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Macrophages are key innate immune cells that mediate implant acceptance or rejection.
Titanium implants degrade over time inside the body, which results in the release of
implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory
macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates
immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the
healing activities of macrophages and their release of circulating cytokines is an open
question in regenerative medicine. In this study for the first time, we identified the
transcriptional program induced and suppressed by TiNPs in human pro-inflammatory
and healing macrophages. Microarray analysis revealed that TiNPs altered the expression
of 5098 genes in M1 (IFN-g-stimulated) and 4380 genes in M2 (IL-4–stimulated)
macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix
analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-
15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly
stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow
cytometry demonstrated, that scavenging activity of stabilin-1 was significantly
suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair
internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway.
Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in
macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-
mediated clearance function. In summary, this process can result in a significant increase
of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic
reactions and implant complications.
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INTRODUCTION

Implantation of biomedical devices is one of the most frequently
performedprocedures infields such as orthopedics anddentistry (1,
2). Macrophages play a critical role in the modulation of implant
microenvironment (3). Upon implantation, monocytes are
recruited from the circulation to differentiate into macrophages
and react against the foreign body. The recognition of the material
as a foreign body in the tissue encompassesmacrophage interaction
with the implant surface. This interaction favors the release of
chemokines, which recruit additional macrophages and other
immune cells leading to acute inflammation (4). Among the
many different subtypes of macrophages, there are two activation
patterns in which macrophages can be found in vitro, according to
their function: pro-inflammatory (M1) or regulatory (M2). M1
differentiation is obtained in response to interferon-g (INF-g) and
lipopolysaccharide and contributes to acute cytotoxic responses.
M2 differentiation occurs in response to interleukin 4 (IL-4) or IL-
13and it is associatedwithhealing responses, promoting local tissue
remodeling (5). M0 are unpolarized or uncommittedmacrophages
that have neither pro-inflammatory nor anti-inflammatory
characteristics, and which differentiation is driven by M-CSF (6).
An adequate balance between these subtypes of macrophage
influences the degree of osseointegration (7). In contrast, a
dysregulated immune response leads to complications, such as
infection and aseptic loosening, which are indications for surgical
revision (8, 9). Implant revision not only negatively affects the
patient’s quality of life but also aggravates the economic burden due
to an increase in hospitalization rates and in the necessity of
reintervention (10).

Titanium is a widely used material due to its advantageous
biocompatibility properties, corrosion resistance, and lowmagnetic
susceptibility (1). However, with time and friction, it generates
wear-off particles, also known as implant debris. Particles of a
diameter smaller than 1 µm, or nanoparticles, generate the most
biological toxicity and can induce mutations (11, 12). Titanium
nanoparticles (TiNPs) are released in vitro, even in the absence of
implant friction (13). TiNPs are internalized by macrophages in a
dose-dependent matter and promote sustained production of pro-
inflammatory factors, which can result in acute and chronic
inflammation (14–17). For instance, lysosomal cathepsins are
released, activating nod-like receptor protein 3 (NRLP3)
inflammasome, and as a consequence, IL-1b release, promoting
osteoclast differentiation and peri-implant osteolysis (18).
Pajarinen et al, showed an exacerbated pro-inflammatory profile
in human CD14+ derived M1 and a suppressed inflammatory
response in M2, in response to co-culturing with TiNPs (19).
Supporting this preferential polarization, oxidative stress, mainly
mediated by M1 phenotype, is a frequent response to TiNPs (17).

Despite isolated reports about the pro-inflammatory effects of
TiNPs onmacrophages, no systematic analysis has been performed
todate to show the full transcriptionalprogramaffectedbyTiNPs in
pro-inflammatory and healing macrophages. In this study for the
first time, we addressed the question about the stimulatory and
suppressive effect of TiNPs on the transcriptional program in
human pro-inflammatory and healing macrophages. We found
that TiNPs stimulate all subtypes of macrophages to produce
Frontiers in Immunology | www.frontiersin.org 2
growth differentiation factor 15 (GDF-15), a cytokine involved in
the regulation of tissue remodeling, healing, and angiogenesis, with
growing evidence about its implication inpathology.GDF-15 is also
known for being a multifunctional cytokine mainly expressed and
secreted during stress conditions. Although its role is still
controversial, GDF-15 is hypothesized to be part of a negative
feedback mechanism to counteract inflammatory reactions (20).
We also found that TiNPs have a specific suppressing effect on the
scavenging function of stabilin-1, which is a clearance receptor of
GDF-15. This dual effect can result in the uncontrolled increase of
GDF-15 levels in the tissues in close proximity to implants aswell as
in the circulation of patients with implants.
METHODS

