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SH2B1 in 3-Cells Regulates

Glucose Metabolism

by Promoting p-Cell Survival

and Islet Expansion

IGF-1 and insulin promote -cell expansion by
inhibiting B3-cell death and stimulating -cell
proliferation, and the phosphatidylinositol (Pl)
3-kinase/Akt pathway mediates insulin and IGF-1
action. Impaired B-cell expansion is a risk factor for
type 2 diabetes. Here, we identified SH2B1, which is
highly expressed in 3-cells, as a novel regulator of
B-cell expansion. Silencing of SH2B1 in INS-1 832/13
B-cells attenuated insulin- and IGF-1-stimulated
activation of the Pl 3-kinase/Akt pathway and
increased streptozotocin (STZ)-induced apoptosis;
conversely, overexpression of SH2B1 had the opposite
effects. Activation of the Pl 3-kinase/Akt pathway in
B-cells was impaired in pancreas-specific SH2B1
knockout (PKO) mice fed a high-fat diet (HFD). HFD-
fed PKO mice also had increased f3-cell apoptosis,
decreased B-cell proliferation, decreased pB-cell mass,
decreased pancreatic insulin content, impaired insulin
secretion, and exacerbated glucose intolerance.
Furthermore, PKO mice were more susceptible to
STZ-induced B-cell destruction, insulin deficiency, and
hyperglycemia. These data indicate that SH2B1 in
B-cells is an important prosurvival and proproliferative
protein and promotes compensatory 3-cell expansion
in the insulin-resistant state and in response to B-cell
stress.
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Insulin, which is secreted from pancreatic B-cells,
decreases blood glucose by stimulating glucose uptake
into skeletal muscle and adipose tissue as well as by
suppressing hepatic glucose production. Plasma insulin
levels are determined largely by B-cell mass and 3-cell
secretory function, and (-cell failure is a causal factor for
both type 1 and type 2 diabetes (1,2).

Obesity is the primary risk factor for type 2 diabetes.
In the prediabetes state, obesity-induced insulin re-
sistance promotes adaptive B-cell expansion and hyper-
insulinemia. Once compensatory B-cell expansion and
hyperinsulinemia are insufficient to overcome insulin
resistance, glucose intolerance and hyperglycemia ensue.
Glucose, insulin, and IGF-1 are key factors that promote
B-cell expansion by both decreasing death and increasing
proliferation of B-cells (3-7). IGF-1 and insulin promote
B-cell survival and growth at least in part by activating
the phosphatidylinositol (PI) 3-kinase/Akt pathway
(8-13).

SH2B1 is a PH and SH2 domain—containing adapter
protein (14,15). It mediates/modulates insulin, IGF-1,
leptin, platelet-derived growth factor, fibroblast growth
factor, nerve growth factor, and growth hormone sig-
naling in cultured cells (14,15). SH2B1 binds to both
insulin and IGF-1 receptors (16,17), and it also binds to
IRS1 and IRS2, two upstream activators of the
PI 3-kinase pathway (18,19). We previously reported that
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disruption of the SH2BI gene in mice results in severe
obesity and type 2 diabetes (20-22). SH2B1 enhances
leptin signaling by binding to and activating JAK2 (23).
Neuronal SH2B1 protects against obesity in mice at
least in part by enhancing leptin sensitivity (24). In
agreement with our findings in mice, single nucleotide
polymorphisms in SH2B1 are linked to obesity in
European, American, and Asian populations (25-35).
Chromosomal deletion of SH2B1 as well as SH2B1
missense mutations is associated with obesity and
disproportional diabetes in humans (36-38).

SH2B1 is also expressed in peripheral tissues in ad-
dition to the brain (19,39). We previously reported that
mice lacking SH2B1 in peripheral tissues are predisposed
to high-fat diet (HFD)-induced diabetes (19); however,
the peripheral targets of SH2B1 were unknown. In this
study, we demonstrate that SH2B1 is expressed in 3-cells
at high levels. SH2B1 directly enhances insulin- and IGF-
1-stimulated activation of the PI 3-kinase/Akt pathway
in B-cells and promotes B-cell survival. We further
demonstrate that pancreas-specific knockout of SH2B1
(PKO) impairs B-cell expansion in PKO mice fed an HFD,
leading to impaired insulin secretion and glucose in-
tolerance. Our data suggest that SH2B1 in B-cells is
a previously unrecognized regulator of glucose homeo-
stasis and promotes B-cell survival and islet expansion in
the insulin-resistant state or under B-cell stress
conditions.

