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Due to overlapping tremor features, the medical diagnosis of Parkinson’s disease (PD)
and essential tremor (ET) mainly relies on the clinical experience of doctors, which
often leads to misdiagnosis. Seven predictive models using machine learning algorithms
including random forest (RF), eXtreme Gradient Boosting (XGBoost), support vector
machine (SVM), logistic regression (LR), ridge classification (Ridge), backpropagation
neural network (BP), and convolutional neural network (CNN) were evaluated and
compared aiming to better differentiate between PD and ET by using accessible
demographics and tremor information of the upper limbs. The tremor information
including tremor acceleration and surface electromyogram (sEMG) signals were
collected from 398 patients (PD = 257, ET = 141) and then were used to train the
established models to separate PD and ET. The performance of the models was
evaluated by indices of accuracy and area under the curve (AUC), which indicated
the ensemble learning models including RF and XGBoost showed the best overall
predictive ability with accuracy above 0.84 and AUC above 0.90. Furthermore, the
relative importance of sex, age, four postures, and five tremor features was analyzed and
ranked showing that the dominant frequency of sEMG of flexors, the average amplitude
of sEMG of flexors, resting posture, and winging posture had a greater impact on the
diagnosis of PD, whereas sex and age were less important. These results provide a
reference for the intelligent diagnosis of PD and show promise for use in wearable tremor
suppression devices.

Keywords: Parkinsonian tremor, essential tremor, tremor differentiation, machine learning algorithms, upper limb
posture

INTRODUCTION

Parkinson’s disease (PD) and essential tremor (ET) are two common diseases usually accompanied
by tremors of the upper limbs, which may severely impair motor function and have a negative
influence on patients, especially in the aging population (Helmich et al., 2013). The symptoms of
PD are complex and severe in the later stages; therefore, early diagnosis and effective treatment are
crucial (Mark, 2007).
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Owing to overlapping tremor features, it remains difficult to
distinguish between PD and ET (Algarni and Fasano, 2018).
Given that there is currently no gold standard to differentiate
between PD and ET, the diagnosis of the two diseases mainly
relies on the clinical experience of doctors (Thenganatt and
Jankovic, 2016). Individuals diagnosed with PD typically have
gradual development of non-motor symptoms for years before
movement symptoms begin, but often they will not mention these
symptoms unless specifically queried (Armstrong and Okun,
2020). Dopamine replacement therapy works better to diagnose
PD. However, it could be difficult in the early stage of the disease
and thus approximately a quarter of PD are misdiagnosed as ET,
which usually causes the optimal medical treatments of the two
diseases to be overlooked (Rizzo et al., 2016; Reich and Savitt,
2019; Armstrong and Okun, 2020).

Some efficient and accessible non-invasive biomarkers
such as tremor signals including tremor acceleration and
surface electromyogram (sEMG) have been investigated for
the differentiation between PD and ET (Meigal et al., 2013;
Barrantes et al., 2017). And a series of statistical characteristics
of tremor signals including the dominant frequency and
peak value were extracted and studied for distinguishing
PD and ET (Hossen et al., 2010; Thanawattano et al., 2015;
De Oliveira Andrade et al., 2020).

Artificial intelligence technology is widely used to solve
problems in the medical field, including differentiating between
PD and ET (Xiao et al., 2019; Duque et al., 2020). Based
on various extracted statistical characteristics of tremor
signals and methodologies of machine learning, a series of
machine learning algorithms, such as linear models (logistic
regression, ridge classification, etc.), ensemble learning models
(random forest, XGBoost, etc.), the kernel-based model
(support vector machine, etc.), and neural network models
(backpropagation neural network, convolutional neural

network, etc.) have been introduced for the diagnosis and
progression prediction of PD and ET (Ai et al., 2011; Hossen,
2013; Ahmadi Rastegar et al., 2019; Hssayeni et al., 2019;
Qin et al., 2019).

Tremors of the upper limbs in PD patients are mainly
manifested as a resting tremor which can be used as an
important symptom to distinguish between PD and ET, however,
only 20% of ET patients suffer from that (Oren Cohen et al.,
2003; Jankovic, 2008; Helmich et al., 2013). In addition to
resting posture, stretching posture and some novel postures
were introduced and investigated to evaluate their ability to
discriminate PD from ET showing that tremors information
collected from various postures behaves more effectively in
differentiating between PD and ET compared to a single posture
(Zhang et al., 2018).