Monocyte Isolation and Generation
of Macrophages
Monocytes were isolated from Buffy coats obtained from healthy
blood donors out of the German Red Cross Blood Service Baden-
Württemberg – Hessen after informed consent, as described
previously (21). The isolation was carried out using CD14 positive
selection (Miltenyi Biotec), resulting in 90–98% monocyte purity,
controlled by flow cytometry. The cells were seeded into cell culture
dishes in customized serum-free medium (SFM from Gibco)
supplemented with 5 mM glucose at a concentration of 1x106 cells/
mL. Macrophage were differentiated in the presence of M-CSF at 5
ng/mL (Peprotech; #A300-25B) andDexamethasone 10-8M (Sigma,
#D2915). For M1 polarization IFN-g was used at the concentration
of 100 ng/mL (Peprotech; # 300-02), for M2 polarization, IL-4 was
used at the concentration of 10 ng/mL (Peprotech; #200-04). No
cytokines were added for M0 differentiation.

Stimulation With TiNPs
Titanium nanoparticles were purchased from NanoAmor
Europe, France. The stock solution was initially diluted to 1:4
in DPBS, followed by another 10-fold dilution in 5 mM glucose
SFM media to achieve the final dilution factor (1:4000). The
TiNPs were added to a final concentration of 0,0100% (100ppm).
The corresponding dilution was sterilized via UV.

The conditions were maintained for 6 days with 7.5% CO2 at
37°C. A daily microscopic check-up was performed to evaluate
the health status of the cells. Additionally, the viability of
macrophages was assessed using Alamar Blue test.

RNA Isolation and Affymetrix Chip Analysis
After incubation with 0,0100% (100ppm) TiNPs for 6 days, cells
were lysed in TRK lysis buffer and RNA was isolated using
E.Z.N.A. Total RNA kit I (Omega Bio-tek, USA) according to the
manufacturer’s instructions. The concentration of isolated RNA
was determined with a Tecan Infinite® 200. RNA was tested by
capillary electrophoresis on an Agilent 2100 bioanalyzer
(Agilent) and high-quality was confirmed. Hybridization of
probes was done using arrays of human HuGene-1_0-st-type
(Affymetrix, High Wycombe, UK). Biotinylated antisense cRNA
was then prepared according to the Affymetrix standard labeling
protocol with the GeneChip® WT Plus Reagent Kit and the
December 2021 | Volume 12 | Article 760577
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GeneChip® Hybridization, Wash and Stain Kit (both from
Affymetrix, Santa Clara, USA). Afterward, the hybridization on
the chip was performed on a GeneChip Hybridization oven 640,
then dyed in the GeneChip Fluidics Station 450 and thereafter
scanned with a GeneChip Scanner 3000. All of the equipment
used was from the Affymetrix-Company (Affymetrix, High
Wycombe, UK). All the necessary procedures needed for
hybridization and scanning of chips were performed in the
Affymetrix Core Facility of Medical Research Center, Medical
Faculty Mannheim.

RT-PCR
cDNA synthesis was performed using SensiFAST cDNA Synthesis
Kit from BIOLINE according to the manufacturer’s instructions.
The obtained cDNAwasdiluted 10 times and 1mLwas used forRT-
PCR. Levels ofmRNA fromstabilin-1 andGDF-15,were quantified
using TaqMan PCR primer mix (Eurofins, Germany) in the
standard conditions. Primer sequences and probes are shown
from the 5′ end to 3′ end direction.

