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Abstract

Introduction

Pulmonary Surfactant reduces surface tension in the terminal airways thus facilitating breath-

ing and contributes to host’s innate immunity. Surfactant Proteins (SP) A, B, C and D were

recently identified as inherent proteins of the CNS. Aim of the study was to investigate cere-

brospinal fluid (CSF) SP levels in hydrocephalus patients compared to normal subjects.

Patients and Methods

CSF SP A-D levels were quantified using commercially available ELISA kits in 126 patients

(0–84 years, mean 39 years). 60 patients without CNS pathologies served as a control

group. Hydrocephalus patients were separated in aqueductal stenosis (AQS, n = 24), acute

hydrocephalus without aqueductal stenosis (acute HC w/o AQS, n = 16) and idiopathic nor-

mal pressure hydrocephalus (NPH, n = 20). Furthermore, six patients with pseudotumor

cerebri were investigated.

Results

SP A—D are present under physiological conditions in human CSF. SP-A is elevated in dis-

eases accompanied by ventricular enlargement (AQS, acute HC w/o AQS) in a significant

manner (0.67, 1.21 vs 0.38 ng/ml in control, p<0.001). SP-C is also elevated in hydroce-

phalic conditions (AQS, acute HC w/o AQS; 0.87, 1.71 vs. 0.48 ng/ml in controls, p<0.001)

and in Pseudotumor cerebri (1.26 vs. 0.48 ng/ml in controls, p<0.01). SP-B and SP-D did

not show significant alterations.

Conclusion

The present study confirms the presence of SPs in human CSF. There are significant changes

of SP-A and SP-C levels in diseases affecting brain water circulation and elevation of intracranial
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pressure. Cause of the alterations, underlying regulatory mechanisms, as well as diagnostic

and therapeutic consequences of cerebral SP’s requires further thorough investigations.

Introduction

Surfactant proteins (SPs) are part of the pulmonary surfactant, a thin layer covering the alveo-
lar surface serving three main purposes (i) decreasing the surface tension at the air-tissue inter-
face to prevent the collapse of the small airways at the end of expiration (ii) facilitating the
clearance of airborne pathogens and (iii) regulating the local innate and adaptive immune
response [1,2]. The pulmonary surfactant consists of approximately 90% lipids and 10% surfac-
tant proteins A, B, C and D [3]. Both components–lipids and proteins are essential for surfac-
tant functionality [1,2,4]. SPs can be subdivided into two different groups regarding both—
structure and mode of action: the relatively large hydrophilic collectines (SP-A and SP-D) and
the much smaller, highly hydrophobic proteins SP-B and SP-C.

Surfactant protein A (SP-A) and surfactant protein D (SP-D) help to maintain the physico-
chemical properties of the surfactant layer. Furthermore, both molecules are opsonins, facilitat-
ing the elimination of invading pathogens and dead cells in the lungs and other organs [3,5].
SP-A and SP-D therefore have been considered as pre-assembled, broad-spectrumantibodies
of the innate immune system [5].

The hydrophobic proteins SP-B and SP-C strongly interact with phospholipids, thus form-
ing and stabilizing the pulmonary surfactant layer [6–8]. Lack of SP-B and / or SP-C leads to
an increase of intraalveolar surface tension, resulting in endexspiratory collapse of the distal
airways, atelectasis and finally respiratory distress syndrome, which can be treated with surfac-
tant preparations [9]. In fact the use of surfactant protein containing preparations reduced
mortality of respiratory distress syndrome of neonates by approximately 50% [9]

Recently our group detected surfactant proteins as inherent proteins of the CNS [10]. The dis-
tribution patterns of SP-A and SP-D were slightly different from SP-B and SP-C. The more rheo-
logically active SP-B and SP-C were detected in choroid plexus and ependymal cells of the brain
and spinal canal, representing the major sites of CSF formation and the CSF–tissue interface. The
opsonins SP-A and SP-D were found at the sites of the blood-brain and the blood-CSFbarrier,
respectively [10]. Furthermore the SPs were also found in significant concentrations in the CSF.

CSF net flow comprises of a pulsatile convective flow of different frequencies (e.g. heart
cycle and breathing), diffusion and active transport across barriers of the CNS [11]. Since SP
modulate the rheological properties of the fluid layer within the distal airways, they might con-
tribute to the regulation of CSF flow. As a consequence, different hydrocephalic conditions
might show an altered cerebral SP homeostasis.

