (Fig. 5b and c). As supported by imaging
(Additional file 1: Figure S6), comparisons of ICP and
CD3-ICP K-M curves validated that these ICP combina-
tions were specifically labeling TILs, and that the
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difference in prognostic association using duplex or trip-
lex ICP panels was dependent on ICP combinations.
The feasibility of stratifying patients by adding individ-

ual ICP values instead of using ICP-colocalization values
was also validated (e.g., TIM-3 + LAG-3, P = 0.0016;
TIM-3 + BTLA, P = 0.0022; TIM-3 + BTLA+LAG-3, P =
0.0099), indicating that similar results could be attained
from sequential IHC methods. However, our simplified
method has less potential for antibody cross-reactions,
loss of antigen and tissue integrity from harsh chemical
treatments, loss of colocalization from permanent stains

masking subsequent antigens, or potent spectral overlap
of fluorescent signals requiring unmixing [41].
Altogether, these results demonstrate that the simultan-
eous detection of multiple ICPs on TILs using MP-IF
panels efficiently stratifies NSCLC patients.

Prognostic ICP groups are conserved across RNA and
protein
From the demonstration that specific combinations of
ICPs could efficiently stratify patients, we performed
correlation studies between all ICPs from RNA and

Fig. 4 Effects of IIC density on global ICP expression and validation of global ICP prognostic effects on various cancers. a-b Graphs demonstrating
correlations between TMA IIC subsets and (a) ICP or (b) CD3-ICP expression (%, IIC subset attribution; n = 73). Percentages represent IIC subset
attribution to ICP or CD3-ICP expression, as calculated from proportions of individual IIC subsets infiltrating cores expressing ICPs or CD3-ICPs. (c)
Graph demonstrating correlation between IIC-density of biopsies and CD3+ TILs, ICPs and CD3-ICPs. Two-way ANOVA with Bonferroni’s multiple
comparisons test; n = 73, CD3, P < 0.0001; ICP vs CD3-ICP P = 0.005; F = 12.06, df = 1/219; error bars represent mean ± s.e.m.. d Graph
demonstrating correlation of advancing T-stages with ICP expression (T2, n = 206; T3, n = 106; T4, n = 511) and CD3-ICPs (T2, n = 199; T3, n = 120;
T4, n = 496) expression on TMA (two-way ANOVA with Tukey’s multiple-comparison; CD3-ICP T2 vs T4, F = 2.97, df = 2/1632, P = 0.0085; error bars
represent mean ± s.e.m.). e K-M curve of total TMA ICP (P = 0.0273, HR [95% CI] = 0.514 [0.248–0.883], n = 32hi, n = 34lo) overlaid with number of
ICP/patient relative to survival in months (green circles and right axis; dotted line, high vs low); linear regression of overlay F = 9.41, df = 1/62, P =
0.0032, R2 = 0.132. f K-M curve of total TMA CD3-ICP (P = 0.0472, HR [95% CI] = 0.546 [0.270–0.952], n = 30hi, n = 36lo) overlaid with number of
CD3-ICP/patient relative to survival in months (green circles and right axis; dotted line, high vs low); linear regression of overlay F = 5.56, df = 1/63,
P = 0.0215, R2 = 0.081. g Graph demonstrating correlation of advancing stage with ICP expression levels from LUAD dataset. Two-way ANOVA
with Bonferroni’s multiple comparisons test, Stages I, n = 274; II, n = 121; III, n = 81; IV, n = 26, where stages I vs IV from both ICP hi or lo are P <
0.0001, F = 9.78, df = 3/996; error bars represent mean ± s.d.. h Graph demonstrating correlation of survival with ICP expression from TCGA LUAD
and LUSC datasets. Two-way ANOVA with Bonferroni’s multiple comparisons test, P < 0.0001, F = 29.94, df = 1/828; ICP DCD, n = 172hi, 254lo; ICP
SURV, n = 228hi, 178lo; error bars represent mean ± s.d.. a-h Algorithm design, normalization and analyses were performed by two independent
operators. i-l K-M plots validating effects of global ICP expression on new cohorts of (i) NSCLC (n = 783hi, 362lo), (j) breast (n = 386hi, 240lo), (k)
gastric (n = 265hi, 366lo), and (l) ovarian (n = 275hi, 380lo) cancer patients. Two-way ANOVA with Tukey’s post-test; norm., normalized; n, number
of patients; SURV, surviving; DCD, deceased; P, Log-rank test; ns, not significant; ** P < 0.01; *** P < 0.001; **** P < 0.0001; HR, hazard ratio (Log-
rank), CI, confidence interval of ratio
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Fig. 5 MP-IF panels for ICP combinations stratifying NSCLC patients. a-c Summarizing graph of P-values generated from K-M survival analyses
(left), of ICP alone, and in combination with each other and with CD3 TILs, where significance indicates positive associations of combinations
with OS. From top to bottom, panels interrogate combinations of CD3+ TILs and ICPs (a) TIM-3, CD26 and CD39, (b) TIM-3, BTLA and LAG-3, and
(c) 2B4, PD-1, and CD57. K-M plots (right) illustrate similarities of curves of ICP combinations ± CD3 co-labeling. The number of patients (n) for
each group is given on K-M curves, and others are either previously reported in Fig. 3, or are (high and low, respectively): CD26 n = 34hi, 32lo,
CD39 n = 32hi, 26lo, CD26-CD39 n = 37hi, 35lo, TIM-3-CD26 n = 35hi, 37lo, TIM-3-LAG-3 n = 36hi, 32lo, TIM-3-BTLA n = 39hi, 31lo, 2B4 n = 31hi,
33lo, CD57 n = 29hi, 34lo, 2B4-CD57 n = 30hi, 35lo, PD-1-CD57 n = 27hi, 38lo, and 2B4-PD-1 n = 24hi, 44lo; associated confidence intervals are
listed in Additional file 1: Table S12. Algorithm design, normalization and analyses were performed by two independent operators. Representative
images of CD3-ICP colocalization-dense core areas can be found in Additional file 1: Figure S6. hi, high marker expression, lo, low marker
expression; P, Log-rank test; ns, not significant; * P < 0.05; ** P < 0.01; HR, hazard ratio (Log-rank); CI, confidence interval of ratio