For hsSTAB-1 the following sequence was used: FP:
GCGACACCTTTTGTGAAC, RP: ATGCTTCTGCTTTCAG
CC, Pr: FAM TTCGATGACTCACTGCTGGAGGAGGACTT.

For 18srRNA: FP: CCATTCGAACGTCTGCCCTAT, RP:
TCACCCGTGGTCACCATG, Pr: ACTTTCGATGGTAG
TCGCCGTGCCT.

Ready-to-use Taqman master mixes were used for GDF-15
(GDF-15, MIC-1, MIC1, NAG-1, PDF, PLAB, PTGF-B)
Hs00171132_m1 (context sequence: CGCCAGAAGTGCG
GCTGGGATCCGG) (Thermo Fisher Scientific).

Amplification was performed using Light cycler 480 systems
(Roche Lifesciences). The expression levels of analyzed genes
were normalized according to the 18srRNA.

Cytokine Secretion Assay
The concentration of secreted GDF-15 was determined in
macrophage culture supernatants using ELISA assays from
R&D systems (Wiesbaden, Germany) according to the
manufacturer’s instructions.

Endocytosis Assay
acLDL-Alexa488 (Invitrogen) was used as a ligand for endocytosis
quantification. Endocytosis assays were performed in M0, M1 and
M2, in general as described previously (22). Briefly, on day 6,
acLDL-Alexa488 was added at a final concentration 2 µg/mL for
flow cytometry quantification. For immunofluorescence analysis,
macrophages were grown on coverslips, and acLDL-Alexa488 was
added at a final concentration of 5 µg/mL. Macrophages were
incubated with the ligand for 30 minutes in the presence of 7,5%
CO2 at 37°C.Cessation of endocytosiswas achieved by placing cells
on ice for flow cytometry. For immunofluorescence staining,
cessation was achieved by immediate fixation with PFA as
described (21), for M0, M1 and M2 treated with TiNPs, and for
M1non-treatedwith TiNPs. SinceM0 andM2without TiNPswere
almost completely suspensional, sample preparation was
performed using a Cytospin™ 4 centrifuge (Thermo Fisher
Scientific), and cytospins were fixed by PFA.
Frontiers in Immunology | www.frontiersin.org 3
Flow Cytometry
Flow cytometry was used to quantify the uptake of the acLDL-
Alexa488. After endocytosis cessation, cells were harvested in
ice-cold PBS. Fluorescent signal was quantified using BD FACS
Canto II flow cytometer (FlowCore Mannheim, Germany). The
data were analyzed using FlowJo 10.01 software.

Immunofluorescence and
Confocal Microscopy
The following primary antibodies were used: anti-hstabilin-1
rabbit polyclonal serum RS1 (23) and mouse monoclonal anti–
EEA-1 (BD Biosciences). Secondary antibodies were Cy3-
conjugated donkey anti–rabbit IgG and Alexa647-conjugated
donkey anti–mouse IgG (Dianova, Germany). In addition, all
samples were stained with DAPI (Roche, Mannheim, Germany).
Specificity of used antibodies was assessed in TiNPs treated cells
with appropriate isotype control. Samples were mounted using
DakoCy toma t i on F luo r e s c en t Moun t ing Med ium
(DakoCytomation, Hamburg, Germany). Confocal microscopy
was performed using a Leica laser scanning spectral confocal
microscope, model DM IRE2, equipped with an HCX PL Apo 63
×/1.32 numeric aperture oil objective (Leica Microsystems,
Wetzlar, Germany). Excitation was done with an argon laser
emitting at 488 nm, a krypton laser emitting at 568 nm, and a
helium/neon laser emitting at 633 nm. Images were acquired
using a TCS SP8 DLS Leica inverted microscope and Leica
Confocal software, version 2.5 (both from Leica Microsystems).
Images were acquired using a sequential scan mode. For panel
assembly, Adobe Photoshop version 6.0 (Adobe Systems, San
Jose, CA) was used. Quantification of the fluorescence intensity
for stabilin-1 and acLDL-Alexa488 was assessed using Qupath
open source program. Three independent donors were analyzed
and five different fields per donor were used for quantification.
The program recognized individual cells and quantified the
intensity of the signal for each cell. The means of fluorescent
intensity were calculated for each field, for each donor, and,
finally, for each condition: with or without TiNPs. The average
fluorescent intensity of the overall cells was calculated.