Although research has been carried out by using tremor
information of the upper limbs to differentiate PD and ET,
the influence of various upper limb postures, tremor features,
and demographics on the diagnosis has been rarely studied.
To help clinicians better distinguish between PD and ET,
we evaluated and compared seven prediction models using
machine learning algorithms. Based on the results, we analyzed
and compared the relative importance of various upper limb
postures, tremor features, and demographics in the diagnosis of
the two diseases.

MATERIALS AND METHODS

Subjects and Data Collection
A total of 398 patients confirmed PD or ET with upper limb
tremors were recruited for the experiment from June 2020 to
November 2020 by the Department of Neurology of Rui Jin
Hospital (Shanghai, China). With the help of a medical device

FIGURE 1 | Experimental setup. Tremor information was collected from four postures by a medical device system called Dantec R© Keypoint R© G4 for each patient.
(A) Dantec R© Keypoint R© G4. (B) Resting posture. (C) Stretching posture. (D) Winging posture. (E) Vertically winging posture.
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system (Dantec R© Keypoint R© G4, Natus Medical Inc.), the tremor
information, including acceleration and sEMG, was collected
from four postures for each subject. And most of the subjects were
tested on medication.

Two accelerometers were fixed onto the distal finger
of both hands, respectively, and six sEMG sensors were
fixed onto the extensor and flexor muscles on both sides.
In this experiment, each patient performed four respective
postures (Figure 1): resting, stretching, winging, and vertically
winging, meanwhile acceleration measurements and sEMG
measurements were acquired.

For each patient, the sensor signals were measured for 30 s
in each posture and sampled at a rate of 12,000 Hz. Patients
were asked to avoid unrelated behaviors, and irrelevant personnel
were removed from the room throughout the experiment. The
demographics of age and sex for each patient were also recorded.

For each posture, five tremor features (each tremor feature
with two tremor variables), including the dominant frequency
of the acceleration signals, the dominant frequency of sEMG
(extensor), the dominant frequency of sEMG (flexor), the average
amplitude of sEMG (extensor), and the average amplitude of
sEMG (flexor), were acquired by the Dantec R© Keypoint R© G4
medical device system. Finally, a total of 40 tremor variables
(Table 1) were obtained from the four postures. Our study
was approved by the local ethics committee of Shanghai Jiao
Tong University.

Establishment of Models
Based on several predictive models widely adopted in many
clinical applications, seven predictive models, including random
forest (RF), eXtreme gradient boosting (XGBoost), support
vector machine (SVM), backpropagation neural network
(BP), ridge classification (Ridge), logistic regression (LR), and
convolution neural network (CNN), were established and
compared to differentiate PD and ET using tremor information
collected from upper limbs.

For the linear models, LR and Ridge were selected. For the
ensemble learning models, such as RF and XGBoost, multiple
evaluators were established using the sample, and an output
response was obtained after considering and aggregating the
results of multiple evaluators. And a traditional machine learning
algorithm, SVM, was built. Finally, the neural network models,
including BP and CNN, were selected due to their powerful non-
linear learning ability and extensive application to diagnose and
predict the progression of PD (Hossen, 2013).

Because of different principles and usage between the CNN
model and the other six models, the raw sensor signals, including
the acceleration measurement and sEMG measurement of upper
limbs, were used to train the CNN model to differentiate PD
and ET. Due to the large volume of the time-series data which
needs to be further processed for CNN, we did not combine
demographic data to train the model. For the other six models,
40 tremor variables acquired from the Dantec R© Keypoint R© G4
medical device system, as well as two demographics (sex and
age), were used to train these models. Therefore, for CNN and
the other six models, the data preprocessing and training of the
models were different.

TABLE 1 | Demographic data of 398 patients.