Monette et al. Journal for ImmunoTherapy of Cancer            (2019) 7:86 Page 10 of 16



TMA datasets to reveal ICP coexpression dynamics
(Additional file 1: Table S13). Correlograms showed that
for both RNA datasets, a majority of ICPs were highly
correlated in expression (Fig. 6a), with the most highly
correlating pairs being TIM-3 and LAIR-1, and CTLA-4
and TIGIT. TMA cohort correlograms reveal strongest
associations between 2B4 and CD57, and BTLA, TIM-3
and LAG-3; this group conserved across all four data-
sets, and positively associating with OS.
PCA was deployed to better define synergizing ICPs

across different MP-IF panels (Fig. 6b). Proportions of vari-
ance of principle components (PC), corresponding to

combined expression of each ICP group, validated that the
first PC (PC1), followed by the second PC (PC2), accounted
for the greatest degrees of variance – representing groups
having differential and unrelated expression dynamics
(Additional file 1: Figure S7a). K-M was computed using
high vs low PC group values (Additional file 1: Figure S7b).
From the TMA dataset, a group of highly expressed ICP
(low PC1) was significantly associated with OS (P = 7.3 ×
10− 4). The relationship between PC1 and OS was increased
using CD3-ICP values (P = 1.4 × 10− 5). PC2 values repre-
senting the second ICP cluster did not demonstrate as clear
a relationship with survival. Altogether, this analysis

