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Social interactions are a significant factor that influence the decision-making

of species ranging from humans to bacteria. In the context of animal migration,

social interactions may lead to improved decision-making, greater ability

to respond to environmental cues, and the cultural transmission of optimal

routes. Despite their significance, the precise nature of social interactions in

migrating species remains largely unknown. Here we deploy unmanned

aerial systems to collect aerial footage of caribou as they undertake their

migration from Victoria Island to mainland Canada. Through a Bayesian

analysis of trajectories we reveal the fine-scale interaction rules of migrating

caribou and show they are attracted to one another and copy directional

choices of neighbours, but do not interact through clearly defined metric or

topological interaction ranges. By explicitly considering the role of social infor-

mation on movement decisions we construct a map of near neighbour

influence that quantifies the nature of information flow in these herds. These

results will inform more realistic, mechanism-based models of migration in

caribou and other social ungulates, leading to better predictions of spatial

use patterns and responses to changing environmental conditions. Moreover,

we anticipate that the protocol we developed here will be broadly applicable to

study social behaviour in a wide range of migratory and non-migratory taxa.

This article is part of the theme issue ‘Collective movement ecology’.
1. Introduction
Migrating species play a keystone role in the functioning of many ecosystems;

they transport nutrients, connect disparate communities and act as both major

resource consumers and prey for resident species [1]. Recent technological devel-

opments have led to an unprecedented insight into the movement patterns of

animals [2]. However, despite the fact that many species migrate in groups

[3,4], most studies of animal migration neglect the potential role of social inter-

actions on movement decisions. Much research has shown that interactions are

important to consider, both in the context of collective animal behaviour [4–8]

and more generally in the study of complex systems [9].

While the potential importance of interactions in the decision-making of

animal groups is recognized, the barrier to quantifying these interactions among

wild, free-ranging animals is the difficulty in obtaining simultaneous, fine-scale

trajectories for every animal in a group [10]. Such trajectories are more easily

obtained for small-bodied animals in a laboratory setting, and have been used

to infer rules of social interactions in several species [11–13]. Video footage has

also been used to analyse interaction rules in the field [14–16] but these studies
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are restricted to non-migratory situations, where foraging or

predator evasion, rather than navigation or large-scale move-

ment are the primary motivation.

Increasingly, GPS (Global Positioning System) collars have

been used to obtain simultaneous trajectories of multiple indi-

viduals within a group [17]. For some species that form

cohesive and stable groups, all individuals have been tracked

[18] including for migratory species such as bald ibis (Geronticus
eremita) [19]. In other cases it has been possible to track the

majority of individuals in the group. Crofoot et al. [20] were

able to capture, tag and track over 80% of the adult members

of a baboon troop (Papio anubis) and obtained high temporal res-

olution movement data over a two week period [21–24]. For

species that form dynamic groups, or those where it is only poss-

ible to track smaller proportions of the group, social interactions

have still been investigated using GPS data [25]. Several studies

have examined the relationship between individuals and group

average headings or centroids [26,27] revealing how individuals

respond to collective properties of the group. Pairwise inter-

actions have also been analysed using GPS collars [28] and

passive integrated transponder (PIT) tags [29] to infer the

structure of social networks underlying movement data.

While GPS collars are able to collect the high frequency

data required to detect and differentiate between interaction

rules [23,24,26], there are limitations. The proportion of indi-

viduals within a group that can be tracked is strongly

dependent on the size and stability of groups, and the logis-

tics of capturing and tagging animals. Recent advances in

unmanned aerial systems (UAS) [30–33] and automated

computer vision [34,35] offer a complementary technology

to the use of individual telemetry with the potential to deliver

the simultaneous trajectories needed to infer interaction rules

of wild populations in a variety of settings [10]. In this work,

we applied these technologies to understand how social inter-

actions among conspecifics influence the movement decisions

of a free-ranging migratory ungulate in the Canadian Arctic.