RESEARCH DESIGN AND METHODS

SH2B1 KO mice have previously been described (22).
PKO mice were generated using the Cre/loxP system.
Briefly, one loxP site was inserted into the intron be-
tween the second and third exons, and a second loxP site
was inserted into the intron between the fifth and sixth
exons in the SH2BI1 gene. Exons 2-5 encode amino acids
1-436 of all four SH2B1 isoforms. A neo cassette flanked
by unidirectional Flp-recombinase recognition sites was
inserted 3’ of the first loxP, and a thymidine kinase ex-
pression cassette was included at the 3’ end of the tar-
geting vector. A HindIIl restriction site was introduced
after the 3’ loxP site to facilitate detection of homolo-
gous recombination by Southern blot analysis. The
linearized targeting construct was electroporated into R1
ES cells (129/Svx129/Sv-CP F1) at the University of
Michigan Transgenic Animal Model Core, and homolo-
gous recombination was confirmed by PCR and Southern
blot analysis. Two positive ES cell clones were expanded
and microinjected into C57BL/6 blastocysts to generate
chimeric SH2B1%*™*°/* founder mice. The neo cassette
was deleted from the germ line by crossing SH2B1 o™/
mice to mice expressing Flp recombinase under the
control of the human actin promoter (TgACTFLPe
strain; The Jackson Laboratory). The Flp transgene was
subsequently removed by backcrossing with wild-type
(WT) C57BL/6 mice to generate SH2B1"* mice. PKO mice
(genotype: SH2B1"%;Cre*’ ™) were generated by crossing
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SH2B1"f with Pdx1-Cre mice in which Cre recombinase is
expressed under the control of the mouse Pdx1 pro-
moter (40).

All mice were generated and maintained on a congenic
C57BL/6 background. Mice were housed on 12-h light/
12-h dark cycles in the Unit for Laboratory Animal
Medicine at the University of Michigan. Mice were fed
either a standard rodent chow diet (9% fat; Laboratory
Diet, St. Louis, MO) or an HFD (45 or 60% fat; Research
Diets, New Brunswick, NJ) ad libitum with free access to
water. Animal experiments were conducted following
animal protocols approved by the University Committee
on Use and Care of Animals at the University of Michigan.

Streptozotocin-Induced Diabetes

Streptozotocin (STZ) was dissolved in 0.1 mol/L citrate
buffer (pH 4.5) and injected (25 mg/kg body wt i.p.) daily
for 5 days. Random-fed (9:00-10:00 aM.) blood glucose
levels were determined using glucometers (Bayer Corp.,
Pittsburgh, PA).

Glucose and Insulin Tolerance Tests

Glucose tolerance tests (GTT) and insulin tolerance tests
(ITT) were conducted as previously described (41).

Plasma Insulin Levels, Insulin Secretion, and Total
Pancreatic Insulin Content

Tail blood was collected at the indicated times, and
plasma insulin levels were measured using a rat insulin
ELISA kit (Crystal Chem Inc., Downers Grove, IL). For
measurement of glucose-stimulated insulin secretion
(GSIS), mice were fasted for 24 h before p-glucose (3 g/kg
body wt i.p.) was injected. Plasma insulin levels were
measured at the indicated time points by ELISA. Pan-
creata were isolated and homogenized in acid ethanol
(1.5% HCl in 70% EtOH) to extract total pancreatic in-
sulin. Pancreatic insulin content was measured using

a rat insulin RIA kit (Linco Research, St. Charles, MO)
and normalized to pancreas weight.

Immunoprecipitation and Immunoblotting

Mice were killed under anesthesia. Tissues were har-
vested and rapidly frozen in liquid nitrogen. Frozen tis-
sue samples were homogenized in ice-cold lysis buffer
(50 mmol/L Tris HCl, pH 7.5; 0.5% Nonidet P-40;

150 mmol/L NaCl; 2 mmol/L EGTA; 1 mmol/L NagVOy;
100 mmol/L NaF; 10 mmol/L NasP>,0O7; 1 mmol/L phe-
nylmethylsulfonyl fluoride, 10 pg/mL aprotinin; and

10 pg/mL leupeptin). Tissue extracts were immunopre-
cipitated and immunoblotted with the indicated anti-
bodies. Antibody dilutions were as follows: pAkt (pSer®”?)
(cat. no. 9271; Cell Signaling), 5,000; pAkt (pSer473)
(4060; Cell Signaling), 10,000; pAkt (pThr3°®) (sc-16646-
R; Santa Cruz), 3,000; Akt (sc-1618; Santa Cruz), 3,000;
Akt (4691; Cell Signaling), 10,000; tubulin (sc-5286;
Santa Cruz), 8,000; SH2B1 (laboratory generated), 10,000;
phospho-p44/42 MAPK (Thr*%%/Tyr*%%) (9106; Cell
Signaling), 10,000; and ERK1 (sc-94, Santa Cruz), 500.
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Immunostaining

