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RBS in a Chinese adolescent with novel biallelic ESCO2 variations and complex

Methods: Medical history, neurological examinations, neuroimaging, and pa-
thology were collected in the proband and the family. Whole exome sequencing

(WES) with copy number variation analysis was performed to screen for genetic
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mations together with complex cerebrovascular diseases. She suffered ischemic
stroke at 6years old and died of cerebellar hemorrhage secondary to an aneurysm
at 13 years old. Besides, neuroimaging showed the triad of leukoencephalopathy,
calcifications, and cysts. Brain histopathology revealed angiomatous changes
and perivascular cysts suggesting chronic small cerebral vasculopathy. Whole
exome sequencing (WES) identified novel biallelic variations in the ESCO2 gene
(c.1220A>T, p.H407L and c.1562delC, p.A521fs).

Conclusions: We describe complex cerebrovascular diseases in Roberts syn-
drome caused by novel ESCO?2 biallelic variations. This case expands not only the
cerebral involvement in Roberts syndrome but also the disease spectrum of the
neuroimaging triad with leukoencephalopathy, calcifications, and cysts.
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1 | INTRODUCTION OMIM#269000), is a rare autosomal recessive devel-
opmental disorder caused by mutations in the cohe-
Robertssyndrome (RBS), also known as Roberts-SC phoc- sion regulator establishment of cohesion 1 homolog 2

omelia syndrome (RBS OMIM#268300; SC phocomelia (ESCO2) (Vegaetal., 2005). It was first described in 1919
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by John Roberts in affected siblings in a consanguineous
Italian family. SC phocomelia was reported as a similar
but milder disease by Herrmann et al in 1969. The two
syndromes were united as RBS after the discovery that
both disorders were due to ESCO2 mutations (Maserati
etal., 1991; Schule et al., 2005; Vega et al., 2010). Patients
with RBS are characterized by symmetric hypomelia
varying from tetraphocomelia to less severe limb ab-
normalities and craniofacial abnormalities (Maximo
etal., 2021; Okpala et al., 2022; Schneeberger et al., 2020;
Vega et al., 2010). Pre- and postnatal growth are delayed,
as well as mild-to-severe mental retardation. The upper
extremities are more affected than the lower extremities.
Other limb abnormalities include oligodactyly with hy-
poplasia or thumb aplasia, clinodactyly, syndactyly, and
flexion contractures of knees, ankles, wrists, or elbows.
Craniofacial abnormalities include microcephaly, hy-
pertelorism, hypoplastic nasal alae, malar hypoplasia,
micrognathia, midfacial hemangioma, cleft lip/palate,
ear malformation, down-slanting palpebral fissure, and
corneal opacities. Neurological complications are rarely
reported but include optic atrophy, stroke, arterial oc-
clusion, cavernous hemangioma of the optic nerve, and
Moyamoya disease (Afifi et al., 2016; Sezer et al., 2019;
Vega et al., 2010).

Here, we report Roberts syndrome in a Chinese adoles-
cent with novel biallelic ESCO2 variations and complex
cerebrovascular diseases.
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2 | CLINICAL REPORT

2.1 | Case presentation
The proband (II-2) was a 13-year-old girl from a non-
consanguineous Han Chinese family living in northern
China. She was admitted to our hospital due to headache,
dizziness, and vomiting for 2days. She was full-term and
normally delivered with a birth weight of 2.1kg (<3SD)
and a circumference of 28.3cm (<3SD). At birth, facial
and limb deformities were noted. Motor development was
delayed and mental development was slightly delayed.
She suffered from hemiparesis at 8 years old and was diag-
nosed with ischemic stroke at an outside university hospi-
tal. The recovery at that time was adequate, without major
sequela. There was no history of hypertension or diabetes.

The proband's parents are healthy. Her elder brother
(I1-1) was born prematurely at 34 weeks. But he did not re-
ceive thorough prenatal examinations. Microcephaly, hy-
poplastic facial features, and tetraphocomelia were noted
at birth. He died shortly after birth without postnatal cy-
togenetic testing. Her younger brother (II-1) was currently
1year old without any notable physical and mental abnor-
malities (Figure 1a).