Fig. 6 RNA and protein conserved ICP coexpression groups ranked for NSCLC patient stratification. a-c Graphs depicting R package generated
correlation studies made between all ICPs from RNA and TMA datasets to reveal ICP coexpression dynamics stratifying patients. From left to right,
RNA expression of ICPs from the TCGA LUAD (n = 504) and LUSC (n = 494) patient samples (left two graph columns), were compared to that of
ICP and CD3-ICP expression from all TMA dataset patient (n = 73) samples (right two graph columns). a Correlograms demonstrating ICP
coexpression clustering, where black boxes demarcate most highly correlating ICP. b PCA for visualization of multi-dimensional ICP coexpression,
relative to distributions patient data (blue circles), where yellow shaded PC quadrants are occupied by ICP coexpressing groups having positive
associations with OS, defined by Additional file 1: Figure S7. c Mean correlations of ICP coexpression demonstrate those most abundantly
expressed relative to all other ICPs in NSCLC patients. Analyses were performed using alternative software (see Online Methods) by two
independent operators. PC1, principal component 1; PC2, principal component 2
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revealed that the coexpressing ICP group BTLA+-

LAG-3+PD-1+PD-L1+ most efficiently stratified patients
across all datasets (Fig. 6b and Additional file 1: Table S14).
The TIGIT+CTLA-4+2B4+ group was maintained across
RNA datasets, and the TIM-3+CD26+CD39+ group was
maintained across protein datasets.
We performed correlation analyses to determine which

ICPs were most highly coexpressed. For RNA datasets, ICP
ranking was TIM-3-TIGIT-CTLA-4-LAIR-1-BTLA-PD-1
(Fig. 6c). For TMA protein-derived datasets, this was
BTLA-TIM-3-LAG-3-PD-1. In our comparison of four
cancers, CTLA-4-TIGIT-PD-1-TIM-3-BTLA- LAG-3 were
among those most increased in expression and having the
greatest association with OS (Additional file 1: Tables S7
and S8). Additional file 1: Figure S8 demonstrates detection
of ICPs from whole-tumor RNA to protein on TMA CD3+

TILs, where augmented ICPs may be at the forefront of the
anti-cancer response, making these the best CDx and
ICP-blockade targets. To determine whether coexpression
dynamics could be reflected by time to effect on OS, we ex-
amined K-M curves to identify ICPs having the earliest ef-
fect on OS. For both RNA and protein datasets, ICPs with
the greatest impact on OS, either alone or in combination
(Figs. 3, 5 and 6), were among those having the earliest im-
pact on OS (Additional file 1: Figure S9). Taken together,
these results revealed that key ICP groups have conserved
coexpression from whole-tumor RNA to protein on TILs,
where discrepancies may arise from ICP expression by
other cells of the tumor microenvironment also captured
by whole-tumor RNA datasets. The prevailing conserved
ICP subgroup (BTLA/TIM-3/LAG-3/PD-1) was most
highly coexpressed and had the largest impact on OS. It is
not known whether these ICPs are the first accumulating,
or those persisting longest on TILs, but these are surely ro-
bust targets for combination CDx.

Redundant ICP-interacting proteins are linked with NSCLC
patient survival
From the observation that ICPs positively associating
with OS were increased in expression in tumor samples
(Additional file 1: Table S8), we used the Integrated Inter-
action Database (IID) to identify 1750 key ICP-protein in-
teractions from 40,555 possible interactions between all
identified ICP-interacting proteins. Key ICP-interactors
were refined for those that were 1) experimentally vali-
dated to interact with ICP, 2) redundantly interacting with
more than one ICP, 3) associated with OS, and 4) had
supporting evidence for their interactions in lung tissues
(Additional file 1: Table S15). NAViGaTOR software was
used to visualize all ICP-interactors, their characterized
molecular functions, and supported interactions in lung
tissues; demonstrating that 10 of the 13 signature ICP
interacted with each other (Additional file 1: Figure S10,
Table S16, and Additional file 4). Interaction networks