Cases (n = 398, Male 196, Female 22) Mean SD

Age 66.23 40.85

Resting
posture

Dominant frequency Acc (L) 3.41 3.17

Flexor (L) 8.83 4.21

Extensor (L) 8.77 4.26

Acc (R) 3.48 2.97

Flexor (R) 8.31 4.53

Extensor (R) 8.95 4.11

Average amplitude Flexor (L) 212.38 173.45

Extensor (L) 201.94 119.85

Flexor (R) 202.28 120.14

Extensor (R) 171.96 88.05

Stretching
posture

Dominant frequency Acc (L) 3.99 2.90

Flexor (L) 9.21 4.30

Extensor (L) 10.33 4.55

Acc (R) 3.38 2.78

Flexor (R) 9.38 3.93

Extensor (R) 10.23 4.53

Average amplitude Flexor (L) 167.54 76.38

Extensor (L) 203.56 73.17

Flexor (R) 173.75 97.12

Extensor (R) 210.59 76.67

Winging
posture

Dominant frequency Acc (L) 6.25 2.33

Flexor (L) 7.59 4.09

Extensor (L) 9.18 4.43

Acc (R) 3.53 2.53

Flexor (R) 8.68 3.91

Extensor (R) 10.35 5.56

Average amplitude Flexor (L) 196.71 103.60

Extensor (L) 213.69 79.56

Flexor (R) 188.90 119.53

Extensor (R) 217.25 81.16

Vertically
winging
posture

Dominant frequency Acc (L) 4.17 2.33

Flexor (L) 8.77 3.95

Extensor (L) 9.70 4.33

Acc (R) 3.66 7.88

Flexor (R) 8.55 3.96

Extensor (R) 9.68 4.39

Average amplitude Flexor (L) 196.01 98.92

Extensor (L) 190.21 84.42

Flexor (R) 182.90 83.32

Extensor (R) 188.41 70.05

SD, standard deviation; L, left; R, right.
Acc (L) affiliated to “Dominant frequency” attached to “Resting posture”: the
dominant frequency of the acceleration signal collected from the left hand; Flexor
(L) affiliated to “Dominant frequency” attached to “Resting posture”: the dominant
frequency of the surface EMG signal collected from the flexor on the left hand;
Extensor (L) affiliated to “Dominant frequency” attached to “Resting posture”: the
dominant frequency of the surface EMG signal collected from the extensor on the
left hand. And the others have similar meanings.

For these six models (RF, XGBoost, SVM, BP, Ridge, and LR),
data preprocessing was performed as follows. For each patient,
40 tremor variables and two demographics (sex and age) were
used as the variables with the diagnosis of either PD or ET as
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the labels, resulting in a total of 398 samples. Table 1 indicates
the two demographics (sex and age) and a total of 40 tremor
variables affiliated to four postures, with each posture having
ten tremor variables. First, we filled in the null values with the
mean value of each variable (Zheng and Casari, 2018; Géron,
2019). Then, we scaled the data using Z-score normalization
(Eq. 1) to enhance the predictive ability of the model and prevent
overfitting (Géron, 2019).

z =
x− u

σ
(1)

Whereuis the mean of the variable andσis the standard deviation.
For the CNN model, data preprocessing was performed as

follows. Raw acceleration and sEMG measurements were used to
train the CNN model. The middle 25 s of each signal was selected
to avert potential noise in the experimental procedure, and then
the extracted data were down-sampled to 120 Hz for ease of
calculation, following which these down-sampled signals were
converted to the frequency domain using a fast Fourier transform
(FFT). Because the frequency band of pathological tremors is
mainly in the 2–20 Hz range, the FFT signals at 2–20 Hz were
finally chosen. The 24 converted signals from the acceleration
measurement and sEMG measurement were stacked along the
vertical axis to form a two-dimensional array for CNN input
(Figure 2), and they were scaled using Eq. 1 (Kim et al., 2018).

Training of Models
Some parameters were selected and adjusted using the grid search
method to acquire the best parameter combination for each
model. Table 2 lists the technical parameters of the models. First,
the data were preprocessed as described above and then randomly
divided into a training set (80%) and a validation set (20%). The

TABLE 2 | Tuning parameters of the seven models.

Models Tuning

RF n_estimators (subtrees)

XGBoost max_depth(maximum depth of number)

SVM γ(Gaussian kernel), C(Cost)

BP Size (hidden layer units); α(Regulation parameter)

Ridge α(Regulation parameter)

LR C (reciprocal of Regulation parameter)

CNN The number of convolutional layers, the number of kernels

RF, random forest; XGBoost, eXtreme Gradient Boosting; SVM, support vector
machine; BP, backpropagation neural network; LR, logistic regression; Ridge, ridge
classification; CNN, convolutional neural network.

proportion of PD and ET in the training set was consistent with
that in the validation set.