On physical examination, the proband was short with
a height of 137cm (<3SD) and weight of 32kg (<2SD).
Supine blood pressure was 160/96 mm Hg. Her speech was
slurred but understandable. Craniofacial malformation
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FIGURE 1 Genetic data of the
Chinese family with RBS. (a) The

family tree. (b) Sanger sequencing of

the proband. (c, d) The wild type and
mutated zinc finger structure of ESCO2
in mouse. The zinc finger consists of

two p-strands and one a-helix, with the
zinc ion wrapped in the center for the
wild type. The four amino acid residues
that directly interact with zinc ion are
Cys386, Cys389, His404, and His408,
constituting the C2H2 motif. The His407
residue in humans just corresponds to the
His404 residue in mouse. The zinc finger
formation will be affected when the His
residue is mutated to Leu.
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included telecanthus and cleft palate. The motion of shoul-
ders, wrists, hips, knees, and ankles were in full range, but
elbows were fixed. She could not extend the distal inter-
phalangeal joints of her fingers and toes. Neurological ex-
aminations revealed intact cranial nerves, muscle strength
of grade 4 (Medical Research Council Scale), brisk tendon
reflexes, Babinsky sign, and meningeal irritation signs.
Wechsler Children Intelligence Scale score was 65 (nor-
mal range 90-109).

The proband (II-2) underwent peripheral blood test-
ing and radiological examinations. Peripheral blood tests
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included complete blood count, serum liver and renal
function, electrolytes, glucose, antinuclear antibody pro-
files, thyroid and parathyroid hormones, vitamin B12, and
folic acid levels. Radiographic analyses included brain and
chest CT, brain MRI, and ultrasonography of the heart, ab-
domen, and urinary system.

Brain CT on admission showed cerebellar vermis
hemorrhage, multicortical calcifications, and cavities
(Figure 2). On MRI, hyperintensities in the cerebellar ver-
mis were noted on T1WI images. Leukoencephalopathy
and multilacuna or cysts were noted on T2WI and FLAIR

FIGURE 2 Brain CT showed cerebellar hemorrhage, white matter abnormalities, and calcifications. (a-h) First CT images on
admission. (i-1) Second CT showed enlarged hemorrhage. White arrows indicate calcifications in the cortex. Black arrows indicate cerebellar

vermis hemorrhage and hemorrhage breaking into ventricles.
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images (Figure 3). The calcifications seen on CT were less
evident on the TIWI and T2WI images. Aneurysms in pos-
terior inferior cerebellar artery and anterior cerebral artery
were displayed on 3D-TOF MRA. Cerebellar hemorrhage
was secondary to the rupture of the aneurysm in posterior
inferior cerebellar artery. She received anti-hypertensive
agents. One day later, the patient suddenly became agi-
tated with blood pressure elevating to 210/125mmHg. A
few minutes later, she was in a coma and lost spontaneous
breathing with bilaterally dilated pupils. Bolus mannitol
was given intravenously and endotracheal intubation was
administered. Subsequent brain CT showed enlarged cere-
bellar hemorrhage breaking into the lateral and fourth ven-
tricles (Figure 2). She underwent emergent neurosurgery
to clear the hematoma. Her condition did not improve and
she died 12days post the operation. Considering her critical
condition, X-ray of her extremities was not performed, but
adduction and flexion of the elbows due to humeroradial
synostosis could be seen on chest CT.

As the proband underwent neurosurgery due to cere-
bellar hemorrhage, cerebellar tissue was taken for patho-
logical examination. HE staining and special vascular wall
staining including elastic fiber (for artery), Masson (for
fibrinoid substance) and Congo red (for amyloid) were
performed. Cerebellar tissue pathology revealed irreg-
ular angiomatous vessels with varying thicknesses and

perivascular cysts (Figure 4). Some lumens were dilated
and some were narrowed with thrombus. Inflammatory
cells were infiltrated in the mesenchyma. Elastic fiber,
Masson, and Congo red staining for vascular wall were all
negative. Pathological findings support microangiopathic
changes.

2.2 | Genetic investigations

Genomic DNA was obtained from peripheral blood in the
proband (II-2) and three family members (I-1, I-2, and II-
3). Whole exome sequencing (WES) with copy number
variation (CNV) analysis was performed in the proband.
Protein-coding exome enrichment was performed by
xGen Exome Research Panel v1.0 (IDT). High-throughput
sequencing was carried out by Illumina NovaSeq 6000
series sequencer (PE150). Genetic variants were filtered
and annotated as previously described (Chen et al., 2022).
The average sequencing depth was 229x%, and the coverage
rate was 99.81%. The coverage rate above 20x was 99.5%.
CNV analysis was performed by CNV kit using WES
data from the proband and reference samples. The refer-
ence panel was constructed from 30 samples in the same
batch of WES experiments. NCBI RefSeq gene set, DGV,
OMIM, and ClinVar databases were used to annotate the