Therefore, the aim of the present study was to analyze differences in CSF-SP levels between
normal subjects and patients suffering from idiopathic normal pressure hydrocephalus (NPH),
aqueductal stenosis (AQS), acute hydrocephalus without aqueductal stenosis (acute HC w/o
AQS) and pseudotumor cerebri (PC).

Patients and Methods

Patients

CSF specimens of 126 patients were examined. All patients or caregivers gave their written
informed consent for the scientific use of CSF-samples and analysis of clinical and radiological
data. The study was approved by the local ethics committee (Ethikkommission Universität
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Leipzig Az 330-13-18112013). Specimens of 60 subjects without conclusive proof of neurologi-
cal pathologies specimens were used as control group. Those specimens were obtained during
the diagnostic workup that necessitated CSF examination by lumbar puncture (e.g. exclusion
of subarachnoid hemorrhage, demyelinating disease,meningitis). Furthermore CSF samples
were obtained from 66 patients that underwent diagnostic workup and treatment of hydro-
cephalus or pseudotumor cerebri. Hydrocephalus patients were categorized into the following
pathophysiological entities after the review of patient records and brain imaging: aqueductal
stenosis (AQS), acute hydrocephalus without aqueductal stenosis (acute HC w/o AQS) and
normal pressure hydrocephalus.

24 patients who revealed narrowing or obstruction of the Sylvian aqueduct with corre-
sponding enlargement of the lateral ventricles and the 3rd ventricle in cranial imaging were
classified as AQS [12].

20 Patients with the classic triad of symptoms of idiopathic NPH (gait disturbance, urinary
incontinence, dementia) and typical morphological criteria in brain imaging (ventriculomegaly
and tight convexity sulci in combination with enlarged Sylvian fissures) were included after
standardized clinical and radiological examination [11,13,14,15,16]. The group of patients with
acute hydrocephalus without aqueductal stenosis (Acute HC w/o AQS, n = 16) was a heteroge-
nous group of patients with acute hydrocephalus of different pathophysiology: posthemor-
rhagic, postinfectious and idiopathic hydrocephalus without radiological proof of occlusion of
ventricular CSF outflow (also termed communicating hydrocephalus). All acute HC without
AQS patients presented signs of elevated intracranial pressure. Furthermore six patients meet-
ing the criteria for pseudotumor cerebri (PC) were included [17].

Quantification of Surfactant Proteins in CSF

Quantification of surfactant protein concentrations was performed using enzyme-linked
immunosorbent assays (ELISA) according the manufacturers manual. Commercially available
enzyme-linked immunosorbent assay kits (USCN, Wuhan, China) were used to quantify the
amount of SP-A (E90890Hu, ELISA Kit for Surfactant Associated Protein A), SP-B
(E91622Hu, ELISA Kit for Surfactant Associated Protein B), SP-C (E91623Hu, ELISA Kit for
Surfactant Associated Protein C) and SP-D (E91039Hu, ELISA Kit for Surfactant-Associated
Protein D) in CSF samples. The analysis was performed using a microplate spectrophotometer
(ELISA-reader) at a wavelength of 450 nm and a reference wavelenght of 405 nm for measuring
the absorbance. Surfactant protein concentration in ng/ml CSF was calculated by comparison
between standard series and the determined values of antigen concentration (protein concen-
tration) according to the manufacturers manual. CSF concentrations of SP-A, SP-C and SP-D
lay well above the detection limit of the ELISA kits. Detection limits according the manufactur-
ers manual were as follows; SP-A: 18.27 pg/ml (0.0183 ng/ml), SP-C: 0.126 ng/ml and SP-D:
2.55 ng/ml. CSF concentrations of SP-B of most samples were slightly below the detection limit
of the ELISA kit according the manufacturers manual (SP-B: 0.62 ng/ml).

Further CSF analysis

Routine CSF laboratory data (bacterial cultures, cell count, CSF lactate and glucose concentra-
tions, total CSF protein and protein electrophoresis) were obtained to rule out infection or
other inflammatory and autoimmune diseases. Patients with CSF infectionwere excluded.