Barren-ground caribou (Rangifer tarandus groenlandicus) are

highly social [36] and make some of the longest terrestrial

migrations on the planet [37]. The purpose of these migrations

is to travel from more southerly wintering grounds to discrete,

population-specific, high-latitude calving grounds. Herding

behaviour is important during migration, because the locations

of, and routes to, these calving sites are passed down through

social learning [38]. Moreover, dispersal between these sites

appears to be socially mediated, through fission–fusion

dynamics on the wintering grounds [39]. Additionally, recent

research suggests that social interactions influence directional

decisions during migration [27]. However, the precise nature

of those social interactions for caribou remains unclear.

Dolphin and Union caribou are genetically different from

other barren-ground caribou (Rangifer tarandus groenlandicus)

and from Peary caribou (Rangifer tarandus pearyi) [40,41] and

display distinct behaviours. Although adopting an individua-

listic calving strategy like the Peary caribou, they aggregate in

numbers on the southern coast of Victoria Island, Nunavut,

as sea-ice forms, before crossing the ice to continue their

fall migration to their wintering grounds on the Canadian

mainland [42,43].

We developed a UAS-based approach to study in situ the

collective movement behaviour of Dolphin and Union cari-

bou. Filming was undertaken in November 2015 as the

caribou approached the coast of Victoria Island prior to cross-

ing to the mainland (see electronic supplementary material for
details). Footage was obtained using a commercially available

unmanned aerial system, the 3D Robotics Solo, and processed

using the open source computer vision package OPENCV.

Once tracked the footage resulted in 12 h 40 min worth of indi-

vidual tracks, with an average track length of 59 s and a

maximum length of 9 min. Herds consisted of up to 51 individ-

uals with an average herd size of 15.26. We use a Bayesian

approach to infer interaction rules [13,,44,45] for groups of

migrating caribou and predictive information criteria [46,47]

to determine the most parsimonious mathematical description

of these interactions.

A still image taken from the obtained video footage is

shown in figure 1. From the tracked data positions and head-

ings of all individuals were recorded. Heat maps of relative

positions and orientations of neighbours are shown in

figure 2. These heat maps emphasize the clear tendency of

caribou herds to form lines as they migrate. Figure 2a
shows that neighbour density is centred front and back of

an individual at a distance of approximately 2 m. The lines

caribou form tend to be well-aligned with lower variance in

heading along the front-back axis (figure 2b). Although

there is higher variation in the headings of neighbours to

the left and right of individual caribou, figure 2c shows that

herds display consistent aligned motion.

From continuous trajectories properties of caribou move-

ment were calculated. Figure 2d shows the autocorrelation in

movement direction for all individuals. A change in the rate

of decay in correlation is apparent after 2 s so we select this

interval as the time scale for our analysis; however, our

results were not sensitive to this particular value (see

electronic supplementary material, figure S4).
2. Movement model
To analyze movement decisions we employ a discrete-time

continuous-space biased random walk model. Based on the

autocorrelation of the continuous trajectories we discretize tra-

jectories into movement steps of 2 s duration then, following

the approach of McClintock et al. [48], each movement step

is modelled as a random draw from a wrapped Cauchy distri-

bution centred on an expected heading. The probability the

movement step at time t is in the direction ut is given by

P(utjr,a) ¼ 1

2p

1� r2

1þ r2 � 2r cos (ut � lt(a))
, ð2:1Þ

where lt is the expected heading defined as a function of

model parameters a, and r determines the variance around

this heading, i.e. the amount of unpredictability of the

movement process.

The expected heading for each step reflects a tendency for

movement to be biased by a variety of factors, including environ-

mental features, the positions of conspecifics and the persistence

of individual motion. Within the framework proposed by

McClintock et al. [48] various drivers of movement may be incor-

porated into the model by taking lt to be a weighted average of

the heading indicated by each potential influence.