Pancreata were fixed in 4% paraformaldehyde for 3 h and
then in 30% sucrose overnight. Frozen pancreatic sec-
tions (5-8 wm) were stained with the indicated anti-
bodies and visualized using a BX51 microscope equipped
with a DP70 Digital Camera (Olympus, Tokyo, Japan).
For measurement of islet area, pancreatic sections were
stained with hematoxylin-eosin (H-E). Islets were iden-
tified and total islet area was measured using ImageJ
software. Islet area was normalized to total section area.
Average islet area was determined for each mouse by
taking the normalized islet area of four to five sections
spaced >200 pwm apart. Average fluorescence intensity
was used as an index to quantify phosphorylation of Akt
and FOXO-1. Antibody dilution ratios were as follows:
pAkt (pThr®®®) (cat. no. sc-16646-R; Santa Cruz), 100;
pFOXO1 (pSer®®) (sc-101681; Santa Cruz), 50; insulin
(A0564; Dako), 2,000; glucagon (G 2654; Sigma), 3,000;
and Ki67 (VP-RMO04; Vector Laboratories), 100.

SH2B1 Knockdown and Overexpression in INS-1
832/13 Cells

INS-1 832/13 cells were cultured at 37°C and 5% CO, in
RPMI-1640 medium supplemented with 10% FBS and
50 pmol/L B-mercaptoethanol (42). For knockdown of
SH2B1, INS-1 832/13 cells were infected with a retroviral
vector encoding SH2B1 short hairpin RNA (shRNA)
(5'-CATCTGTGGTTCCAGTCCA-3"); a retroviral vector
encoding a scrambled shRNA served as control. Stable
lines were generated by puromycin selection. INS-1 832/
13 cells were infected with lentiviral vectors, and stable
lines were generated by puromycin selection.

Cell Viability Assays

Cell viability was measured by the colorimetric 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assays. INS-1 832/13 cells were treated with STZ
for 16 h in serum-free RPMI-1640 medium, and then
MTT (75 pg/mL) was added for an additional 1 h. After
extensive washes in PBS, cells were solubilized in DMSO.
Absorbance (570 nm) of cell extracts was measured using
a microplate reader and used as a viability index. The
viability of untreated cells was defined as 100%.

TUNEL Assays

Frozen pancreatic sections (5-8 pwm) or INS-1 832/13
cells were fixed with 4% paraformaldehyde and subjected
to TUNEL assays using cell death detection kits (Roche
Diagnostics) following the manufacturer’s recommended
procedure. The samples were stained with DAPI to vi-
sualize total cells. Pancreatic sections were also immu-
nostained with anti-insulin antibody to identify 3-cells.
TUNEL-positive cells were counted and normalized to
total islet cells. In separate experiments, islets were iso-
lated and incubated with interleukin (IL)-18 (1 ng/mL),
tumor necrosis factor (TNF)-a (5 ng/mL), and
interferon-y (5 ng/mL) in serum-free RPMI-1640 for
16-17 h and then subjected to TUNEL assays.
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Statistical Analysis

Data are presented as means = SEM. Differences be-
tween groups were determined by two-tailed Student
t tests. P < 0.05 was considered significant.

RESULTS

SH2B1 Is Highly Expressed in Pancreatic 3-Cells

We examined SH2B1 expression in the pancreas by
immunostaining pancreatic sections with an anti-SH2B1
antibody. SH2B1 expression was detected in islets from
WT but not in SH2B1 knockout (KO) mice (Fig. 1A).
SH2B1 protein was predominantly colocalized with in-
sulin in B-cells, but there was detectable SH2B1 in
insulin-negative cells in the mantle of the islet of WT
mice (Fig. 1A4). Notably, there was minimal SH2B1
staining observed in acinar tissue throughout the pan-
creas (Fig. 1A). Mice express four isoforms of SH2B1
(o, B, 7y, and d) via alternative mRNA splicing (43).
Multiple forms of SH2B1 were detected in protein
extracts from whole pancreas and isolated islets from
C57BL/6 mice (Fig. 1B). This is consistent with our
previous report that multiple isoforms of SH2B1 can be
detected in the mouse brain using our anti-SH2B1
antibodies (24). Consistent with the immunostaining
results, SH2B1 protein levels were relatively higher in
islet extracts than in total pancreatic extracts (Fig. 1B).
SH2B1 protein was also detected in the rat INS-1
832/13 B-cell line (Fig. 24).

IP: aSH2B1 | we

A

WT

KO

B - :ISHZB1

IB: aSH2B1

IB: cactin | s - |—B-actin
WT KO WT
Pancreas Islets

Figure 1—SH2B1 is highly expressed in pancreatic B-cells.