Statistics
Statistical analysiswas performedusingGraphPadPrism8 software
(GraphPadSoftware Inc.,USA).Bar graphs showmean±SEM.The
significance of the data was analyzed using ratio paired Student’s t-
test.We considered a two-tailed p-value of less than 0.05 to indicate
statistical significance (confidence level 95%). ns = non-significant,
p < 0.05, p ≤ 0.05**, p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.001.
RESULTS

Microarray Analysis
Microarray analysis revealed that TiNPs at a concentration of
100ppm altered the expression of 5098 genes in M1 (IFN-g-
stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages.
Additionally, 1980 geneswere differentially regulated in bothM1and
December 2021 | Volume 12 | Article 760577
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M2. The analysis revealed a significant downregulation of the
multifunctional scavenger receptor stabilin-1 under TiNPs in M1
and M2 (fold change: -3,12 and -3,93, correspondingly). A contrary
effect was seen for GDF-15, which was transcriptionally upregulated
with TiNPs in both activation states (fold change: 2,94 and 2,54,
correspondingly). Figure 1 shows the microarray analysis, in which
every comparison was made between cells cultured with TiNPs
versus cells without. The original array data for all differentially
activated genes is available on the NCBI Gene Expression Omnibus
(GEO) browser (Reference number GSE179543).

TiNPs Stimulate GDF-15 and Suppress
Stabilin-1 Gene Expression During
Monocyte/Macrophage Differentiation
To confirm the results of the microarray analysis, the expression
of GDF-15 and stabilin-1 was verified by RT-PCR. The effect of
TiNPs exposure on macrophages was examined after 6 days of
monocyte differentiation into non-stimulated (M0), M1 and M2
macrophages. The expression of GDF-15 in monocytes (day 0)
was minimal (Figure 2A). In all macrophage subtypes, the
expression of GDF-15 was significantly increased when treated
with TiNPs (Figure 2A). TiNPs upregulated the expression of
GDF-15 in M0 by the average of 15 times (p=0,0002) and in M1
Frontiers in Immunology | www.frontiersin.org 4
by 10 times (p<0,0001). Likewise, stimulation of M2 with TiNPs
resulted in upregulation of GDF-15 expression by 6 times
(p<0,0001). Additionally, GDF-15 expression was not
significantly different between the different macrophage
phenotypes, both with and without TiNPs. These results
indicate that the exposure to TiNPs clearly has a stimulatory
effect on the expression of GDF-15 in primary human monocyte-
derived macrophages, and this expression is not influenced by
macrophage differential activation.

In contrast, stabilin-1 expression was inhibited by TiNPs in
all macrophage phenotypes (M0 p=0,0008, M1 p<0,0001, and
M2 p<0,0001). In monocytes (day 0) and M1, stabilin-1 mRNA
levels were lower compared to M0 and M2 (Figure 2B).

TiNPs Promote GDF-15 Secretion in
Activated Macrophages
The effect of TiNPs on GDF-15 secretion levels was assessed by
ELISA in supernatants collected from macrophages cultured for
6 days (Figure 2C). In all macrophage subtypes, the secretion of
GDF-15 was tremendously elevated after exposure to TiNPs.
Upon the treatment with TiNPs, M0 increased GDF-15 secretion
from almost 15 to approximately 380 pg/mL (p=0,0105). M1 also
showed increased GDF-15 secretion under TiNPs stimulation
A