Ten-fold cross-validation was applied to the training set to
obtain the optimal model parameters. The training set was
divided into ten parts, nine of which were used to train the
model in turn; the remaining one was used to test the model.
The average value of AU-ROC, which was calculated ten times,
was used as an indicator to evaluate the model for determining
the different parameter combinations for each model. A forecast
flow chart is shown in Figure 3. Because of the high sampling
frequency and lack of good connectivity between muscles and
sensors in some aged patients, some acceleration measurements
or sEMG measurements were corrupted and became distorted,
which led to only 188 samples could finally being used to
train the CNN model.

For the CNN model, a specially formulated structure
(Figure 4) containing several layers of neural networks was
established to distinguish between PD and ET. The first layer

FIGURE 2 | Input array for the training of the CNN model. All signals from the acceleration measurement and sEMG measurement have been converted into the
frequency domain by the Fast Fourier Transform and stacked along the vertical axis to form a two-dimensional array for CNN input.
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FIGURE 3 | Model training, parameter adjustment, and performance evaluation. 398 patients were recruited in the current study. The data were pre-processed and
randomly divided into a training set (80%) and a validation set (20%), and the proportion of the two class proportions in each set is the same. In the training set,
k-fold cross-validation (k = 10) is used, and various parameter combinations are exhausted by grid search. Performance evaluation index of AUC was adopted to
judge the average predictive performance of the model. The average performance maximum is used as the best performance tuning parameter, and the prediction is
finally performed on the test set.

of the convolutional neural network received a normalized two-
dimensional input array, and 4 × 20 convolution kernels with
4 × 5 strides were used to fuse the local signal information
from a signal sensor with the output size of 6 × 73. The second
convolutional layer with 2 × 10 convolution filters and 2 × 2
strides was used to extract the sensor information. After each

FIGURE 4 | Final CNN architecture for separating PD from ET.

convolutional layer, a batch normalization layer and a dropout
layer with a 30% dropout rate were used to avoid overfitting.
Finally, a fully connected layer and a softmax classifier were used
to distinguish between PD and ET.

Evaluation of Models
Evaluation indicators, including the confusion matrix, accuracy,
area under the curve (AUC), recall (TPR, sensitivity), specificity,
F1, false positive rate (FPR,1- specificity), and precision
calculated by true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), were used to evaluate
the performance of each model (Eqs 2–7). And higher AUC value
indicates a better overall performance of the current feature, ς.

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

AUC =
∫
∞

−∞

TPR(ς)− FPR(ς)dς (6)

F1 = 2×
Recall× Precision
Recall+ Precision

(7)

where AUC denotes the area under the curve value of the
variable ς .
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FIGURE 5 | Tuning results of model parameters. (A–G) Four models (RF, XGBoost, Ridge, and LR) have one adjustment parameter, and three models (BP, SVM, and
CNN) have two adjustment parameters. For each set of parameters, the model parameters were evaluated for fit using the procedure described in panel Figure 2.
The optimal parameters for each model are selected by obtaining the parameters that the model evaluates to the maximum.

Furthermore, we analyzed the relative importance of the
variables in each model, except for CNN. The models XGBoost
and RF allowed the importance of variables to be derived during

TABLE 3 | Confusion matrices of seven models.

Confusion matrix Actual Prediction

PD ET

RF PD 44 7

ET 6 22

XGBoost PD 49 2

ET 10 18

SVM PD 50 1

ET 27 1

BP PD 41 10

ET 12 16

Ridge PD 38 13

ET 16 12

LR PD 40 11

ET 9 19

CNN PD 19 3

ET 5 10

AUC, area under the curve; PD, Parkinson’s disease; ET, essential tremor.

model training; the coefficients of the Ridge model were used as
the importance factor.

For models, such as LR, BP, and SVM, wherein the importance
of variables was difficult or impossible to extract, the mean
decrease accuracy was obtained by directly measuring the effect
of each feature on the accuracy of the model. Briefly, the model
was fitted, and parameter adjustment was performed to predict
the validation set to obtain the model performances. Then, the
feature values were disturbed to establish a new disturbance
prediction set. Obviously, for the unimportant variables, the

TABLE 4 | Evaluation summary based on AUC, recall, specificity, accuracy,
FPR and precision.