A: Pancreas sections from WT and KO mice were immunostained
with anti-SH2B1 (red) and anti-insulin (green) antibodies. Scale
bar: 250 pm. B: Pancreas and islets extracts were immunopreci-
pitated (IP) and immunoblotted (IB) with anti-SH2B1 antibody.
Extracts were also blotted with anti-B-actin antibody.
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SH2B1 Protects INS-1 832/13 pB-Cells Against Injury
and Death

To gain insight into the potential function of SH2B1 in
B-cells, we knocked down SH2B1 in INS-1 832/13 B-cells
using shRNA-mediated gene silencing. INS-1 832/13 cells
were infected with SH2B1 shRNA or scramble retroviral
vectors to generate stable cell lines. SH2B1 protein levels
were ~60% less in INS-1 832/13 cells infected with
SH2B1 shRNA retroviral vectors (Fig. 24). For de-
termination of whether SH2B1 promotes B-cell survival,
INS-1 832/13 cells with SH2B1 silencing were treated
with STZ, a B-cell toxin, and cell viability was measured
using MTT assays. Silencing of SH2B1 significantly de-
creased the viability of STZ-treated INS-1 832/13 cells
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hormones, and growth factors. For determination of
whether SH2B1 is required for the activation of the PI
3-kinase pathway in B-cells, SH2B1 was silenced in INS-1
832/13 cells by shRNA retroviral vectors as described
above. The cells were treated with IGF-1 or insulin, and
phosphorylation of Akt was measured by immunoblot-
ting with anti-phospho-Akt (pThr**® or pSer®”®) anti-
bodies. IGF-1 rapidly stimulated Akt phosphorylation in
control cells transduced with scramble shRNA, but silenc-
ing of SH2B1 significantly decreased Akt phosphorylation
on both Thr*® (by 17%) and Ser”? (by 43%) (Fig. 3A).
Silencing of SH2B1 also inhibited IGF-1-stimulated
phosphorylation of ERK1 and ERK2 (Fig. 3B). Insulin
also stimulated Akt phosphorylation in INS-1 832/13

(Fig. 2B). We also measured apoptosis using TUNEL
assays. Silencing of SH2BI significantly increased STZ-
induced apoptosis (Fig. 2C). To determine whether over-
expression of SH2B1 has the opposite effects, we stably
introduced rat SH2B1f into INS-1 832/13 B-cells (Fig.
2D). Overexpression of SH2B1 significantly increased the
viability of STZ-treated INS-1 832/13 cells (Fig. 2E).
Overexpression of SH2B1 also protected INS-1 832/13
cells from STZ-induced apoptosis (Fig. 2F). These data
indicate that SH2B1 is a prosurvival protein in B-cells.

SH2B1 Promotes Activation of the Pl 3-Kinase/Akt
Pathway in INS-1 832/13 p-Cells

In B-cells, the PI 3-kinase pathway is the major pro-
survival pathway and is activated by nutrients,

cells, and silencing of SH2B1 significantly decreased
insulin-stimulated phosphorylation of Akt (Fig. 3C). For
determination of whether SH2B1 directly augments
IGF-1 and insulin signaling in -cells, SH2B1 was stably
overexpressed in INS-1 832/13 cells as described above.
Stable cell lines were treated with IGF-1 or insulin, and
Akt and ERK1/2 phosphorylation was measured by im-
munoblotting. Overexpression of SH2B1 not only in-
creased IGF-1-stimulated Akt phosphorylation on both
Thr3%8 (by 87%) and Ser?™® (by 37%) (Fig. 3D) but also
increased IGF-1-stimulated phosphorylation of ERK1/2
(Fig. 3E). SH2B1 overexpression also significantly in-
creased insulin-stimulated phosphorylation of Akt (Fig.
3F). These data demonstrate that in B-cells, SH2B1 is an
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Figure 2—SH2B1 cell-autonomously promotes p-cell survival. A-C: INS-1 832/13 cells were infected with SH2B1 shRNA or scramble

retroviral vectors to generate stable lines. A: SH2B1 in cell extracts were immunoprecipitated (IP) and immunoblotted (IB) with anti-SH2B1
antibody. Cell extracts were also immunoblotted with anti—B-tubulin antibody. B: Cells were treated with STZ for 16 h, and cell viability was
measured using MTT. Scramble: n = 4; shRNA: n = 4. C: Cells were treated with STZ (0.2 mmol/L) for 16 h, and apoptosis was measured
using TUNEL assays. Scramble: n = 5; shRNA: n = 5. D-F: INS-1 832/13 cells were infected with SH2B13 or empty lentiviral vectors to
generate stable cell lines. D: Cell extracts were immunoblotted with anti-SH2B1 and anti—-B-tubulin antibodies. E: Cells were treated with
STZ for 16 h, and cell viability was measured using MTT. Control (Con): n = 4; SH2B1: n = 4. a.u., arbitrary units. F: Cells were treated with
STZ (0.5 mmol/L) for 16 h, and apoptosis was measured by TUNEL assays. Control: n = 5; SH2B1: n = 6. Data are means =+ SE. *P < 0.05.
a.u., arbitrary units.
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Figure 3—SH2B1 promotes the Pl 3-kinase/Akt pathway in B-cells. A-D: INS-1 832/13 cells were stably infected with scramble or shRNA
vectors as described for Fig. 2A. A-C: Cells were deprived of serum overnight and stimulated with 50 nmol/L IGF-1 (A and B) or