FIGURE 3 Brain MRI on admission.
(a, b) Axial T2WI images. (c, d) MRA.
Leukoencephalopathy (white arrow)
was noted in the deep white matter and
external capsule on T2WI images. Most
of the lacuna or cysts (arrowhead) were
located within the white matter lesions.
Calcifications on CT were not evident

on MRI. Aneurysms in posterior inferior
cerebellar artery and anterior cerebral
artery were seen on MRA (black arrows).
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FIGURE 4 Cerebellar histological findings showing
microangiopathy and cysts (HE). Proliferation of vessels was seen
with varying wall thickness and lumen size (black arrows). Hyaline
degeneration was found in some vessel walls. These indicate
microvascular angiomatous changes. Perivascular cyst formation
(red arrows). Inflammatory cells were infiltrated in mesenchyma
(white arrows).

yielded CNVs. As the neuroimaging abnormalities indi-
cated leukoencephalopathy with brain calcifications and
cysts (LCC), the SNORD118 gene was also screened using
sanger sequencing.

3 | RESULTS

The proband harbored compound heterozygous varia-
tions: ¢.1220A>T (p.His407Leu) in exon 7 and c.1562delC
(p-Ala521fs)inexon 10 ofthe ESCO2gene (NM_001017420,
NP_001017420.1) (Figure 1b). The proband's father and
mother carried the ¢.1220A>T and c.1562delC variations,
respectively. His younger brother (II-3) did not carry any of
the above variations. Both variations are not present in the
normal controls in gnomeAD, ESP6500, EXAC, and 1000
Genomes Project databases, or HGMDpro and ClinVar da-
tabases. According to VarCards, an integrated functional
prediction program, among the 23 prediction algorithms,
21 supported a deleterious effect for p.His407Leu. The
REVEL score is 0.94 (damaging), the CADD score is 29.4
(damaging), and the ClinPred score is 0.999 (pathogenic).
No clinically significant CNVs were found in the proband.
We screened for leukoencephalopathy or calcification-
related genes using WES data or sanger sequencing, but
no meaningful variations were found.

The p.H407L variation is located in the C-terminal
conserved zinc finger motif of ESCO2, while the p.A521fs
variation is located within the acetyltransferase domain,
leading to truncation. For p.H407L, protein stability pre-
diction by DUET reveals decreased stability with the AAG
increase of 0.039kcal/mol. The zinc finger structure of

Open Access,

ESCO2 has been resolved in mouse (Accession number:
6sp0). It consists of two p-strands and one a-helix, with
the zinc ion wrapped in the center (Figure 1c). The four
amino acid residues directly interacting with the zinc ion
are Cys386, Cys389, His404, and His408, constituting the
C2H2 motif. The His407 residue in humans just corre-
sponds to the His404 residue in mouse (Ajam et al., 2020).
The zinc finger formation is affected when the His resi-
due is mutated (Figure 1c,d). We speculate this His407Leu
variation may affect the binding of ESCO2 to target
DNA, which in turn affects the expression of the genes it
regulates.

The proband's manifestations were consistent with
RBS-SC phocomelia caused by mutations of ESCO2.
Although the genetic data of proband's elder brother (II-
1) were not available, current genetic data of the family
supported the autosomal recessive inheritance model and
genotype-phenotype segregation. Accordingto ACMG/AMP
2015 guidelines, both variations were interpreted as likely
pathogenic for c.1220A>T (PM1+PM2+PM3+PP3+PP4)
and c.1562delC (PVS1 +PM2+PM3+PP4).

4 | DISCUSSION

RBS has rarely been reported in the Chinese population.
One prior study (Zhu et al., 2022) provided detailed ul-
trasound characteristics for the prenatal diagnosis of
RBS. Here, we report a juvenile patient of RBS in a non-
consanguineous Chinese family.

Clinical presentation of this RBS case is unique in the
central nervous system complications, with less severe
craniofacial and limb malformations. The proband's elder
brother had severe craniofacial and limb deformities and
died shortly after premature birth. The intra-family phe-
notypic heterogeneity is common in Roberts syndrome.

The causative gene for RBS is the establishment of co-
hesion 1 homolog 2 (ESCO2) (Vega et al., 2005). ESCO2
encodes for a 601-amino protein that targets the DNA-
binding cohesin complex. ESCO2 belongs to the Ecol
family of acetyltransferases involved in the establishment
of sister chromatid cohesion during S phase and post-
replicative sister chromatid cohesion induced by double-
strand breaks. Loss of function of ESCO2 leads to faulty
chromosomal cohesion and aberrant expression of genes
that it regulates, which play a key role in RBS birth de-
fects (Vega et al., 2010). Recent studies have highlighted
the involvement of oxidative stress damage in this process.
In normal cells following DNA damage, transiently gener-
ated reactive oxygen species (ROS) combine with ESCO2
to promote DNA repair. When ESCO2 is mutated, DNA
repair is hampered. And ROS are further induced by DNA
repair defects (Mfarej & Skibbens, 2020).
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According to the HGMD database, 30 pathogenic muta-
tions in ESCO2 have been reported. The mutation spectrum
includes missense/nonsense (n=6), splicing (n=5), small
deletions (n=12), and small insertions (n="7). Most of the
mutations cause frameshift effects, resulting in protein
truncation or mRNA instability, which ultimately leads to
loss of function of ESCO2. Cytogenetically, heterochroma-
tin repulsion (HR) appears in all RBS-SC phocomelia pro-
bands and is closely linked with ESCO2 mutations (Schule
et al., 2005). There are no clear genotype-phenotype cor-
relations. Another rare mild phenotype named Juberg-
Hayward syndrome was also reported.