C

B

FIGURE 1 | Summary of microarray analysis of the effect of titanium nanoparticles on transcriptome of human inflammatory and healing macrophages. (A) Venn’s
diagram of differentially expressed genes in macrophages cultured in presence of TiNPs. Each number represents the number of genes differentially expressed in
response to TiNPs. Each circle represents a population of macrophages with a different stimulation: Red – M1(IFNg) and Blue – M2(IL-4). Intersecting points
represent the number of genes differentially regulated by TiNPs in both stimulations conditions. (B) Clustering of the microarray data in a 3D scatterplot. Each sphere
represents genes from one donor. Clustering of data from M1(IFNg) is represented by yellow spheres – Control and red spheres – TiNPs); clustering of data from M2
(IL-4) is represented by blue squares – Control and green squares - TiNPs). (C) Heatmap of relative expression of stabilin-1 and GDF-15. Differential expression is
shown between Control and TiNPs conditions M1 and M2, respectively. The number of donors differs for every condition depending on the availability of materials.
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(p=0,0011). The highest GDF-15 secretion was observed in M2
under TiNPs stimulation (M0 vs M2 p=0,0086 and M1 vs
M2 p=0,0095).
TiNPs Decrease the Efficiency
of Endocytosis
We evaluated the effect of TiNPs on the uptake of fluorescently
labeled acLDL, a known ligand of stabilin-1, in M0, M1 and M2
by flow cytometry. As depicted on the graph, the treatment with
TiNPs decreased the efficiency of acLDL-Alexa488 endocytosis
in all macrophage subtypes (Figure 3). After quantification, we
found a significantly reduced endocytosis upon exposure to
TiNPs compared to controls, which was consistent in all 7
analyzed individual donors. acLDL endocytosis was higher in
M0 (p=0,0033) and M2 (p=0,0004) controls as compared to M1
control (Figure 3). This data indicates that acLDL endocytosis is
negatively affected by TiNPs in all macrophage phenotypes.
TiNPs Disrupt Stabilin-1-Mediated
Endocytic Trafficking
To further explore the effect of TiNPs on stabilin-1-mediated
internalization and intracellular transport along the endocytic
pathway, confocal microscopy was used to visualize the
localization of stabilin-1 and acLDL-Alexa488. Since M2
expresses maximal levels of stabilin-1 and have enhanced
Frontiers in Immunology | www.frontiersin.org 5
endocytic properties compared to M0 and M1, M2 subtype was
used for the immunofluorescence analysis (24). EEA1-positive
early/sorting endosomes is a major vesicular compartment, where
A B

C

FIGURE 2 | Titanium nanoparticles have opposite effect on the expression of GDF-15 and stabilin-1 and strongly stimulate GDF-15 secretion in macrophages.
mRNA levels were analyzed by RT-PCR in monocytes (day 0), and in non-stimulated (M0), M1 and M2 macrophages cultured for 6 days. (A) GDF-15 expression: n
= 3 for monocytes, n = 7 for M0, n = 12 for M1, and n = 12 for M2. (B) Stabilin-1 expression: n = 4 for monocytes, n = 7 for M0, n = 12 for M1, and n = 12 for M2.
(C) Supernatants of M0, M1 and M2 macrophages cultured for 6 days were analyzed by ELISA: n = 5 for M0, n = 10 for M1, n = 10 for M2. Error bars indicate the
means standard error of the results normalized to 18SrRNA expression levels. *p < 0,05, **p < 0,01, ***p < 0,001, ****p < 0,0001.
FIGURE 3 | Titanium nanoparticles significantly suppress scavenger-
receptor-mediated endocytosis in all types of macrophages. M0, M1 and M2
macrophages were cultured for 6 days. acLDL-Alexa488 was added at a
concentration of 2 µg/mL to macrophages for 30 minutes at 37°C. Ligand
internalization was quantified by flow cytometry: n = 7. Error bars indicate the
means standard error of the geometric mean normalized to non-stained cells
relative endocytosis **p < 0.01, ***p < 0.001.
December 2021 | Volume 12 | Article 760577
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stabilin-1 is localized in M2 (21). Therefore, we assessed its
intracellular localization using anti-EEA1 and anti-stabilin-1
rabbit polyclonal RS1 antibody. In the absence of TiNPs, M2
expressed high levels of stabilin-1. Additionally, the majority of
acLDL-Alexa488 was co-localized with stabilin-1, and was
efficiently delivered to EEA1-positive early/sorting endosomes,
while EEA1 marked irregularly shaped large endosomes
(Figure 4A). Treatment with TiNPs resulted in the disruption of
endosomal compartment.Only a small amount of remaining EEA1
endosomes was detected, and internalization of acLDL-Alexa488
was almost abrogated (Figure 4B). After TiNPs treatment, stabilin-
1 was expressed only in a small percentage of M2, and only in
Frontiers in Immunology | www.frontiersin.org 6
stabilin-1+cells internalization of acLDL-Alexa488 was still
detectable. Moreover, the mean fluorescence intensity of both
acLDL-488 and stabilin-1 was significantly lower in M2 treated
with TiNPs (p=0,008 and p=0,0118, respectively) (Figures 4C, D).
Overall, the immunofluorescence analysis confirmed the
suppressive effect of TiNPs on stabilin-1 expression on protein
level and stabilin-1-mediated endocytosis.