100 nmol/L insulin (C) for 15 min. Cell extracts were immunoblotted with the indicated antibodies. Akt phosphorylation was quantified and
normalized to total Akt levels, whereas phosphorylation of ERK1/2 was normalized to total ERK1/2 levels. Basal: n = 4-6; IGF-1: n = 4-6;
insulin: n = 4. D-F: SH2B1B was stably overexpressed in INS-1 832/13 cells as described for Fig. 2D. Cells were stimulated with 50 nmol/L
IGF-1 (D and E) or 100 nmol/L insulin (F) for 15 min, and Akt and ERK1/2 phosphorylation was measured as described above. Basal: n = 4;
IGF-1: n = 4; insulin: n = 4; 2.8 mmol/L: n = 4-8. Data are means = SE. *P < 0.05. a.u., arbitrary units; Con, control.

endogenous enhancer of the PI 3-kinase/Akt pathway
and integrates multiple prosurvival signals, including
those from IGF-1 and insulin.

Generation of PKO Mice

To determine whether SH2B1 in B-cells has similar
prosurvival functions in vivo, we generated PKO mice
using the Cre/loxP system. Two loxP sites flanking coding
exons 1-4 were engineered into the SH2B1 gene in ES
cells (Fig. 4A). Targeted ES cells were used to generate
floxed SH2B1 mice (designated as SH2B17), which were
subsequently backcrossed (>6 generations) on the

C57BL/6 congenetic background. SH2B1”" mice were
crossed with Pdx1-Cre transgenic mice to generate PKO
mice (genotype: SH2B17%;Cre™ ™). Pdx1-Cre mice have
been widely used to generate PKO mice (40). As pre-
dicted, SH2B1 protein was detected in the pancreata of
SH2B1"f and Pdx1-Cre, but not PKO, mice (Fig. 4B).
SH2B1 protein levels in the brain and liver were similar
between SH2B17f and PKO mice (Fig. 40), indicating that
the SH2B1 gene is disrupted specifically in the pancreata
of PKO mice. General inspection revealed that PKO mice
were healthy with normal body weight (Fig. 4D). Body
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Figure 4—Generation of PKO mice. A: A schematic representation of gene targeting strategies to generate conditional SH2B1 KO mice.
Squares represent individual exons, and the first is a noncoding exon. B: Pancreatic extracts were prepared from SH2B1", Pdx1-Cre, and
PKO male mice (12 weeks) and immunoprecipitated (IP) and immunoblotted (IB) with anti-SH2B1 antibody. Pancreatic extracts were also
immunoblotted with anti-B-tubulin antibody. C: Tissue extracts were immunoprecipitated and immunoblotted with anti-SH2B1 antibody.
D: Body weights of chow-fed male mice at 8 (control: n = 7; PKO: n = 8) and 18 (control: n = 4; PKO: n = 5) weeks of age. E. Body weights
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weight gain was also comparable between SH2B1"*, Pdx1-
Cre, and PKO mice when fed an HFD (Fig. 4E).

Pancreas-Specific Deletion of SH2B1 Impairs Insulin
Secretion and Glucose Tolerance

To determine whether islet SH2B1 is involved in the
regulation of glucose metabolism, we measured blood
glucose and examined glucose and insulin tolerance in
PKO mice fed a normal chow diet. A combination of
SH2B1"f and Pdx1-Cre mice was used as a control group.
PKO mice had relatively normal blood glucose levels
(Fig. 5A). Their insulin sensitivity and glucose tolerance
were also normal, as revealed by ITTs (Fig. 5B) and GTTs
(Fig. 5C), respectively.

In prediabetes and insulin-resistant states, compen-
satory 3-cell expansion and hyperinsulinemia are able to
restrain blood glucose within a relatively normal range.
For determination of whether SH2B1 in B-cells is in-
volved in the regulation of compensatory (3-cell expan-
sion, PKO mice were fed an HFD to induce obesity and
insulin resistance. As noted previously, body weight gain

was similar between HFD-fed PKO and control mice
(Fig. 4E). Obese PKO and control mice developed insulin
resistance to a degree similar to that revealed by ITT (Fig.
5D). However, PKO mice exhibited greater glucose in-
tolerance than control mice (Fig. 5E). For determination
of whether pancreas-specific deletion of SH2B1 impairs
insulin secretion, HFD-fed PKO and control mice were
injected with glucose, and plasma insulin levels were
measured after glucose injection. GSIS was impaired in
obese PKO mice (Fig. 5F). Collectively, these data suggest
that SH2B1 deficiency in the pancreas impairs GSIS in
HFD-fed PKO mice, contributing to increased glucose
intolerance.