Given a model of lt, equation (2.1) allows us to obtain a

likelihood function for the parameters of the model and the

predictability of movement r given this model (see electronic

supplementary material for further details). From this likeli-

hood function, we may compare the performance of

various models of interaction and employ computational
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Figure 1. Study system. (a) Map of study area on Victoria Island, Canada. Red stars indicate location of (multiple) UAV flights. (b) Portion of a still from
UAV-collected video footage of caribou herd.
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Bayesian methods using the PYMC package [49] to obtain

posterior distributions of parameter values conditional on

the observed data.

In total, we compare eight models that incorporate three

potential drivers of movement decisions: directional persist-

ence, environmental features and social cues. The expected

heading used within equation (2.1) is a weighted average of

the headings associated with each of these factors,

lt ¼ atan2(a sinct þ b sinft þ g sin ut�1,a cosct

þ b cosft þ g cos ut�1),
ð2:2Þ

where a þ b þ g ¼ 1, ct is the heading dictated by social

cues, ft is an estimate of environmental forces, and ut21 is

the previous heading.

By taking a ¼ b ¼ 0 we obtain the simplest model that

assumes movement follows a correlated random walk [50].

Here the only predictor of step direction is the heading at

the previous time step. If b . 0 then a model that incorpor-

ates the features of the environment, such as trails or

obstacles, is obtained. As the true nature of these features is

unknown, we estimate these features as in Dalziel et al. [27]

by examining the average heading of all individuals within

the herd at each fixed point in space.

To incorporate the effects of social cues on movement

decisions and create a socially informed correlated random

walk model [51], we incorporate a social heading into the

model that is a function of the headings and positions of

near neighbours. We evaluate the performance of three forms

of interactions: a metric interaction zone where individuals

are influenced equally by all neighbours within a fixed range,

a topological interaction model where the nearest K neighbours

affect decisions, and a model where influence decays exponen-

tially with distance, akin to the local crowded horizon model

proposed in Viscido et al. [52]. We assess all three sets of
interaction rules, with and without alignment forces, meaning

a total of six socially informed movement models are com-

pared. The mathematical details of each of these models can

be found in the electronic supplementary material along with

a validation of the approach on individual-based simulations

of interacting and non-interacting individuals responding to

various external cues.
3. Model comparison
The different models described above were compared using

two predictive information criteria, WAIC (widely applicable

information criterion) [53] and DIC (deviance information cri-

terion) [54]. Both these model comparison statistics make use

of the posterior parameter distributions to estimate out-of-

sample model fit. They are thus less reliant on the asymptotic

assumptions of criteria based on maximum-likelihood esti-

mates and have been shown to be effective tools in the

analysis of collective movement data [55].

Relative scores and model rankings are shown in table 1

while posterior statistics from Markov chain Monte Carlo

(MCMC) runs are shown for each model in the electronic sup-

plementary material. The results in table 1 show clearly the

influence of social interactions on the fine-scale movements

of caribou. The random walk model, which is simply a corre-

lated random walk, is the worst performing model and we

take this as a baseline for model scores. A significant improve-

ment is attained if we also make use of the average headings of

the herd (excluding the focal individual) at each point in space.

This environment model makes use of herd movements to esti-

mate the environmental pathways that individuals follow but

has no explicit inter-individual interactions.

By incorporating social behaviour, models are greatly

improved, with all models that include direct social



6

135°

90°

315°

45°

1.0

1.0

6
5
4
3
2
1
0

0.9

0.8

0.8

0.7

0.6

0.6

0.5

0.4

0.4

0.3

0.2

0.2

0.1

0

0
0 1 2 3

time (s) turn angle (°)
4 5 6 –30 –20 –10 0 10 20 30

270°

225°

back front

135°

90°

315°

45°

270°

225°

back front

135°

90°

315°

45°

270°

225°

back front

5
4
3
2

(m
)

(m
)

ne
ig

hb
ou

r 
de

ns
ity

(×
0.