Statistical analysis

Statistical analysis was performed using SPSS Version 22. Data was tested for normality using
Shapiro-Wilks test. Differences between groups were analyzed using analysis of variance on
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ranks with a Dunnett post-hoc analysis. Correlation between age and the concentration of SPs
was calculated using a Spearman Rho correlation since SP values were not normally distrib-
uted. Significance level was set to 0.05.

Results

CSF samples of 126 patients were analyzed for Surfactant proteins A, B, C and D. Routine CSF
examinations as described above were also performed.An overviewof patient demographics is
given in Table 1.

Control patients with an age ranging from 14 days to 84 years (mean 43,5 years) were inves-
tigated. Under normal conditions, Surfactant proteins A, B, C and D are present in CSF inde-
pendent from gender. SP-B concentrations in the majority of CSF samples (n = 109) were
slightly below the guaranteed detection limit of the ELISA kit. 17 CSF samples revealed SP-B
concentrations within the detection range (control group: n = 12; acute HC without AQS:
n = 3; NPH: n = 1; pseudotumor cerebri: n = 1). Those specimens with values above the detec-
tion range are summarized graphically in Fig 1B. Detectablte SP-B values revealed a wide range
of variation, no trend was observable in the investigated subgroups. Statistical comparison
between the groups was therefore not applicable. An overviewof mean surfactant protein con-
centrations is shown in Table 2.

In routine CSF examination, only total CSF protein concentration showed a significant
reduction in AQS and VIIP patients (p = 0.01) compared to controls. Compared to control,
SP-A values were significantly elevated in all types of acute CSF circulation disturbance (AQS
and acute HC w/o AQS; p<0.001). SP-A levels in NPH were slightly elevated compared to con-
trols, but the difference did not reach statistical significance (p = 0.069) (Fig 1A). Compared to
controls, SP-C levels were elevated in patients with AQS, acute hydrocephalus without AQS
(both p<0.001) and pseudotumor cerebri (p<0.001). There was no significant alteration in
NPH patients (Fig 1C). Reliably measurable SP-B levels were found 17 out of 126 CSF samples,
mostly in the control group (12 samples revealed concentrations in the range between 0.67 ng/
ml and 1.915 ng/ml). In 109 CSF samples SP-B was below the detection limit (Fig 1B). SP-D
was detected in patients and controls without significant statistical differences, although a clear
trend was observable between the group of pseudotumor cerebri and controls (p = 0.056) (Fig
1D).

Additionally, all SP values were normalized to total CSF protein concentration. However, 29
specimens had to be excluded due to missing total protein concentrations and small sample
volume, thus resulting in a reduced total of samples of the different groups (49 controls, 22
AQS, 13 acute HC w/o AQS and 11 NPH specimen). Results of the normalized SPs are shown
in Fig 2A–2D and as dotplots in Fig 3A–3D. Subsequently, comparison of values between
investigated groups (AQS, acute HC w/o AQS, NPH, Pseudotumor cerebri and controls) by
means of ANOVA revealed statistically significant differences for SP-A (p<0.001), SP-C
(p<0.001) and SP-D (p<0.001). No differences were found for SP-B (p = 0.986). Post hoc anal-
ysis using a two-sided Dunnett test revealed that mean values of SP-A, SP-C and SP-D from
AQS patients were statistically different from the control group. No statistically significant

Table 1. Overview of demographic data of the patient subgroups.

Control AQS Acute HC w/o AQS NPH Pseudotumor cerebri

n 60 24 16 20 6

age (yrs) 43.5 (0–84) 19.3 (0–65) 14.5 (0–75) 67.2 (31–84) 25.7 (6–48)

Sex (m/f) 34/26 9/15 6/10 12/8 1/5

doi:10.1371/journal.pone.0160680.t001
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differences were found for NPH, acute HC w/o AQS and Pseudotumor cerebri values com-
pared to the control group.

SP-A showed a correlation to the age of the subjects in the control group only (r = 0.478;
p< 0.001; Fig 4B). There was no a significant association of SP-A values and age for the entire
set of samples of 126 patients (r = 0.059, p = 0.519, Fig 4A). Age did also not correlate with
SP-A levels in the subgroups of different pathological entities (Fig 4C–4F). The other SPs did
not show any correlation with age.