Pancreas-Specific Deletion of SH2B1 Impairs pB-Cell
Survival, Proliferation, and Islet Expansion

For determination of whether impaired GSIS in HFD-fed
PKO mice is caused by reductions in B-cell number and
islet mass, pancreatic sections from HFD-fed PKO and
control mice were stained with H-E or with antibodies
against insulin and glucagon. Compared with the control
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Figure 5—Pancreas-specific deletion of SH2B1 impairs glucose tolerance. A-C: PKO (n = 16-19) and control male mice (n = 29) were fed
a normal chow diet. Overnight fasting blood glucose (A) was measured and ITTs (insulin: 1 unit’/kg body wt) (B) and GTTs (p-glucose:
2 g/kg body wt) (C) were conducted at 7-8 weeks of age. D-F: Male mice (7-8 weeks) were fed an HFD (60% fat) for 10 weeks. ITTs
(insulin: 1 unit’kg body wt) (D) and GTTs (p-glucose: 1 g/kg body wt) (E) were performed. Control: n = 10; PKO: n = 9. F: Mice were fasted
for 24 h and injected with p-glucose (3 g/kg). Plasma insulin was measured 0, 5, and 30 min after injection. Control: n = 6; PKO: n = 8. Data

are means * SE. *P < 0.05. Con, control.

groups, both the size of individual islets (Fig. 6A and B)
and total islet area (Fig. 6C) were significantly reduced in
PKO mice. Relative B-cell mass, determined by insulin
immunoreactivity, was lower in PKO mice (Fig. 6B). Ac-
cordingly, pancreatic insulin content was 39% lower in
PKO than in control mice (Fig. 6D). To determine
whether cell death contributes to reduced B-cell mass in
PKO mice, we measured islet apoptosis by TUNEL
staining. Pancreatic sections were coimmunostained with
anti-insulin antibody to visualize 3-cells. The number of
TUNEL-positive B-cells was more in PKO than in control
mice (Figs. 6E and F). To determine whether deletion of
SH2B1 in B-cells directly increases (-cell susceptibility to
cytokine-induced death, we isolated islets and treated
them with IFN-y, TNF-q, and IL-1B in vitro. SH2B1-
deficient islets were much more sensitive to cytokine-
induced cell death (Fig. 6G). We also examined {3-cell
proliferation by immunostaining pancreatic sections with
anti-Ki67 antibody (Fig. 6H). Islets from HFD-fed PKO
mice had significantly fewer Ki67-positive B-cells (Figs.
6H and I). Together, these data suggest that increased
apoptosis and decreased proliferation of 3-cells may restrict
compensatory (3-cell expansion in HFD-fed PKO mice,
contributing to reduced islet mass and impaired GSIS.

In INS-1 832/13 cells, silencing of SH2BI increased
STZ-induced apoptosis (Fig. 2C). Similarly, islets isolated

from PKO mice were more sensitive to cytokine-induced
apoptosis (Fig. 6G). To determine whether SH2B1-
deficient 3-cells in mice are also predisposed to injury, we
injected PKO and control mice with multiple low-dose
STZ administrations (25 mg/kg body wt for 5 consecu-
tive days). STZ treatments induced progressive hyper-
glycemia in both PKO and control mice; however, blood
glucose levels were significantly higher in PKO mice (Fig.
6J). Plasma insulin levels (Fig. 6K) and pancreatic insulin
content (Fig. 6L) were 38 and 47% lower, respectively, in
STZ-treated PKO than in control mice. These data fur-
ther support the conclusion that SH2B1 in B-cells pro-
tects against B-cell injury and death and is required for
compensatory [3 activity in obesity and in response to
B-cell stress.