Models AUC Recall Specificity Accuracy FPR Precision F1

RF 0.90 0.86 0.79 0.84 0.21 0.88 0.87

XGBoost 0.95 0.96 0.64 0.85 0.36 0.83 0.89

SVM 0.81 0.98 0.04 0.65 0.96 0.65 0.78

BP 0.75 0.80 0.57 0.72 0.43 0.77 0.78

Ridge 0.71 0.75 0.43 0.63 0.57 0.70 0.72

LR 0.73 0.78 0.68 0.75 0.32 0.82 0.80

CNN 0.77 0.86 0.67 0.78 0.33 0.79 0.83

FPR, false positive rate.
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scrambling order has little effect on the accuracy of the model,
but for the important variables, the scrambled order will reduce
the accuracy of the model. Finally, the relative importance ratio of
all the eigenvalues was given a weight between 0 and 1 according
to the overall proportion.

We added the relative importance of the ten tremor variables
affiliated to each posture as the relative importance of the
four postures, respectively. In addition, we added the relative
importance of the two tremor variables affiliated to each tremor
feature attached to the four postures as the relative importance
of the five tremor features, respectively, thereby obtaining
the effect sizes.

RESULTS

Tuning of Parameters
The average AU-ROC for different models and their parameters
are listed (Figure 5). In these models, XGBoost obtained the
best overall performance, and the parameter max_depth of five
was optimal. RF achieved optimal performance as the parameter
n_estimators reached nine. A two-layered CNN architecture
with 35 convolution kernels was developed (Figure 4). The
other four models had a similar performance, with a maximum
performance index of approximately 0.7. The cost (C) of SVM
was two, and the parameter gamma of 0.01 produced the best

performance. For LR, parameter C (reciprocal of the regulation
parameter) of 15 performed the best. For BP, parameter hidden
layer sizes of 15 and an alpha of 0.01 produced the best
performance. The alpha of the Ridge was one, which enabled the
optimal performance.

Validation of the Training Set
The confusion matrices of the seven models are displayed in
Table 3. The number of actual subjects of PD and ET in the
confusion matrix is 51 and 28, respectively.

For RF and XGBoost, the sum of false negatives (FNs) and
false positives (FPs) could be controlled within 13, while the
others had a sum of FNs and FPs above 20 (79 validation
samples). For CNN, the sum of FNs and FPs was eight (37
validation samples). The evaluation indices, including recall
(TPR, sensitivity), specificity, accuracy, FPR (1-specificity), and
F1 for each model, are displayed in Table 4. For the ensemble
learning models, RF and XGBoost show a better performance,
with an accuracy rate equal to and above 0.84. XGBoost has
a higher accuracy rate than RF. However, the specificity of RF
is higher, which means that it has a higher accuracy rate in
identifying ET patients. For the neural networks, the accuracy
of BP and CNN reaches 0.72 and 0.78, respectively. Compared
with BP, the CNN model has a stronger non-linear predictive
ability. In this study, the accuracy of CNN was also higher
than that of BP. However, the neural network did not perform

FIGURE 6 | Factors effect size. The (A–F) histogram displays the proportion of the factoric importance of sex, age, and four postures calculated by the models. For
each model, the relative importance is quantified by assigning a weight between 0 and 1 for each variable and then the relative importance of the four postures is
calculated by the sum of the factoric importance of the corresponding variables affiliated to that posture. The models XGBoost and RF allow the importance of
variables to be derived during model training; the coefficients of the Ridge model are used as the basis for factor importance; the LR, BP, and SVM models are
obtained by the Mean decrease accuracy method.
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well owing to the limited number of samples. The Ridge linear
model obtained the lowest accuracy rate of 0.63 and the lowest
AU-ROC value of 0.71.

Important Features
The relative importance of sex, age, and the four postures
(resting, stretching, winging, and vertically winging), were
calculated using the models displayed in Figure 6. The
relative importance of sex, age, and the five tremor features,
including the dominant frequency of acceleration of distal fingers
(Dom_fre_acc), the dominant frequency of sEMG of extensors
(Dom_fre_ext), the dominant frequency of sEMG of flexors
(Dom_fre_fle), the average amplitude of sEMG of extensors
(Ave_amp_ext), and the average amplitude of sEMG of flexors
(Ave_amp_fle), were calculated by the models as displayed in
Figure 7.

Among the seven established models, the ensemble learning
models, including RF and XGBoost showed the best prediction
capabilities. Thus, the relative importance obtained from these
two models was adopted. In the two models, the relative
levels of importance of sex, age, the four postures, and the

five tremor features were ranked showing that resting posture,
winging posture, Dom_fre_fle, and Ave_amp_fle had a significant
influence on the predictability of the models, whereas sex and age
had a slight impact on the prediction.