were expanded to visualize defined groups from refined
ICP-interactors (Fig. 7). The majority of ICP-interactors
had a positive association with OS (64.6%); most of which
also had increased gene expression in tumors (85.4%). The
majority of ICPs in these two categories were also those
ranking highest in interactions with other ICPs. Both in-
creased in expression in tumors and associated with posi-
tive OS, BTLA and TIM-3 were observed to interact with
a majority of these proteins (Fig. 7 and Additional file 1:
Table S15). The pathDIP portal was used for comprehen-
sive pathway enrichment analyses of ICP-ICP interactions
and refined ICP-interactors lists (Fig. 7 and Additional files 3
and Additional file 4), and word-cloud analysis was used to
compile the most significant ICP-interactors and associated
pathways (Additional file 1: Figure S11). Together, these re-
sults demonstrate that most ICP-interactors are increased
in expression and are associated to positive outcome, fur-
ther suggesting that ICPs are positive prognostic NSCLC
biomarkers.

Discussion
ICPs were originally classified as exhaustion markers of
functionally impaired T cells. Investigations of this
reversible impairment have led to numerous clinical suc-
cesses in cancer treatment. We were initially surprised
that ICP expression on NSCLC TILs was positively asso-
ciated with survival; a finding we confirmed using
several additional cohorts spanning different solid can-
cers. When assessed in combinations, PD-1 and PD-L1
are positive prognostic markers of effector memory
antigen-experienced CD8+ T cells [42]. ICP expression
kinetics have been suggested to reflect CD8+ T cell dif-
ferentiation kinetics rather than functional impairment
[43], and as also suggested by our results, these are spec-
ulated to accumulate on TIL in an ordered fashion, led
by PD-1, TIM-3, CTLA-4, LAG-3, and BTLA [44].
These represent robust CDx candidates because their
prognostic/stratifying effects are also visible using
whole-tumor RNA datasets. Another recent study by the
Zippelius group is an additional demonstration of the re-
thinking of the meaning of T cell exhaustion/dysfunction
in NSCLC, demonstrating that NSCLC TIL populations
coexpressing several ICPs are highly clonal with a pre-
dominance of TCRs resulting from their antigen-driven
expansion, that these secrete high levels of chemokines
recruiting B cell and CD4+ helper cells into tumors, but
most importantly, that this population is a strong pre-
dictor of robust responses to immunotherapy and overall
survival [45].
We identify BTLA as the most reproducible prognos-

tic biomarker spanning all cohorts investigated, as it: 1)
predicted positive outcome from the TMA; 2) predicted
positive outcome from whole-tumor RNA; 3) was most
coexpressed with other ICPs across all datasets; 4) had
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earliest effects on OS; 5) had increased expression in tu-
mors; 6) interacted with a majority of other ICPs and
other proteins; and 7) was almost exclusively expressed
by TILs. Responders to adoptive cell transfer (ACT)
have increased proportions of CD8+BTLA+TIM-3+ TIL
infusion products [46], and BTLA is speculated to be
the final checkpoint towards differentiation into effector
T cells [47]. Accordingly, BTLA was the only ICP de-
creased from stimulation ahead of transfusion of autolo-
gous cultures used for successful NSCLC ACT [48, 49].
BTLA may be an ideal target for ICP-blockade, because
it is restricted to lymphoid tissues, and its inhibition re-
stores TCR signaling [50]. BTLA protects TILs from
apoptosis [51], and with T cell longevity estimated at
over a decade [52], balanced BTLA expression may
make the difference between antigen-experience and
death.
Even using large biospecimens, the heterogeneity of

the tumor microenvironment is the biggest challenge to
finding prognostic and predictive biomarkers. We have
thus developed a method for stratifying patients from
limited biospecimens unsuitable for standard IM. Our
restriction of analysis to immune-dense regions over-
comes both size and heterogeneity of biospecimens,

identifying several IIC and ICP combinations stratifying
NSCLC patients. This fully-automatable combination
CDx platform represents an optimal salvage method for
profiling TILs from baseline biopsies ahead of personal-
ized ICP-blockade therapies. The BTLA, TIM-3, LAG-3
and PD-1 combination on TILs was increased in expres-
sion and offered the best survival advantage. These ICPs
were among those having: 1) highest correlation with
any other ICP on CD3+ TILs, 2) positive association
with OS at both RNA and protein levels, 3) the earliest
effects on K-M curves, 4) equal impact on OS from the
alternative method of analysis, and 5) decreased expres-
sion at advanced stages. These ICP may be among the
first, or most persistently expressed by TILs gaining
antigenic experience, as suggested by their strong correl-
ation with TIL-Bs. This ICP subgroup represents the
best CDx combination for stratifying patients using
small biospecimens.
This work was in part performed to address the issues