1)
re

la
tiv

e 
he

ad
in

g

co
rr

el
at

io
n

pr
ob

ab
ili

ty
 d

en
si

ty

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

ci
rc

ul
ar

 v
ar

ia
nc

e

1
0

6
5
4
3
2

(m
)

1
0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

(e)

(b)(a)

(c) (d )
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interaction outperforming the simpler models. The closest

approximation to the real interactions between caribou is

found using the exponentially decaying model with align-

ment. A plot of the weighting given to neighbours in the

best-fitting model is shown in figure 3a. We note that both

information criteria provide almost identical model rankings,

with only the exponential decay and metric models without

alignment showing inconsistent results.

All models with alignment forces display a better agree-

ment with the data, showing that both attraction and

copying directional choices play an important role in driving

movement decisions, and this finding is independent of the

exact model used to approximate interactions. In order to

better understand the relative performance of the models,

models are set at their maximum-likelihood parameter

values and the difference in their performance as a function

of the distance to the nearest and second nearest neighbours

is shown in figure 3b–c. The average difference in the prob-

ability of an observed movement step given the exponential

model and the topological model is shown in figure 3b,

while the difference between the exponential model and the

metric model is shown in figure 3c.

While the plots are smoothed and do not represent a

formal analysis of the effect of distance, they do provide a

heuristic insight into the reasons for the performance of the

models. The topological model most closely matches

the data when only a single neighbour exerts influence (as

the optimal value of K ¼ 1). Figure 3b shows that the
topological model performs badly when this closest neigh-

bour is far away, as the model assumes this individual

exerts an influence when it is effectively out of range. The

topological model also performs far worse than the metric

model when the second closest neighbour is nearby. This

reveals that the second neighbour is important and impacts

decisions, although not with the same weight as the closest

neighbour.

The difference in influence of neighbours is clear when

comparing the metric model (all neighbours weighted

equally) with the exponentially decaying model as shown

in figure 3c. The decaying model performs better when

both the first and second neighbours are close by as it pro-

vides less weighting to the information provided by the

second individual. The metric model is better when the clo-

sest neighbour is further away. In this scenario the

decaying model is optimized to accurately reflect the relative

weighting between first and second neighbours, and

performs badly when these neighbours are both further away.
4. Variation in social information use
Model comparisons were performed under the assumption

that all individuals make use of social cues in the same

manner. In reality this will not be true and we expect that

age, sex, social status and reproductive status will affect the

use of social cues. Variation in an individual’s behaviour
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Table 1. Model selection scores.

model social DWAIC rank DDIC rank

exponential decay þ alignment Y 23265 1 23306 1

metric þ alignment Y 23213 2 23226 2

metric Y 23166 3 23176 4

exponential decay Y 23160 4 23187 3

topological þ alignment Y 23031 5 23050 5

topological Y 22933 6 22959 6

environment N 21768 7 21770 7

random walk N 0 8 0 8
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over time will also occur due to the changing motivations

and pressures that drive caribou movement patterns through-

out the year. Detecting variation in social information use

between and within individuals will provide important

insight into the leadership dynamics of these herds, and

also help reveal the drivers of the migration.

Within the framework outlined above we are able to

detect significant variation in the behaviour of individuals

according to their life stage. We manually classified each cari-

bou as either a calf, an adult (small bulls, cows and yearlings)

or a large bull. Assignment was performed after trajectories

were linked and the process involved iterating over all
individual tracks, displaying a zoomed-in video of the indi-

vidual in question, then manually annotating the track with

a key to indicate its demographic class.

The parameters of the interaction model are then inferred

using MCMC methods [49]. First comparing the overall soci-

ality of each class, we observe that calves display higher

reliance on social cues, while the more mature bulls are far

more autonomous and give lower weighting to near-neighbour

interactions (figure 4a). Variation is also observed in

the nature of interactions themselves. In figure 4b the align-

ment strength for adults and calves is shown. There is a

clear difference here with calves showing little alignment,
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meaning maintaining proximity is the primary motivation.