Cerebrovascular complications are rare in Roberts
syndrome. One interesting finding in the current case is
complex cerebrovascular diseases. At 6years old, she ex-
perienced ischemic stroke. She died of cerebellar hemor-
rhage secondary to vascular defects at age of 13. Besides,
neuroimaging in the proband showed the triad of leu-
koencephalopathy, calcifications, and cysts. In the lit-
erature, cerebrovascular diseases were reported in only
a few Roberts patients with some case presentations
being far back in time and not in detail (Van Den Berg
& Francke, 1993). Spontaneous intracranial hemorrhage
and multiple intracranial aneurysms were reported in a
patient with Roberts syndrome in 2011 (Wang et al., 2011).
Theoretically, as a developmental disease, neurovascular
abnormalities in Roberts syndrome could occur just as
other developmental defects. As in the current case, only
a few mildly affected Roberts patients could survive into
adulthood. Thus, cerebral abnormalities may not be com-
prehensively screened.

This neuroimaging triad should be differentiated
from other diseases with similar neuroimaging, in-
cluding leukoencephalopathy with brain calcifications
and cysts (LCC), Coats plus syndrome, and Aicardi-
Goutieres syndrome (AGS). Calcifications in the current
case were mainly cortical. In LCC, Coats plus, and AGS,
calcifications are mainly located in the deep nuclei.
Most of the cysts in the proband were located within
white matter lesions. Several cysts had surrounding hy-
perintensities on the FLAIR-MRI sequence. Although
she had ischemic stroke at 8 years old, we infer that most
of the cysts are ischemic, but not due to chronic cere-
bral infarction. If these cysts were post-stroke changes,
her motor function would be severely limited. In fact, in
LCC, Coats plus syndrome, and AGS, most cysts are not
classic epithelial cysts. In LCC, the cyst wall could have
calcification and contrast enhancement, and in Coats
plus syndrome, the cyst can have surrounding edema
(Goncalves et al., 2020).

There is increasing evidence that Coats plus syndrome
and LCC are pathologically alike. The primary pathologi-
cal change seems to be an occlusive small cerebrovascular

disease. Chronic ischemic necrosis of brain tissue leads
to dystrophic calcification, which eventually forms cysts
and leukoencephalopathy (Kleinschmidt-Demasters
et al., 2009; Nagae-Poetscher et al., 2004; Paff et al., 2022).
Therefore, the two diseases could be considered heredi-
tary cerebral small vessel diseases (HCSVD). For this case,
similar images of LCC, ischemic and hemorrhagic stroke,
and brain histopathology also point to small cerebral
vasculopathy.

LCC is an autosomal recessive disease resulting from
SNORD118 gene variations. SNORDI118 encodes U8
snoRNA, which is involved in the cleavage event during
the maturation of the large ribosomal subunit 5.8S and
28SRNA (Mcfadden & Baserga, 2022). Coats plus syn-
drome is associated with variations in CTCI1, POT1 and
STNI1. The three proteins make up the conserved trimeric
complex CST (CTC1-STN1-TEN1) which participates in
controlling the length of telomeric 3’ G-overhangs, DNA
replication, and DNA damage repair. For AGS, the mu-
tated genes are mainly TREX1 and MASEH2b. Disruption
of TREX1 enzymes fails to maintain host immune tol-
erance to cytosolic self-DNAs and results in aberrant
innate immune responses. Although the specific patho-
genic mechanisms underlying these disorders are not
completely understood, these genes, including ESCO2 in
RBS, are all involved in DNA replication, transcription,
damage repair, and immune tolerance. This implies that
the four diseases may share some common pathogenic
mechanisms.

In conclusion, we describe complex cerebrovascular
diseases in Roberts syndrome caused by novel ESCO2 bi-
allelic variations. This case expands not only the cerebral
involvement in Roberts syndrome but also the disease
spectrum of the neuroimaging triad with leukoencepha-
lopathy, calcifications, and cysts.
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