Fig 1. a) CSF levels of SP-A (ng/ml) in control group and hydrocephalus subgroups. In acute hydrocephalic conditions with elevated intracranial

pressure (ICP), SP-A levels are significantly elevated. b) CSF levels of SP-B (ng/ml) in control group and hydrocephalus subgroups. SP-B is not

significantly altered in hydrocephalus groups compared to control. SP-B concentrations in most specimens were below the detection limit.

Detectable SP-B values showed a wide range of variation. c) CSF levels of SP-C (ng/ml) in control group and hydrocephalus subgroups. Compared

to controls, SP-C is significantly increased in subgroups with elevated ICP. d) CSF levels of SP-D (ng/ml) in control group and hydrocephalus

subgroups. SP-D is present under normal and pathological conditions, there are no significant differences between the subgroups of AQS and

controls. Significance levels: # p<0.05 ## p<0.001; all vs. Control. *: Data value lies >3 times of the interquartile range away from the mean value. ˚:

Data value lies between 1.5 and 3x of the interquartile range away from the median value.

doi:10.1371/journal.pone.0160680.g001
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Discussion

In this study we quantified the concentration of SP in the CSF of human control patients in
comparison to patients suffering from AQS, acute hydrocephalus without AQS, NPH and
pseudotumor cerebri. We were able to demonstrate significant changes of SP-A and SP-C in
patients suffering from AQS and acute hydrocephalus without AQS. Significant changes of
SP-C were also found in patients suffering from pseudotumor cerebri. Furthermore there was a
delineable tendency of elevated SP-D in patients with pseudotumor cerebri, but the difference
compared to the control group did not reach statistical significance.We also noticed a trend of
increased SP-A in patients with NPH although this did not reach significance. Furthermore we
could show a significant increase of SP-A in correlation with age in normal subjects.

SP-A, besides its immunological functions, stabilizes the pulmonary surfactant layer and
contributes to its surface tension lowering activity [2,18–29]. SP-C strongly interacts with sur-
factant phospholipids, is responsible for initial surfactant film formation and thus also contrib-
utes to the reduction of surface tension [7]. Taken together, both proteins play a pivotal role
for the regulation of surface tension by maintaining the rheological properties of the intraalveo-
lar fluid layer.

It is well known that surfactant protein production and secretion depend on the impact of
mechanical force on the alveolar epithelium [30]. Deep tidal volumes result in increased SP
secretion and consequently reduced intraalveolar surface tension [31–33].

Concerning the CNS, we recently identified the epithelium of the choroid plexus and the
ependymal cells as cellular sources of SP-A and SP-C 10. Considering these facts we hypothesize
that both—SP-A and SP-C—in physiological analogy to their pulmonary functions—partici-
pate in the regulation of the CSF rheological properties in the central nervous system. Hydroce-
phalic conditions like AQS and acute HC without AQS occur due to disturbedCSF flow or
restricted CSF resorption and finally lead to increased pressure within the CSF spaces and ven-
tricular enlargement. Since in the lungs the production rate of SP-A and SP-C by the alveolar
epithelium increases corresponding to enhanced transepithelilal forces (for example following
deep inspiration), it might be that a similar mechanism exists in the brain [30]. Assuming that,
it seems possible that disturbedCSF flow and restricted CSF resorption, both being substantial
pathomechanistic elements of the aforementioned hydrocephalic conditions, increase mechan-
ical force to the ependyma and the choroid plexus by increasing ICP pulse amplitude. Thus, it
may increase SP production possibly downstream to strain on the actin skeleton as postulated
by Han and colleagues [30,34].