plaguing PD-L1 as CDx. Demonstrations of PD-L1 con-
tribution to disease is challenging because it is easily in-
ducible or constitutively expressed by many cell types.
We observed that PD-L1 only stratified patients when
co-labeling with CD8 or TIM-3. Likewise, despite

Fig. 7 ICP-interacting proteins associated with NSCLC patient survival. Visualization of complete comprehensive and interactive ICP-ICP and ICP-
proteins interaction mapping by NAViGaTOR. ICP interactors with (a) increased gene expression in tumors and positive association with OS, (b)
decreased gene expression in tumors and positive association with OS, (c) increased gene expression in tumors and negative association with OS,
and (d) decreased gene expression in tumors and negative association with OS

Monette et al. Journal for ImmunoTherapy of Cancer            (2019) 7:86 Page 13 of 16



initially described as a poor prognostic factor, PD-L1 as-
sociation with TILs is linked to better outcomes in di-
verse cancer types [53, 54], and its expression on TILs
predicts response to α-PD-L1 [55, 56]. Our finding that
CD3-PD-L1 association with OS was affected by the alter-
native method of analysis confirms variability of PD-L1
expression on TIL within individual biopsies. Conversely,
associations of CD8-PD-L1 and TIM-3-PD-L1 with OS
was unaffected, substantiating little variability in their
co-occurrences. Success of PD-L1 as CDx may thus not
come down to the choice of clone, but rather from its
profiling in combinations providing adequate ‘immune
contexture’. Like PD-L1, we find that numerous ICPs and
IICs better stratify patients when profiled in combination.
Despite ICP being excellent targets for immunother-

apies, they are also crucial for T cell survival. Our study
does not aim to invalidate reports of ICPs as inhibitory
receptors: Indeed, certain solitary ICP from whole-tumor
RNA-datasets are associated with negative outcomes.
Nonetheless, evidence that the majority of redundant
ICP-interactors positively associate with outcomes implies
ICPs have numerous important functional roles for T cells
(Additional file 1: Table S17). In relation to our findings
that TIL-Bs correlate with ICP coexpression and inversely
correlate with metastasis, ADC clonal neoantigen-
enriched tumors are significantly associated to OS, have
increased ICP expression, and are more sensitive to block-
ade therapies [57]. Specific ICP combinations may accu-
mulate on TILs actively becoming educated against clonal
neoantigens, and may protect TILs from apoptosis by
slowing metabolism and differentiation kinetics. Robust
MP-IF ICP CDx may identify TILs primed for tumor
elimination, and the best targets for personalized im-
munotherapies. MP-IF ICP CDx may be also used to
monitor ICP repertoires of tumor-reactive TIL expansion
products for ACT. MP-IF ICP CDx created according to
ICP ranking can anticipate additional ICPs arising during
immunotherapies, and improve response rates to mono-
and combo-ICP-blockade towards their permanent adop-
tion by mainstream oncology.

Conclusions
In this hypothesis-generating study, deepening our un-
derstanding of immune-checkpoint biology, comprehen-
sive protein-protein interaction and pathway mapping
revealed that redundant immune-checkpoint interac-
tors associate with positive outcomes, providing new
avenues for deciphering the effects of immunother-
apies. We find combinations that efficiently stratify
patients, and validate prognostic ICP-signatures on
additional cohorts. We profile ICP coexpression dy-
namics and ICP linkage to clinical parameters and
IIC subsets, map ICP-interactors and associated path-
ways, and define the most prognostic combinations

that can guide blockade therapies using baseline bios-
pecimens of all sizes.
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