DISCUSSION

Here, the effect of TiNPs (debris of titanium implants) on
transcriptome of human healing macrophages was analyzed for
A

B

DC

FIGURE 4 | Confocal microscopy analysis of the suppressive TiNP effect on the stabilin-1-mediated endocytosis in healing M2 macrophages. M2 macrophages
were exposed to stabilin-1 ligand acLDL-Alexa488 at a concentration of 5 µg/mL for 30 minutes. M2 derived from monocytes of 3 individual donors were used for
each type of analysis. (A) Representative images of confocal microscopy analysis of M2 in absence of TiNPs. (B) Representative images of confocal microscopy
analysis of M2 in presence of TiNPs. Visualization of nuclei was performed using DAPI (visualized in cyan). acLDL-Alexa488 is shown in green. Stabilin-1 was
detected by RS1 rabbit polyclonal antibody and Cy3-conjugated anti-rabbit secondary antibody (visualized in red). EEA1 was detected using anti-EEA1 mouse
antibody and Alexa-647-conjugated secondary antibody (visualized in blue). Representative images of single cells are shown for M2. Scale bars: 10 µm. (C)
Quantification of confocal microscopy images for the internalized acLDL-Alexa488 and (D) quantification of confocal microscopy images for expression of stabilin-1.
For every 3 individual donors, 5 different fields of images were assessed using Qupath open source program. The mean fluorescence intensity was calculated by
averaging the intensity of each cell per condition. Error bars indicate the means standard error of the results. *p < 0.05, **p < 0.01.
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the first time. We found that TiNPs suppress essential for healing
scavenging function of macrophages, mediated by stabilin-1. At
the same time, we found that TiNPs strongly upregulate the
production of GDF-15.

GDF-15 is a multifunctional cytokine and remote member
from the glial cell-derived neurotrophic factor (GDNF) family
and TGF-b superfamily (25, 26). Its membrane receptor, GDNF
family receptor a-like (GFRAL), was considered to be uniquely
expressed in the hindbrain (25, 27, 28). Recent data showed that
GFRAL expression is also present in human adipocytes and
prostate cancer cells (29, 30). GFRAL was also reported to be
expressed in endothelial cells and to mediate GDF-15-induced
pro-angiogenic effect (31).

GDF-15 has been recognized as a potential diagnostic and
prognostic biomarker for several diseases, including cancer,
cardiovascular disease, sepsis, and recently, COVID-19 (32, 33).
GDF-15 is known for being a pleiotropic cytokinemainly expressed
and secreted during stress conditions and inflammation, and its
function seems to be protective (34–37). Recently, Cimino et al.
discovered that GDF-15 induces a rise in glucocorticoid levels
through GFRAL signaling upon endoplasmic reticulum (ER)
stress induction in mice, which undercovers GDF-15 centrally
mediated-anti-inflammatory response (38). Its role in immune
tolerance was also addressed by Luan et al, who discovered that
GDF-15 rise during bacterial inflammation increases hepatic
triglyceride production, mediating cardiac protection and
promoting survival (36). Other studies have shown detrimental
consequences of increased GDF-15, highlighting a context-
dependent action (39). GDF-15 has been correlated with fibrotic
diseases. For instance, Govaere et al. quantifiedGDF-15 expression
and secretion levels in hepatic tissue using transcriptomic and
proteomic analysis and found that GDF-15 positively correlates
to fibrosis progression in nonalcoholic fatty liver disease (NAFLD)
(40). Nevertheless, its complete molecular mechanism and
signaling pathway have not been fully established.