DISCUSSION

Most PD and ET patients suffer from tremors of the upper limbs
(Zhang et al., 2018; Duque et al., 2020). Owing to the overlapping
tremor features, misdiagnosis between PD and ET is common.
As a non-invasive biomarker, the tremor information of upper
limbs, including acceleration and sEMG, has been investigated to
distinguish PD from ET. Although some tremor features (tremor
amplitude, dominant frequency, etc.) from various upper limb
postures are extracted for the differentiation of PD and ET, the
relative importance of the tremor features and various upper limb
postures have been less frequently investigated.

In this study, we applied the tremor signals, including the
acceleration measurements and sEMG measurements, which
were collected from the four upper limb postures and two

FIGURE 7 | Factors effect size. The (A–F) histogram displays the proportion of the factoric importance of sex, age, and five tremor features calculated by the
models. For each model, the relative importance is quantified by assigning a weight between 0 and 1 for each variable and then the relative importance of the five
tremor features is calculated by the sum of the factoric importance of the corresponding variables affiliated to that tremor feature. The models XGBoost and RF allow
the importance of variables to be derived during model training; the coefficients of the Ridge model are used as the basis for factor importance; the LR, BP, and SVM
models are obtained by the Mean decrease accuracy method.
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demographics (sex and age) to distinguish PD from ET using
seven machine learning algorithms. The ensemble learning
models RF and XGBoost provided a rapid classification of
outpatients. Various complex models could be established, and
accurate decisions could be made using machine learning
algorithms when given certain data. In this study, we used a
dataset with a size of 398 and 42 dimensions. It was proved that
the ensemble learning models performed better than the other
models and fulfilled the clinical needs.

It may be considered that the current sample was not sufficient
to support the result owing to the limited sample size. In
the case of small data size and high data dimensions, the
ensemble learning classifier XGBoost and RF could separate
samples more effectively, whereas the other models of SVM,
LR, BP, Ridge, and CNN exhibited a lower accuracy. Owing
to the high data dimensions, SVM had a low predictive
ability, resulting in most samples being predicted as PD, and
Ridge had the lowest accuracy rate. The more complex neural
network model with a powerful non-linear learning ability
also did not perform well. In this study, among the seven
established models, the ensemble learning models RF and
XGBoost performed ideally, while the other five models lacked
a significant predictive ability.

Although some assistive engineering approaches using tremor
information of the upper limbers collected by wearable sensors
have been proposed to differentiate between PD and ET,
the results are less convincing limited by a few subjects.
In this paper, we evaluated seven classification models using
machine learning algorithms to differentiate PD and ET
by using accessible demographics and tremor information
of the upper limbs collected from various postures. The
results with AUC above 0.90 and accuracy above 0.84
for RF and XGBoost models are convincing because more
subjects (398 cases) were collected and the data was adequate
compared with previous studies. Furthermore, we firstly analyzed
and ranked the relative importance of sex, age, the four
postures, and the five tremor features for differentiating
PD and ET, which could help the diagnosis of PD in
the early stage.

Recent progress in artificial intelligence and wearable
technology has made wearable tremor suppression devices for
PD a potentially viable alternative for tremor management.
The relative importance of sex, age, the four postures, and the
five tremor features, provides a reference for the intelligent
diagnosis of PD and shows promise for use in wearable tremor
suppression devices. To further enhance the performance of the
established models, more ET subjects will be recruited in the
subsequent study.

CONCLUSION

In this study, seven models were evaluated and compared for
separation of PD from ET by using the tremor information of
the upper limbs in various postures. It was determined that the
ensemble learning models, including RF and XGBoost, had the
greatest overall predictive ability and could effectively distinguish
PD and ET. We also found that the dominant frequency of
flexor sEMG, the average amplitude of flexor sEMG, the resting
posture, and the winging posture had a greater impact on
the predictability of the models, whereas the other predictors,
specifically sex and age, were less important. These results
provide a reference for the intelligent diagnosis of PD and are
promising for use in wearable tremor suppression devices. This
study investigating the differentiation between PD and ET using
machine learning algorithms was preliminary. With the further
acquisition of data of ET subjects in future work, the performance
of models will be further improved and more valuable results
will be obtained.
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