Table 2. Overview of mean Surfactant Protein A-D levels (ng/ml) and CSF cell count (CC), CSF lactate (lac), CSF glucose (glu) and total CSF pro-

tein concentrations (g/l) of various types of CSF disturbances and control group and their respective 95% confidence intervals. * p<0.05,

***p<0.001; all vs. Control

Control AQS Acute HC w/o AQS NPH Pseudotumor cerebri

n 60 24 16 20 6

SP-A 0.38 (0.32–0.43) 0.67 (0.57–1.78) *** 1.21 (0.88–1.54) *** 0.66 (0.49–0.87) 0.52 (0.27–0.81)

SP-B 0.27 (0.14–0.41) 0.22 (0.14–0.32) 0,28 (0–0.62) 0,20 (0.05–0.39) 0.13 (0–0.40)

SP-C 0.48 (0.42–0.54) 0.87 (0.75–1.02) *** 1.71 (1.10–2.41) *** 0,77 (0.63–0.91) 1.26 (1.01–1.49) *

SP-D 6.03 (5.52–6.54) 7.16 (6.11–8.30) 9.29 (5.33–14.64) 6.21 (4.57–7.75) 11.51 (5.59–21.16)

CC 3 (2–4) 9 (4–13) 13 (9–17) 2 (1–3) 2 (0–33)

Lac 1.60 (1.53–1.67) 1.55 (1.49–1.61) 2.12 (1.89–2.35) 1.86 (1.78–1.94) 1.48 (1.26–1.70)

Glu 3.55 (3.54–3.56) 3.78 (3.41–4.15) 3.16 (2–86–3.46) 4.25 (4.02–4.48) 6.05 (1.9–10.1)

Total Protein 0.36 (0.34–0.38) 0.11 (0.08–0.13) 0.43 (0.33–0.53) 0.40 (0.31–0.49) 0.22 (0.13–0.31)

doi:10.1371/journal.pone.0160680.t002
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Interestingly, CSF SP-A levels showed a significant increase in correlation with age–exclu-
sively in the control group. Since SP-A CSF levels are increased in all disease subgroups, it
seems likely that the pathophysiological alterations of CSF SP-A obscure the identifed associa-
tion with age. Furthermore, the small sample size of disease subgroups also contributes in dim-
ishing this phenomenon. Arani and coworkers were able to demonstrate in vivo that the
stiffness of the brain increases in older age [35]. Increased stiffness of brain parenchyma the
arterial blood flow shockwave will result in an increased ICP amplitude, hypothesized as a
main contributor to CSF secretion in the ventricles, resulting in intermittently increased trans-
ependymal mechanical forces [11]. The resulting increased strain of ependymal cells in con-
junction with ventricular enlargement may cause elevated SP-A secretion as a counter

Fig 2. a-d) CSF levels of SP A—D (ng/ml) in control group and hydrocephalus subgroups normalized to total CSF protein concentration of the

patients. Significant elevation of SP levels was found for SP-A, C and D for AQS patients compared to control only. Other hydrocephalus entities

showed trends towards elevation only.*: Data value lies >3 times of the interquartile range away from the mean value.˚: Data value lies between 1.5

and 3x of the interquartile range away from the median value.

doi:10.1371/journal.pone.0160680.g002
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regulatory mechanism. Although statistical significancewas not achieved, a trend of increased
SP-A in NPH patients was noticeable. Unlike in AQS and acute HC without AQS the underly-
ing pathomechanisms (reduced vascular compliance and decreasedCSF resorption through
the arachnoidal granulations causing elevated ICP pulse amplitudes and finally a characteristic
pattern of CSF space enlargement) of NPH are rather chronic processes than sudden events
and resulting disturbances of CSF-flow can therefore be partially compensated over the course
of the disease [36]. Possible regulatory adaptions of SP-A secretionmight thus be less obvious
[11,14,37,38].

In addition to AQS and acute HC without AQS SP-C levels were also elevated in patients
suffering from pseudotumor cerebri. Pseudotumor cerebri is characterized by an elevated intra-
cranial pressure but absence of ventricular enlargement [17,39]. A common characteristic

Fig 3. a—d) Dotplot Charts for CSF levels of SPs A-D (ng/ml) in control group and hydrocephalus subgroups normalized to total CSF concentration

showing the individual data values for each specimen. Significance levels: # p<0.05 ## p<0.001; all vs. Control. *: Data value lies >3 times of the

interquartile range away from the mean value. ˚: Data value lies between 1.5 and 3x of the interquartile range away from the median value.

doi:10.1371/journal.pone.0160680.g003
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feature of AQS, acute HC without AQS and pseudotumor cerebri is elevated intracranial pres-
sure. Since pseudotumor cerebri is the only pathology investigated in this study accompanied
by elevated intracranial pressure without ventriculomegalywe hypothesize that SP-C secretion
is predominantly increased downstream to increased intracranial pressure.