In macrophages, GDF-15 expression is increased under the
effect of IL-4, IL-1b, TNF-a, IL-2 and M-CSF (41–43). Previous
studies have found elevatedGDF-15 expression inM1 (but notM2)
macrophages and alveolar macrophages upon acute exposure to
TiNPs and silicamicrospheres (4 hours and 16 hours, respectively)
(19, 44).Ourfindings complement this informationbypointing out
a persistent effect of TiNPs (6 days) on GDF-15 gene expression in
all macrophage phenotypes. Furthermore, GDF-15 was
preferentially secreted byM2macrophages underTiNPs treatment.

It is worth mentioning that the TiNPs-induced pro-
inflammatory reaction has been associated with increased
production of reactive oxygen species (ROS) and mitochondrial
damage (45). Interestingly, GDF-15 production is induced by
mitochondrial uncoupling and by the treatment with
mitochondrial inhibitors, including metformin (46, 47). Likewise,
TiNPs induce ER stress and disrupt the mitochondrial-associated
ER membranes (48). Therefore, identified by us increased GDF-15
expression could be explained by the mitochondrial damage
generated by TiNPs. Another documented effect of TiNPs on
macrophages is lysosomal damage. Particularly, the here used
rutile TiNPs, have a detrimental impact on lysosomal
Frontiers in Immunology | www.frontiersin.org 7
permeability (49). Recently, Kim et al. found that transcription
factor EB (TFEB), a regulator of energy expenditure and autophagy
inductor, binds to GDF-15 promotor and induced its expression
after lysosomal stress induction inmacrophages (50). The potential
lysosomal damage caused by exposure to TiNPs could also explain
the rise in GDF-15 levels. This hypothesis is consistent with the
observation from our transcriptome analysis, showing a significant
upregulation of TFEB expression (M1: fold change=0,43, p-
value=0,03; M2: fold change=1,55, p-value<0,0001) in both
human CD14+ derived M1 and M2 after 6 days of TiNPs
exposure in culture (Reference number GSE179543).

Stabilin-1 is an established biomarker in M2 macrophages
essential for their clearance function in health and pathology
(51). Multifunctional scavenger receptor stabilin-1 (STAB-1,
FEEL-1, CLEVER-1, KIAA0246) is a transmembrane scavenger
and sorting receptor expressed on tissue macrophages and non-
continuous endothelial cells (21, 24). In human monocyte-
derived macrophages, the expression of stabilin-1 is induced by
stimulation with IL-4 and dexamethasone (23). Stabilin-1
controls the balance between inflammation and tissue
remodeling by scavenging and targeting for secretion multiple
extracellular regulatory proteins including SPARC, SI-CLP,
YKL-39 and placental lactogen (22, 52–54). It also mediates
the clearance of apoptotic bodies as well as modified lipoproteins
(55, 56). Here, we found that stabilin-1 expression is highly
suppressed under TiNPs treatment in all activation states.
Stabilin-1 decreased expression supports the previous
observations that TiNPs promote a shift to M1 polarization
and suppressed M2 response (19). Our flow cytometry data
showed a markedly decreased endocytosis efficiency in all
activation states after co-culturing with TiNPs. The fold
change was higher for M0 and M2, which are reported to
mediate more actively endocytosis than M1 (57). This is also
consistent with our observation that M0 and M2 expressed more
stabilin-1 than M1. Quantitative confocal microscopy analysis
further confirmed the abrogation of stabilin-1 expression in M2
co-cultured with TiNPs. A decrease in stabilin-1 can also result
in impaired clearance of SPARC, modified lipoproteins and
apoptotic bodies, the accumulation of which is frequent in
chronic inflammation and fibrosis (53, 55, 56, 58). Moreover,
deficiency of stabilin-1 in mice aggravates inflammation by
increased inflammatory macrophage activation and enhanced
IgM production (59).