Pancreas-Specific Deletion of SH2B1 Impairs the PI
3-Kinase/Akt Pathway in B-Cells

In INS-1 832/13 B-cells, SH2B1 directly enhanced IGF-1-
and insulin-stimulated activation of the PI 3-kinase/
Akt pathway (Fig. 3). To determine whether SH2B1
similarly enhances the activation of the PI 3-kinase
pathway in B-cells in mice, we measured phosphoryla-
tion of Akt and its physiological substrate, FOXO1,

in the B-cells of PKO mice that were fed an HFD

for 10-12 weeks. Frozen pancreatic sections were
immunostained with anti-phospho-Akt (pThr®°®) or
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Figure 6 — Pancreas-specific deletion of SH2B1 decreases islet mass, pancreatic insulin content, and islet function. Male mice fed an HFD
(60% fat) for 10-12 weeks. A: H-E staining of pancreas sections. B: Pancreatic sections were immunostained with anti-insulin or anti-
glucagon antibodies. C: Islet area was quantified and normalized to pancreatic section area. Control: n = 10; PKO: n = 11. D: Pancreatic
insulin content in fasted (16 h) male mice was measured and normalized to pancreas weights. Control: n = 8; PKO: n = 6. E and F: Islet cell
apoptosis measured by TUNEL assays. Control: n = 6; PKO: n = 5. G: Islets were isolated from SH2B1" (control, n = 3) and PKO (n = 4)
male mice (14-16 weeks) treated with cytokines (IL-18: 1 ng/mL; TNF-a: 5 ng/mL; and INF-y: 5 ng/mL) for 16-17 h. Apoptosis was
analyzed using TUNEL assays. TUNEL-positive cells were normalized to total islet cells. H and /: Pancreatic sections were costained with
anti-Ki67 and anti-insulin antibodies. Control: n = 8; PKO: n = 11. J-L: Males (9-10 weeks) were fed an HFD (45% fat) for 1 week and then
injected with STZ (25 mg/kg) daily for 5 days. J: Blood glucose was monitored weekly. Control: n = 29; PKO: n = 16. K: Plasma insulin
levels 5 weeks after STZ treatment. Control: n = 28; PKO: n = 16. L: Pancreatic insulin content 5 weeks after STZ treatment. Control: n =
25; PKO: n = 11. Data are means = SE. *P < 0.05. Con, control.

anti-phospho-FOXO1 (pSer®®). B-Cells were identified ~ without insulin, and islet extracts were immunoblotted

by immunostaining with anti-insulin antibodies. Akt with anti-phospho-Akt (pSer®”®) antibody. Akt phos-
phosphorylation was 31% lower in the islets of PKO phorylation was lower in the islets of PKO mice
mice (Fig. 7A). FOXO1 phosphorylation in B-cells was  under both basal and insulin-stimulated conditions
also significantly lower in PKO mice (Fig. 7B). For (Fig. 7C). These results indicate that SH2B1 directly

verification of reduction in Akt phosphorylation in the  enhances activation of the PI 3-kinase/Akt pathway
B-cells of PKO mice, male mice were fed an HED for not only in cultured INS-1 832/13 cells but also in
5 weeks. Islets were isolated and stimulated with or B-cells in vivo.
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Figure 7—SH2B1 promotes the Akt/FOXO1 pathway in islets.

A: Pancreas sections were prepared from PKO and control mice
fed an HFD (60% fat) for 10-12 weeks and immunostained with
anti-phospho-Akt (pThr%8) and anti-insulin antibodies. Akt phos-
phorylation was quantified using ImagedJ software. a.u., arbitrary
units. Control: n = 12; PKO: n = 10. B: Pancreatic sections were
prepared from PKO (n = 11) and control (n = 11) mice fed an HFD
for 10-12 weeks and coimmunostained with anti-phospho-FOXO1
(pSer®®®) and anti-insulin antibodies. C: Male mice (7-10 weeks)
were fed an HFD (60% fat) for 5 weeks and fasted for 18-22 h.
Islets were isolated and treated with insulin (100 nmol/L) for 15
min, and islet extracts were immunoblotted with anti-phospho-Akt
(pSer*™) or Akt, respectively. Phosphorylation of Akt was quanti-
fied and normalized to total Akt levels. SH2B1" (control): n = 8;
PKO: n = 8. Data are means + SE. *P < 0.05. Con, control.

DISCUSSION

B-Cell dysfunction is a hallmark of both type 1 and type 2
diabetes, and numerous genetic and environmental fac-
tors promote diabetes by impairing B-cell survival,
growth, and activity. B-Cell growth, survival, and death
are tightly regulated by various nutritional, hormonal,
and neuronal signals, and B-cell sensitivity to these ex-
tracellular signals is likely to be closely regulated by 3-cell
intrinsic factors. In this study, we have identified SH2B1
as a B-cell intrinsic enhancer of the PI 3-kinase pathway.
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SH2B1 cell-autonomously protects against B-cell injury
and death and promotes B-cell proliferation by in-
tegrating multiple external signals, including those from
insulin and IGF-1 and other factors.