Adults, however, make greater use of the directional cues

provided by neighbours.

These results are consistent with prior expectations about

how different individuals are influenced by social interaction;

however, they reveal that the framework we employ is able

to detect and quantify this variation. This shows that our

inferential framework is a means to examine how social infor-

mation is used at different life stages, how this behaviour

varies throughout the year, and whether persistent variation

in tendencies to lead or follow [56] are found within certain

individuals.
5. Discussion
Our study quantifies the role of social influence on fine-scale

movement decisions in migrating caribou. In contrast to pre-

vious studies on other species, our results suggest that both

alignment and attraction forces are important and that neither

metric (interacting with all neighbours within a fixed distance)

nor topological (interacting with the nearest K neighbours)

interaction rules best represent the data. Instead a model

that assigns a relative weighting to neighbours according to

distance best approximates the underlying decision process.

Additionally, we reveal there are strong differences in both
the strength and nature of social information use between

different sexes and age classes.

Although a discrete time model, the correlated random

walk model is designed to cope with directional persistence

[57], hence our approach is robust to the choice of time step.

To ensure our results hold as the time step varies we per-

formed our analysis using discrete time intervals of varying

lengths from 1 to 10 s. We find our results are consistent over

different intervals with the exponential decay model the best

fitting model for each choice of interval (these results are

shown in the electronic supplementary material, figure S4).

Further, we examine the properties of the social vectors that

result from each of our models and find there is nothing inher-

ently more predictive about the social vectors for each model in

terms of how stable they are over time, or how variable they are

(see the electronic supplementary material, figure S3).

While animal social interactions are complex and cannot

be represented mathematically in all but the simplest of organ-

isms, our approach shows that models can provide insight into

the key factors driving movement decisions. The modelling

framework developed in McClintock et al. [48] combined

with empirical estimation of social and environmental influ-

ence, such as those revealed in this work, have the potential

to create flexible, yet rigorous, predictive models of movement

for a range of taxa and environments.

The need for powerful movement and spatial use models

is especially apparent for migratory species. As, by their

nature, migratory populations cover a large area, the effect

of a cessation of a migration has far-reaching ecological and

sociological implications for the communities and ecosystems

involved [1,58,59]. In the case of caribou, extensive efforts

have been made to model their movement in an attempt to

better understand their ecology and predict the future

impacts of development and climate change [60–64]. Collec-

tive behaviour is ubiquitous in migratory populations such as

these, and is thought to play a key role in driving patterns of

migration and dispersal [65–68]. As movement decisions are

frequently collective decisions that are influenced by the

nature of social interactions and group level properties, it is

essential that collective behaviour is incorporated into the

modelling framework [69,70].

Ultimately, collective behaviour is important because social

dynamics can have population-level implications [71]. For

example, they can influence trophic interactions [72,73] and

population dynamics [8] and lead to density-dependent dis-

persal [66]. In the context of migration, theory suggests that

social travel [74] can lead to sudden collapses in migratory

populations and a cessation of the migration [75,76]. Consistent

with that hypothesis, the Dolphin and Union caribou studied

here stopped migrating in the early 1900s when the population

reached very low numbers [77]. The migration resumed in the

mid-1970s once the population had increased [43,59,78], how-

ever further investigation is required in order to establish the

mechanism and direction of causality underlying this link

between migratory behaviour and population size.

The framework we have developed has the potential to

provide much insight into the behaviour of natural popu-

lations. If embedded within longitudinal studies and

combined with movement and environmental data collected

at multiple scales [79], this approach will contribute to our

understanding of how individual behaviour scales up to

effective group-level functioning in a wide variety of taxa

and ecological contexts.
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6. Material and methods
All video processing was performed using open source freely

available software packages. For computational Bayesian calcu-

lations we used the PyMC software package [49]. Further details

of all methods can be found in the electronic supplementary

material.
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