We have previously identified that GDF-15 is an endocytic
ligand of stabilin-1 (60). We showed that impaired clearance of
GDF-15 in STAB-1–/–STAB-2–/– mice leads to severe
glomerular fibrosis and mild perisinusoidal hepatic fibrosis.
With this context, the potential implications of increased
secretion of GDF-15 added to dysfunction of its clearance
receptor in implant holders are numerous. The remark that all
macrophage phenotypes highly secreted GDF-15 under TiNPs,
highlights the possibility that GDF-15 acts in an autocrine and
paracrine matter. For instance, Jung et al. showed that rGDF-15
treatment decreases the expression of IL-6, nitric oxide synthase
2 (NOS2) and TNF-a and promotes an M2 polarization by
augmenting Arg-1, Retnla and chitinase 3-like 3 protein (Ym1)
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production in murine blood marrow-derived macrophages (42).
Therefore, GDF-15 could promote a change of phenotype from
M1 to M2 in resident and recruited macrophages. Possible
receptors for this action are TGF-b RI and II, which were
identified to bind to GDF-15 on dendritic cells promoting
immune tolerance (61). An accumulation of GDF-15 in the
peri-implant tissues could also impact other surrounding cells.
Because of its pro-angiogenic properties, increased GDF-15 in
the tissue could promote microvasculature proliferation via
GFRAL (31). Other possible target cells of macrophage-
produced GDF-15 are osteoblasts and osteoclasts precursors.
Wakchoure et al, for instance, observed that GDF-15 promotes
osteolytic lesions in mice models of prostate cancer with bone
metastasis (62). Hinoi et al. showed that anti-GDF-15 decreases
bone loss and inhibits osteoclastogenesis in mice models (63).
Westhrin et al. showed that GDF-15 promotes osteoclast
activation in osteoclasts derived from human peripheral blood
mononuclear cells while decreasing osteoblast differentiation
(64). Contrastingly, Vanhara et al, showed that GDF-15
inhibited the formation of mature osteoclasts in RAW264.7
cells (65). Interestingly, GDF-15 secretion varies with titanium
implant surface modifications, being particularly promoted by
rough surfaces (66, 67). However, the real impact of GDF-15 on
osteogenesis and implant osseointegration is still to be clarified.

Titanium debris have been shown to induce M1-polarization
and to significantly increase the production of pro-inflammatory
cytokines. IL-1b, IL-6 and TNF-a, which expression and secretion
is upregulated in macrophages after exposure to titanium debris,
also seemtoaffect thedegreeofbone resorption inparacrinematter.
Eger et al. demonstrated that the blockade of IL-1b, IL-6 and TNF-
a, using neutralizing antibodies, prevents osteolysis due to titanium
particles in mouse models (68).These findings highlights the
importance of macrophage system on the implant success and
opens the door to explore new targetable mechanisms to prevent
implant failure, such as stabilin-1/GDF-15.

Titanium implants located in other organs, such as in the
heart, can also promote fibrotic reactions via increased GDF-15
and decreased stabilin-1 expression. Indeed, GDF-15 has been
previously associated with heart remodeling and heart failure
(69). Implants containing titanium are frequently used in
cardiology, for instance, in patients with reduced ventricular
function (70). A release of TiNPs and, consequently, an
uncontrolled increase in GDF-15 could in long term promote
cardiac fibrosis and further exacerbate heart failure.
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Myelocytic depletion after clodronate treatment significantly
reduces serum GDF-15 in mice, highlighting macrophages as a
significant source of systemic GDF-15 (50). Therefore, it is feasible
that macrophage secreted GDF-15 translates into a significant
increase of GDF-15 circulating levels, increasing glucocorticoid
levels due to TiNPs-induced ER stress, which could systemically
lessen the pro-inflammatory effect of TiNPs (38, 48).

In summary, the dual effect of TiNPs on the GDF-15 over-
production and strong suppression of stabilin-1 clearance
function in macrophages can be a detrimental effect of
titanium implant debris formed with the time, which interferes
with the long-term healthy implant integration, damages the
balance between inflammation and healing processes, and is
detrimental for patients. GDF-15 can potentially have also
systemic effects and can be considered for therapeutic targeting
to eliminate titanium implant-induced complications.
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