We have provided multiple lines of evidence demon-
strating that SH2B1 in B-cells is a novel prosurvival and
proproliferative signaling molecule. First, we showed that
SH2B1 was expressed in 3-cells at the high levels. Sec-
ond, silencing of SH2B1 in INS1 832/13 3-cells increased
STZ-induced apoptosis, whereas overexpression of
SH2B1 was protective. Third, pancreas-specific deletion
of SH2B1 increased B-cell apoptosis in HFD-fed PKO
mice and exacerbated STZ-induced B-cell injury and hy-
perglycemia in PKO mice. Fourth, B-cell proliferation
rates were lower in HFD-fed PKO mice than in HFD-fed
control mice. Fifth, SH2B1 in B-cells directly promoted
activation of the PI 3-kinase/Akt pathway in vitro and in
vivo. The PI 3-kinase pathway is the major survival
pathway in B-cells, and activation of this pathway also
stimulates B-cell proliferation (44). In rat INS1 832/13
B-cells, silencing of SH2B1 attenuated the activation of
the PI 3-kinase pathway by multiple survival factors (e.g.,
insulin and IGF-1); conversely, overexpression of SH2B1
enhanced insulin- and IGF-1-stimulated activation of the
PI 3-kinase pathway. Furthermore, pancreas-specific de-
letion of SH2B1 attenuated phosphorylation of both Akt
and FOXOL1 in the B-cells of PKO mice.

SH2B1 has been reported to directly bind to both IGF-1
and insulin receptors in multiple cell types (16,19,45).
SH2B1-insulin receptor interactions markedly enhance
insulin receptor catalytic activity (19,46). SH2B1 also
binds to both IRS1 and IRS2 to facilitate the formation of
insulin receptor/SH2B1/IRS signaling complexes (18).
Furthermore, SH2B1-IRS interactions protect IRS pro-
teins from tyrosine dephosphorylation, thus sustaining
the ability of IRS proteins to activate the PI 3-kinase
pathway (19). Accordingly, SH2B1 markedly enhances
insulin-stimulated tyrosine phosphorylation of IRS1
and IRS2 (19,22,47). We propose that in B-cells, SH2B1
directly enhances the activation of the PI 3-kinase/Akt
pathway by enhancing insulin receptor and IGF-1 re-
ceptor activation, recruiting IRS proteins into insulin
receptor and IGF-1 receptor signaling complexes,
or protecting IRS proteins from tyrosine de-
phosphorylation. Additionally, SH2B1 in B-cells may
also enhance activation of the PI 3-kinase pathway in-
directly through stimulating insulin secretion. In agree-
ment with this idea, deletion of SH2B1 markedly reduced
basal Akt phosphorylation in the islets of PKO mice in
the absence of exogenous insulin stimulation. Although
the PI 3-kinase pathway is likely to mediate the pro-
survival and proproliferative effects of SH2B1 in [-cells,
our data do not exclude the possibility that SH2B1 may
promote 3-cell expansion by additional mechanisms.

-Cell expansion is an important adaptation to obesity-
associated insulin resistance, and impaired (3-cell expan-
sion is a risk factor for type 2 diabetes. Here, we report for
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the first time that pancreatic SH2B1 is required for [3-cell
expansion in obese mice. Lean PKO mice are able to
maintain normal blood glucose, insulin sensitivity, and
glucose tolerance, indicating that SH2B1 in B-cells is
dispensable for the maintenance of glucose homeostasis
in mice fed a normal chow diet. By contrast, PKO mice
with HFD-induced obesity had reduced B-cell mass and
pancreatic insulin content and impaired GSIS, indicating
that compensatory 3-cell expansion and function are
impaired in these mice. PKO mice displayed more severe
glucose intolerance after HFD feeding and developed
more severe hyperglycemia after STZ treatment. As dis-
cussed above, SH2B1 directly promotes proliferation and
inhibits apoptosis of B-cells; therefore, SH2B1 in B-cells
promotes (-cell expansion in the setting of obesity or
B-cell stress at least in part by increasing proliferation-
to-apoptosis ratios. However, our data do not exclude the
possibility that SH2B1 in -cells may regulate systemic
glucose homeostasis by other mechanisms in addition to
promoting -cell expansion, and this possibility should
be further investigated in the future.

In summary, we observed that SH2B1 directly pro-
motes insulin- and IGF-1-stimulated activation of the PI
3-kinase/Akt pathway in INS-1 832/13 B-cells and in
islets from mice. SH2B1 also cell-autonomously pro-
motes [3-cell survival and proliferation, as well as GSIS, in
mice fed an HFD. Moreover, disruption of pancreatic
SH2B1 worsens STZ-induced diabetes in mice. Collec-
tively, these findings suggest that SH2B1 in (-cells reg-
ulates glucose homeostasis by promoting compensatory
B growth and function in obesity and in response to
stress. Therefore, B-cell SH2B1 may serve as a new
therapeutic target for the treatment of diabetes.
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