Interestingly SP-A was only increased in pathologies with ventricular enlargement but did
not reveal elevation in pseudotumor cerebri. This might indicate that dilation of the inner CSF
spaces is the primary stimulus for SP-A secretion, probably succeeding periods of increased
intracranial pressure without ventriculomegaly yet having occurred.

The results of our SP-B measurements in the different groups seem inconsistent. 17 of 126
CSF samples revealed SP-B concentrations within the detection range of the ELISA system, 109
samples revealed concentrations below the guaranteed detection limit. The majority of detect-
able SP-B levels were found in the control group (12 out of 60 controls). In our previous study
we were able to demonstrate production of SP-B in the human CNS and its abundance in CSF
with western blot and ELISA. Considering the issue of the detection limit of the used ELISA
system and the small sample size, further studies must be stressed to investigate the importance
of SP-B for CSF homeostasis.

SP-D was detected in all CSF samples. A trend of increased SP-D was observable in the
pseudotumor cerebri group, but the difference did not reach statistical significance compared
to our control cohort. Since the number of patients suffering from pseudotumor cerebri in our
study was comparatively small (n = 6) but the difference in SP-D CSF levels compared to con-
trols almost achieved statistical significancewe hypothesize that SP-D alteration might play a
role in pathophysiology of pseudotumor cerebri. To corroborate this hypothesis further studies
with a larger cohort of pseudotumor cerebri patients are necessary.

Normalising the SP concentrations to the absolute CSF protein content led mainly to a sig-
nificant reduction of the sample group for NPH (n = 11), but also for the other entities. The
normalization further substantiates that SP concentrations in AQS are highly elevated com-
pared to controls. However, due to the small sample size of other pathological entities, only
trends to SP elevation were found in PC patients. The results of the normalization additionally
indicate that the production of SPs does not simply follow the (etiology dependent) trend of
total CSF protein content. Down regulation of total CSF protein might be a counterregulatory
measure to improve reabsorption of CSF while surfactant proteins are maintained or even ele-
vated to support CSF flow and lower surface tension at the brain-CSF interface. Furthermore it
demonstrates that surfactant proteins are not present within the CSF due to a passive filtration
of serum proteins across the BBB.

The major shortcomings of the study are the small size of the control group and the lack of
follow-up surfactant protein levels after therapy (e.g. after shunt placement in NPH patients)
to evaluate therapeutic effects on the cerebral surfactant system. Obtaining such data will be an
ethical problem that can only be solved with randomised study protocols justifiedwhen more
data become available.

The identification of altered SP concentration in CSF as pathophysiological mechanism,
counterregulatory effect or pure epiphenomenon is difficult. Further investigations require
studies focusing e.g. on animal models and on the clinical progress of a particular condition
over time (AQS, NPH, acute hydrocephalus, pseudotumor cerebri) in correlation to changing
SP concentrations in the CSF.

Fig 4. SP-A levels increase with age. a) No correlation of normalized SP-A concentrations of all 126 specimens (r = 0.059,

p = 0.519). b) Positive age correlation of SP-A within the control group (r = 0.475, p<0.01). c)–f) Plots of age correlation for individual

patient subgroups.

doi:10.1371/journal.pone.0160680.g004
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Conclusion

The present study demonstrated the presence of Surfactant Proteins A, B, C and D under
physiological conditions in human CSF. SP-A and SP-C are elevated in CSF samples of patients
suffering from conditions with altered CSF dynamics. Elevated SP-A secretionmay predomi-
nantly be caused by ventricular enlargement, whereas SP-C might predominantly be elevated
due to increased intracranial pressure. These hypotheses require further investigations of
underlying pathomechanisms and signaling cascades. Our findings, however, suggest a poten-
tial use of SP-A and SP-C as diagnosticmarkers in diseases with ventriculomegaly and elevated
intracranial pressure.
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24. Bräuer L, Johl M, Börgermann J, Pleyer U, Tsokos M, Paulsen FP. Detection and Localization of the

Hydrophobic Surfactant Proteins B and C in Human Tear Fluid and the Human Lacrimal System. Curr

Eye Res. 2007; 32: 931–938. doi: 10.1080/02713680701694369 PMID: 18027169
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